Spaces:
Runtime error
Runtime error
[Init] Add app file
Browse files- README.md +145 -7
- configs/config.json +28 -0
- conversation.py +193 -0
- demo.py +203 -0
- models/Qformer.py +1237 -0
- models/__init__.py +0 -0
- models/__pycache__/Qformer.cpython-38.pyc +0 -0
- models/__pycache__/__init__.cpython-38.pyc +0 -0
- models/__pycache__/blip2.cpython-38.pyc +0 -0
- models/__pycache__/eva_vit.cpython-38.pyc +0 -0
- models/__pycache__/modeling_llama.cpython-38.pyc +0 -0
- models/__pycache__/video_transformers.cpython-38.pyc +0 -0
- models/__pycache__/videochat.cpython-38.pyc +0 -0
- models/blip2.py +126 -0
- models/eva_vit.py +631 -0
- models/modeling_llama.py +755 -0
- models/video_transformers.py +443 -0
- models/videochat.py +176 -0
- requirements.txt +11 -0
- utils/__pycache__/config.cpython-38.pyc +0 -0
- utils/__pycache__/easydict.cpython-38.pyc +0 -0
- utils/config.py +281 -0
- utils/easydict.py +149 -0
README.md
CHANGED
@@ -1,13 +1,151 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license:
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Ask-Anything:ChatGPT with Video Understanding
|
3 |
+
emoji: movie_camera
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: green
|
6 |
sdk: gradio
|
7 |
+
python_version: 3.8.16
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: mit
|
11 |
---
|
12 |
|
13 |
+
# π¦ VideoChat [[paper](https://arxiv.org/abs/2305.06355)]
|
14 |
+
|
15 |
+
![images](assert/framework.png)
|
16 |
+
In this study, we initiate an exploration into video understanding by introducing VideoChat, an **end-to-end chat-centric video understanding system**. It integrates video foundation models and large language models via a learnable neural interface, excelling in **spatiotemporal reasoning, event localization, and causal relationship inference**. To instructively tune this system, we propose a **video-centric instruction dataset**, composed of thousands of videos matched with detailed descriptions and conversations. This dataset emphasizes **spatiotemporal reasoning and causal relationships**, providing a valuable asset for training chat-centric video understanding systems. Preliminary qualitative experiments reveal our systemβs potential across a broad spectrum of video applications and set the standard for future research.
|
17 |
+
|
18 |
+
|
19 |
+
# :fire: Updates
|
20 |
+
- **2023/05/11**: Release the π¦**VideoChat V1**, which can **handle both image and video understanding!**
|
21 |
+
- [Model](https://drive.google.com/file/d/1BqmWHWCZBPkhTNWDAq0IfGpbkKLz9C0V/view?usp=share_link) and [Data](https://github.com/OpenGVLab/InternVideo/blob/main/Data/instruction_data.md).
|
22 |
+
- π§βπ» *Online demo is Preparing*.
|
23 |
+
- π§βπ§ *Tuning scripts are cleaning*.
|
24 |
+
|
25 |
+
# :hourglass_flowing_sand: Schedule
|
26 |
+
|
27 |
+
- [x] Small-scale video instuction data and tuning
|
28 |
+
- [x] Instruction tuning on BLIP+UniFormerV2+Vicuna
|
29 |
+
- [ ] Large-scale and complex video instuction data
|
30 |
+
- [ ] Instruction tuning on strong video foundation model
|
31 |
+
- [ ] User-friendly interactions with longer videos
|
32 |
+
- [ ] ...
|
33 |
+
|
34 |
+
# :speech_balloon: Example
|
35 |
+
|
36 |
+
<div align="center">
|
37 |
+
<b>
|
38 |
+
<font size="4">Comparison with ChatGPT, MiniGPT-4, LLaVA and mPLUG-Owl. </font>
|
39 |
+
<br>
|
40 |
+
<font size="4" color="red">Our VideoChat can handle both image and video understanding well!</font>
|
41 |
+
</b>
|
42 |
+
</div>
|
43 |
+
<div align="center">
|
44 |
+
<img src="assert/comparison.png" width="90%">
|
45 |
+
</div>
|
46 |
+
|
47 |
+
<div align="center">
|
48 |
+
<font size="4">
|
49 |
+
<a href="https://pjlab-gvm-data.oss-cn-shanghai.aliyuncs.com/papers/media/jesse_dance.mp4">[Video]</a> <b>Why the video is funny?</b>
|
50 |
+
</font>
|
51 |
+
</div>
|
52 |
+
<div align="center">
|
53 |
+
<img src="assert/humor.png" width="50%">
|
54 |
+
</div>
|
55 |
+
|
56 |
+
<div align="center">
|
57 |
+
<font size="4">
|
58 |
+
<a href="https://pjlab-gvm-data.oss-cn-shanghai.aliyuncs.com/papers/media/jp_dance.mp4">[Video]</a> <b>Spatial perception</b>
|
59 |
+
</font>
|
60 |
+
</div>
|
61 |
+
<div align="center">
|
62 |
+
<img src="assert/spatial.png" width="50%">
|
63 |
+
</div>
|
64 |
+
|
65 |
+
<div align="center">
|
66 |
+
<font size="4">
|
67 |
+
<a href="https://pjlab-gvm-data.oss-cn-shanghai.aliyuncs.com/papers/media/car_accident.mp4">[Video]</a> <b>Temporal perception</b>
|
68 |
+
</font>
|
69 |
+
</div>
|
70 |
+
<div align="center">
|
71 |
+
<img src="assert/temporal.png" width="50%">
|
72 |
+
</div>
|
73 |
+
|
74 |
+
<div align="center">
|
75 |
+
<font size="4">
|
76 |
+
<a href="https://pjlab-gvm-data.oss-cn-shanghai.aliyuncs.com/papers/media/idol_dancing.mp4">[Video]</a> <b>Multi-turn conversation</b>
|
77 |
+
</font>
|
78 |
+
</div>
|
79 |
+
<div align="center">
|
80 |
+
<img src="assert/multi_turn.png" width="50%">
|
81 |
+
</div>
|
82 |
+
|
83 |
+
<div align="center">
|
84 |
+
<font size="4">
|
85 |
+
<b>Image understanding</b>
|
86 |
+
</font>
|
87 |
+
</div>
|
88 |
+
<div align="center">
|
89 |
+
<img src="assert/image.png" width="100%">
|
90 |
+
</div>
|
91 |
+
|
92 |
+
# :running: Usage
|
93 |
+
|
94 |
+
- Prepare the envirment.
|
95 |
+
```shell
|
96 |
+
pip install -r requirements.txt
|
97 |
+
```
|
98 |
+
|
99 |
+
- Download [BLIP2](https://huggingface.co/docs/transformers/main/model_doc/blip-2) model:
|
100 |
+
- ViT: `wget https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/eva_vit_g.pth`
|
101 |
+
- QFormer: `wget https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth`
|
102 |
+
- Change the `vit_model_path` and `q_former_model_path` in [config.json](./configs/config.json).
|
103 |
+
|
104 |
+
- Download [StabelVicuna](https://huggingface.co/CarperAI/stable-vicuna-13b-delta) model:
|
105 |
+
- LLAMA: Download it from the [original repo](https://github.com/facebookresearch/llama) or [hugging face](https://huggingface.co/decapoda-research/llama-13b-hf).
|
106 |
+
- If you download LLAMA from the original repo, please process it via the following command:
|
107 |
+
```shell
|
108 |
+
# convert_llama_weights_to_hf is copied from transformers
|
109 |
+
python src/transformers/models/llama/convert_llama_weights_to_hf.py \
|
110 |
+
--input_dir /path/to/downloaded/llama/weights \
|
111 |
+
--model_size 7B --output_dir /output/path
|
112 |
+
```
|
113 |
+
- Download [StableVicuna-13b-deelta](https://huggingface.co/CarperAI/stable-vicuna-13b-delta) and process it:
|
114 |
+
```shell
|
115 |
+
# fastchat v0.1.10
|
116 |
+
python3 apply_delta.py \
|
117 |
+
--base /path/to/model_weights/llama-13b \
|
118 |
+
--target stable-vicuna-13b \
|
119 |
+
--delta CarperAI/stable-vicuna-13b-delta
|
120 |
+
```
|
121 |
+
- Change the `llama_model_path` in [config.json](./configs/config.json).
|
122 |
+
|
123 |
+
- Download [VideoChat](https://drive.google.com/file/d/1BqmWHWCZBPkhTNWDAq0IfGpbkKLz9C0V/view?usp=share_link) model:
|
124 |
+
|
125 |
+
- Change the `videochat_model_path` in [config.json](./configs/config.json).
|
126 |
+
|
127 |
+
- Running demo with Gradio:
|
128 |
+
```shell
|
129 |
+
python demo.py
|
130 |
+
```
|
131 |
+
|
132 |
+
- Another demo on Jupyter Notebook can found in [demo.ipynb](demo.ipynb)
|
133 |
+
|
134 |
+
|
135 |
+
# :page_facing_up: Citation
|
136 |
+
|
137 |
+
If you find this project useful in your research, please consider cite:
|
138 |
+
```BibTeX
|
139 |
+
@article{2023videochat,
|
140 |
+
title={VideoChat: Chat-Centric Video Understanding},
|
141 |
+
author={KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhai Wang, Ping Luo, Yali Wang, Limin Wang, and Yu Qiao},
|
142 |
+
journal={arXiv preprint arXiv:2305.06355},
|
143 |
+
year={2023}
|
144 |
+
}
|
145 |
+
```
|
146 |
+
|
147 |
+
# :thumbsup: Acknowledgement
|
148 |
+
|
149 |
+
Thanks to the open source of the following projects:
|
150 |
+
|
151 |
+
[InternVideo](https://github.com/OpenGVLab/InternVideo), [UniFormerV2](https://github.com/OpenGVLab/UniFormerV2), [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4), [LLaVA](https://github.com/haotian-liu/LLaVA), [BLIP2](https://huggingface.co/docs/transformers/main/model_doc/blip-2), [StableLM](https://github.com/Stability-AI/StableLM).
|
configs/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model": {
|
3 |
+
"vit_model": "eva_clip_g",
|
4 |
+
"vit_model_path": "model/eva_vit_g.pth",
|
5 |
+
"q_former_model_path": "model/blip2_pretrained_flant5xxl.pth",
|
6 |
+
"llama_model_path": "model/stable-vicuna-13b",
|
7 |
+
"videochat_model_path": "model/videochat.pth",
|
8 |
+
"img_size": 224,
|
9 |
+
"num_query_token": 32,
|
10 |
+
"drop_path_rate": 0.0,
|
11 |
+
"use_grad_checkpoint": false,
|
12 |
+
"vit_precision": "fp32",
|
13 |
+
"freeze_vit": true,
|
14 |
+
"freeze_mhra": false,
|
15 |
+
"freeze_qformer": true,
|
16 |
+
"low_resource": false,
|
17 |
+
"max_txt_len": 320,
|
18 |
+
"temporal_downsample": false,
|
19 |
+
"no_lmhra": true,
|
20 |
+
"double_lmhra": false,
|
21 |
+
"lmhra_reduction": 2.0,
|
22 |
+
"gmhra_layers": 8,
|
23 |
+
"gmhra_drop_path_rate": 0.0,
|
24 |
+
"gmhra_dropout": 0.5,
|
25 |
+
"extra_num_query_token": 64
|
26 |
+
},
|
27 |
+
"device": "cuda"
|
28 |
+
}
|
conversation.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from transformers import StoppingCriteria, StoppingCriteriaList
|
5 |
+
|
6 |
+
from enum import auto, Enum
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
from decord import VideoReader, cpu
|
10 |
+
import torchvision.transforms as T
|
11 |
+
from models.video_transformers import (
|
12 |
+
GroupNormalize, GroupScale, GroupCenterCrop,
|
13 |
+
Stack, ToTorchFormatTensor
|
14 |
+
)
|
15 |
+
from torchvision.transforms.functional import InterpolationMode
|
16 |
+
from transformers import LlamaTokenizer, LlamaConfig
|
17 |
+
|
18 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
19 |
+
|
20 |
+
|
21 |
+
class SeparatorStyle(Enum):
|
22 |
+
"""Different separator style."""
|
23 |
+
SINGLE = auto()
|
24 |
+
TWO = auto()
|
25 |
+
|
26 |
+
|
27 |
+
def get_prompt(conv):
|
28 |
+
ret = conv.system + conv.sep
|
29 |
+
for role, message in conv.messages:
|
30 |
+
if message:
|
31 |
+
ret += role + ": " + message + conv.sep
|
32 |
+
else:
|
33 |
+
ret += role + ":"
|
34 |
+
return ret
|
35 |
+
|
36 |
+
|
37 |
+
class StoppingCriteriaSub(StoppingCriteria):
|
38 |
+
def __init__(self, stops=[], encounters=1):
|
39 |
+
super().__init__()
|
40 |
+
self.stops = stops
|
41 |
+
|
42 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
|
43 |
+
for stop in self.stops:
|
44 |
+
if torch.all((stop == input_ids[0][-len(stop):])).item():
|
45 |
+
return True
|
46 |
+
return False
|
47 |
+
|
48 |
+
|
49 |
+
class Chat:
|
50 |
+
def __init__(self, model, device='cuda:0'):
|
51 |
+
self.device = device
|
52 |
+
self.model = model
|
53 |
+
stop_words_ids = [torch.tensor([835]).to(self.device),
|
54 |
+
torch.tensor([2277, 29937]).to(self.device)] # '###' can be encoded in two different ways.
|
55 |
+
self.stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
|
56 |
+
|
57 |
+
def ask(self,text,conv):
|
58 |
+
conv.messages.append([conv.roles[0], text + '\n'])
|
59 |
+
return conv
|
60 |
+
|
61 |
+
def answer(self, conv, img_list, max_new_tokens=200, num_beams=1, min_length=1, top_p=0.9,
|
62 |
+
repetition_penalty=1.0, length_penalty=1, temperature=1.0):
|
63 |
+
conv.messages.append([conv.roles[1], None])
|
64 |
+
embs = self.get_context_emb(conv, img_list)
|
65 |
+
outputs = self.model.llama_model.generate(
|
66 |
+
inputs_embeds=embs,
|
67 |
+
max_new_tokens=max_new_tokens,
|
68 |
+
stopping_criteria=self.stopping_criteria,
|
69 |
+
num_beams=num_beams,
|
70 |
+
do_sample=True,
|
71 |
+
min_length=min_length,
|
72 |
+
top_p=top_p,
|
73 |
+
repetition_penalty=repetition_penalty,
|
74 |
+
length_penalty=length_penalty,
|
75 |
+
temperature=temperature,
|
76 |
+
)
|
77 |
+
output_token = outputs[0]
|
78 |
+
if output_token[0] == 0: # the model might output a unknow token <unk> at the beginning. remove it
|
79 |
+
output_token = output_token[1:]
|
80 |
+
if output_token[0] == 1: # some users find that there is a start token <s> at the beginning. remove it
|
81 |
+
output_token = output_token[1:]
|
82 |
+
output_text = self.model.llama_tokenizer.decode(output_token, add_special_tokens=False)
|
83 |
+
output_text = output_text.split('###')[0] # remove the stop sign '###'
|
84 |
+
output_text = output_text.split('Assistant:')[-1].strip()
|
85 |
+
conv.messages[-1][1] = output_text
|
86 |
+
return output_text, output_token.cpu().numpy(), conv
|
87 |
+
|
88 |
+
def get_index(self, num_frames, num_segments):
|
89 |
+
seg_size = float(num_frames - 1) / num_segments
|
90 |
+
start = int(seg_size / 2)
|
91 |
+
offsets = np.array([
|
92 |
+
start + int(np.round(seg_size * idx)) for idx in range(num_segments)
|
93 |
+
])
|
94 |
+
return offsets
|
95 |
+
|
96 |
+
def load_video(self, video_path, num_segments=8, return_msg=False):
|
97 |
+
vr = VideoReader(video_path, ctx=cpu(0))
|
98 |
+
num_frames = len(vr)
|
99 |
+
frame_indices = self.get_index(num_frames, num_segments)
|
100 |
+
|
101 |
+
duration = len(vr) // vr.get_avg_fps()
|
102 |
+
index = np.linspace(0, len(vr)-1, num=int(duration))
|
103 |
+
buffer = vr.get_batch(index).asnumpy()
|
104 |
+
# transform
|
105 |
+
input_mean = [0.48145466, 0.4578275, 0.40821073]
|
106 |
+
input_std = [0.26862954, 0.26130258, 0.27577711]
|
107 |
+
|
108 |
+
transform = T.Compose([
|
109 |
+
GroupScale(int(224), interpolation=InterpolationMode.BICUBIC),
|
110 |
+
GroupCenterCrop(224),
|
111 |
+
Stack(),
|
112 |
+
ToTorchFormatTensor(),
|
113 |
+
GroupNormalize(input_mean, input_std)
|
114 |
+
])
|
115 |
+
|
116 |
+
images_group = list()
|
117 |
+
for frame in buffer:
|
118 |
+
img = Image.fromarray(frame)
|
119 |
+
images_group.append(img)
|
120 |
+
images_group = list()
|
121 |
+
for frame_index in frame_indices:
|
122 |
+
img = Image.fromarray(vr[frame_index].asnumpy())
|
123 |
+
images_group.append(img)
|
124 |
+
torch_imgs_224 = transform(images_group)
|
125 |
+
if return_msg:
|
126 |
+
fps = float(vr.get_avg_fps())
|
127 |
+
sec = ", ".join([str(round(f / fps, 1)) for f in frame_indices])
|
128 |
+
# " " should be added in the start and end
|
129 |
+
msg = f"The video contains {len(frame_indices)} frames sampled at {sec} seconds."
|
130 |
+
return torch_imgs_224, msg
|
131 |
+
else:
|
132 |
+
return torch_imgs_224
|
133 |
+
|
134 |
+
def upload_video(self, image, conv, img_list, num_segments):
|
135 |
+
if isinstance(image, str): # is a image path
|
136 |
+
vid_chat, msg = self.load_video(image, num_segments=num_segments, return_msg=True)
|
137 |
+
TC, H, W = vid_chat.shape
|
138 |
+
image = vid_chat.reshape(1, TC//3, 3, H, W).to(self.device)
|
139 |
+
|
140 |
+
else:
|
141 |
+
raise NotImplementedError
|
142 |
+
print("Input video shape:", vid_chat.shape)
|
143 |
+
image_emb, _ = self.model.encode_img(image)
|
144 |
+
img_list.append(image_emb)
|
145 |
+
conv.messages.append([
|
146 |
+
conv.roles[0],
|
147 |
+
f"<Video><VideoHere></Video> {msg}\n"
|
148 |
+
])
|
149 |
+
msg = "Received."
|
150 |
+
# self.conv.append_message(self.conv.roles[1], msg)
|
151 |
+
return msg, img_list, conv
|
152 |
+
|
153 |
+
def upload_img(self, image, conv, img_list):
|
154 |
+
img = image#Image.open(image)#.convert('RGB')
|
155 |
+
transform = T.Compose(
|
156 |
+
[
|
157 |
+
T.Resize(
|
158 |
+
(224, 224), interpolation=InterpolationMode.BICUBIC
|
159 |
+
),
|
160 |
+
T.ToTensor(),
|
161 |
+
T.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
162 |
+
]
|
163 |
+
)
|
164 |
+
|
165 |
+
img = transform(img).unsqueeze(0).unsqueeze(0).cuda()
|
166 |
+
image_emb, _ = self.model.encode_img(img)
|
167 |
+
img_list.append(image_emb)
|
168 |
+
conv.messages.append([
|
169 |
+
conv.roles[0],
|
170 |
+
f"<Image><ImageHere></Image>\n"
|
171 |
+
])
|
172 |
+
msg = "Received."
|
173 |
+
# self.conv.append_message(self.conv.roles[1], msg)
|
174 |
+
return msg,img_list, conv
|
175 |
+
|
176 |
+
def get_context_emb(self, conv, img_list):
|
177 |
+
prompt = get_prompt(conv)
|
178 |
+
#print(prompt)
|
179 |
+
if '<VideoHere>' in prompt:
|
180 |
+
prompt_segs = prompt.split('<VideoHere>')
|
181 |
+
else:
|
182 |
+
prompt_segs = prompt.split('<ImageHere>')
|
183 |
+
assert len(prompt_segs) == len(img_list) + 1, "Unmatched numbers of visual placeholders and videos."
|
184 |
+
seg_tokens = [
|
185 |
+
self.model.llama_tokenizer(
|
186 |
+
seg, return_tensors="pt", add_special_tokens=i == 0).to(self.device).input_ids
|
187 |
+
# only add bos to the first seg
|
188 |
+
for i, seg in enumerate(prompt_segs)
|
189 |
+
]
|
190 |
+
seg_embs = [self.model.llama_model.model.embed_tokens(seg_t) for seg_t in seg_tokens]
|
191 |
+
mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]]
|
192 |
+
mixed_embs = torch.cat(mixed_embs, dim=1)
|
193 |
+
return mixed_embs
|
demo.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from gradio.themes.utils import colors, fonts, sizes
|
4 |
+
|
5 |
+
from conversation import Chat
|
6 |
+
|
7 |
+
# videochat
|
8 |
+
from utils.config import Config
|
9 |
+
from utils.easydict import EasyDict
|
10 |
+
from models.videochat import VideoChat
|
11 |
+
|
12 |
+
|
13 |
+
# ========================================
|
14 |
+
# Model Initialization
|
15 |
+
# ========================================
|
16 |
+
def init_model():
|
17 |
+
print('Initializing VideoChat')
|
18 |
+
config_file = "configs/config.json"
|
19 |
+
cfg = Config.from_file(config_file)
|
20 |
+
model = VideoChat(config=cfg.model)
|
21 |
+
model = model.to(torch.device(cfg.device))
|
22 |
+
model = model.eval()
|
23 |
+
chat = Chat(model)
|
24 |
+
print('Initialization Finished')
|
25 |
+
return chat
|
26 |
+
|
27 |
+
|
28 |
+
# ========================================
|
29 |
+
# Gradio Setting
|
30 |
+
# ========================================
|
31 |
+
def gradio_reset(chat_state, img_list):
|
32 |
+
if chat_state is not None:
|
33 |
+
chat_state.messages = []
|
34 |
+
if img_list is not None:
|
35 |
+
img_list = []
|
36 |
+
return None, gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your video first', interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list
|
37 |
+
|
38 |
+
|
39 |
+
def upload_img(gr_img, gr_video, chat_state, num_segments):
|
40 |
+
# print(gr_img, gr_video)
|
41 |
+
chat_state = EasyDict({
|
42 |
+
"system": "",
|
43 |
+
"roles": ("Human", "Assistant"),
|
44 |
+
"messages": [],
|
45 |
+
"sep": "###"
|
46 |
+
})
|
47 |
+
img_list = []
|
48 |
+
if gr_img is None and gr_video is None:
|
49 |
+
return None, None, gr.update(interactive=True), chat_state, None
|
50 |
+
if gr_video:
|
51 |
+
llm_message, img_list, chat_state = chat.upload_video(gr_video, chat_state, img_list, num_segments)
|
52 |
+
return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list
|
53 |
+
if gr_img:
|
54 |
+
llm_message, img_list,chat_state = chat.upload_img(gr_img, chat_state, img_list)
|
55 |
+
return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list
|
56 |
+
|
57 |
+
|
58 |
+
def gradio_ask(user_message, chatbot, chat_state):
|
59 |
+
if len(user_message) == 0:
|
60 |
+
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
|
61 |
+
#print(chat_state)
|
62 |
+
chat_state = chat.ask(user_message, chat_state)
|
63 |
+
chatbot = chatbot + [[user_message, None]]
|
64 |
+
return '', chatbot, chat_state
|
65 |
+
|
66 |
+
|
67 |
+
def gradio_answer(gr_img, gr_video,chatbot, chat_state, img_list, num_beams, temperature):
|
68 |
+
llm_message,llm_message_token, chat_state = chat.answer(conv=chat_state, img_list=img_list, max_new_tokens=1000, num_beams=num_beams, temperature=temperature)
|
69 |
+
llm_message = llm_message.replace("<s>", "") # handle <s>
|
70 |
+
chatbot[-1][1] = llm_message
|
71 |
+
print(f"========{gr_img}##<BOS>##{gr_video}========")
|
72 |
+
print(chat_state,flush=True)
|
73 |
+
print(f"========{gr_img}##<END>##{gr_video}========")
|
74 |
+
# print(f"Answer: {llm_message}")
|
75 |
+
return chatbot, chat_state, img_list
|
76 |
+
|
77 |
+
|
78 |
+
class OpenGVLab(gr.themes.base.Base):
|
79 |
+
def __init__(
|
80 |
+
self,
|
81 |
+
*,
|
82 |
+
primary_hue=colors.blue,
|
83 |
+
secondary_hue=colors.sky,
|
84 |
+
neutral_hue=colors.gray,
|
85 |
+
spacing_size=sizes.spacing_md,
|
86 |
+
radius_size=sizes.radius_sm,
|
87 |
+
text_size=sizes.text_md,
|
88 |
+
font=(
|
89 |
+
fonts.GoogleFont("Noto Sans"),
|
90 |
+
"ui-sans-serif",
|
91 |
+
"sans-serif",
|
92 |
+
),
|
93 |
+
font_mono=(
|
94 |
+
fonts.GoogleFont("IBM Plex Mono"),
|
95 |
+
"ui-monospace",
|
96 |
+
"monospace",
|
97 |
+
),
|
98 |
+
):
|
99 |
+
super().__init__(
|
100 |
+
primary_hue=primary_hue,
|
101 |
+
secondary_hue=secondary_hue,
|
102 |
+
neutral_hue=neutral_hue,
|
103 |
+
spacing_size=spacing_size,
|
104 |
+
radius_size=radius_size,
|
105 |
+
text_size=text_size,
|
106 |
+
font=font,
|
107 |
+
font_mono=font_mono,
|
108 |
+
)
|
109 |
+
super().set(
|
110 |
+
body_background_fill="*neutral_50",
|
111 |
+
)
|
112 |
+
|
113 |
+
|
114 |
+
gvlabtheme = OpenGVLab(primary_hue=colors.blue,
|
115 |
+
secondary_hue=colors.sky,
|
116 |
+
neutral_hue=colors.gray,
|
117 |
+
spacing_size=sizes.spacing_md,
|
118 |
+
radius_size=sizes.radius_sm,
|
119 |
+
text_size=sizes.text_md,
|
120 |
+
)
|
121 |
+
|
122 |
+
title = """<h1 align="center"><a href="https://github.com/OpenGVLab/Ask-Anything"><img src="https://i.328888.xyz/2023/05/11/iqrAkZ.md.png" alt="Ask-Anything" border="0" style="margin: 0 auto; height: 100px;" /></a> </h1>"""
|
123 |
+
description ="""
|
124 |
+
<p> VideoChat, an end-to-end chat-centric video understanding system powered by <a href='https://github.com/OpenGVLab/InternVideo'>InternVideo</a>. It integrates video foundation models and large language models via a learnable neural interface, excelling in spatiotemporal reasoning, event localization, and causal relationship inference.</p>
|
125 |
+
<div style='display:flex; gap: 0.25rem; '>
|
126 |
+
<a src="https://img.shields.io/badge/Github-Code-blue?logo=github" href="https://github.com/OpenGVLab/Ask-Anything"> <img src="https://img.shields.io/badge/Github-Code-blue?logo=github">
|
127 |
+
<a src="https://img.shields.io/badge/cs.CV-2305.06355-b31b1b?logo=arxiv&logoColor=red" href="https://arxiv.org/abs/2305.06355"> <img src="https://img.shields.io/badge/cs.CV-2305.06355-b31b1b?logo=arxiv&logoColor=red">
|
128 |
+
<a src="https://img.shields.io/badge/WeChat-Group-green?logo=wechat" href="https://pjlab-gvm-data.oss-cn-shanghai.aliyuncs.com/papers/media/wechat_group.jpg"> <img src="https://img.shields.io/badge/WeChat-Group-green?logo=wechat">
|
129 |
+
<a src="https://img.shields.io/discord/1099920215724277770?label=Discord&logo=discord" href="https://discord.gg/A2Ex6Pph6A"> <img src="https://img.shields.io/discord/1099920215724277770?label=Discord&logo=discord"> </div>
|
130 |
+
"""
|
131 |
+
|
132 |
+
|
133 |
+
with gr.Blocks(title="InternVideo-VideoChat!",theme=gvlabtheme,css="#chatbot {overflow:auto; height:500px;} #InputVideo {overflow:visible; height:320px;} footer {visibility: none}") as demo:
|
134 |
+
gr.Markdown(title)
|
135 |
+
gr.Markdown(description)
|
136 |
+
|
137 |
+
with gr.Row():
|
138 |
+
with gr.Column(scale=0.5, visible=True) as video_upload:
|
139 |
+
with gr.Column(elem_id="image") as img_part:
|
140 |
+
with gr.Tab("Video", elem_id='video_tab'):
|
141 |
+
up_video = gr.Video(interactive=True, include_audio=True, elem_id="video_upload")#.style(height=320)
|
142 |
+
with gr.Tab("Image", elem_id='image_tab'):
|
143 |
+
up_image = gr.Image(type="pil", interactive=True, elem_id="image_upload")#.style(height=320)
|
144 |
+
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
|
145 |
+
|
146 |
+
num_beams = gr.Slider(
|
147 |
+
minimum=1,
|
148 |
+
maximum=10,
|
149 |
+
value=1,
|
150 |
+
step=1,
|
151 |
+
interactive=True,
|
152 |
+
label="beam search numbers",
|
153 |
+
)
|
154 |
+
|
155 |
+
temperature = gr.Slider(
|
156 |
+
minimum=0.1,
|
157 |
+
maximum=2.0,
|
158 |
+
value=1.0,
|
159 |
+
step=0.1,
|
160 |
+
interactive=True,
|
161 |
+
label="Temperature",
|
162 |
+
)
|
163 |
+
|
164 |
+
num_segments = gr.Slider(
|
165 |
+
minimum=8,
|
166 |
+
maximum=64,
|
167 |
+
value=8,
|
168 |
+
step=1,
|
169 |
+
interactive=True,
|
170 |
+
label="Video Segments",
|
171 |
+
)
|
172 |
+
|
173 |
+
|
174 |
+
with gr.Column(visible=True) as input_raws:
|
175 |
+
chat_state = gr.State(EasyDict({
|
176 |
+
"system": "",
|
177 |
+
"roles": ("Human", "Assistant"),
|
178 |
+
"messages": [],
|
179 |
+
"sep": "###"
|
180 |
+
}))
|
181 |
+
img_list = gr.State()
|
182 |
+
chatbot = gr.Chatbot(elem_id="chatbot",label='VideoChat')
|
183 |
+
with gr.Row():
|
184 |
+
with gr.Column(scale=0.7):
|
185 |
+
text_input = gr.Textbox(show_label=False, placeholder='Please upload your video first', interactive=False).style(container=False)
|
186 |
+
with gr.Column(scale=0.15, min_width=0):
|
187 |
+
run = gr.Button("πSend")
|
188 |
+
with gr.Column(scale=0.15, min_width=0):
|
189 |
+
clear = gr.Button("πClearοΈ")
|
190 |
+
|
191 |
+
chat = init_model()
|
192 |
+
upload_button.click(upload_img, [up_image, up_video, chat_state, num_segments], [up_image, up_video, text_input, upload_button, chat_state, img_list])
|
193 |
+
|
194 |
+
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
|
195 |
+
gradio_answer, [up_image, up_video, chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
|
196 |
+
)
|
197 |
+
run.click(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
|
198 |
+
gradio_answer, [up_image, up_video,chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
|
199 |
+
)
|
200 |
+
run.click(lambda: "", None, text_input)
|
201 |
+
clear.click(gradio_reset, [chat_state, img_list], [chatbot, up_image, up_video, text_input, upload_button, chat_state, img_list], queue=False)
|
202 |
+
|
203 |
+
demo.launch(server_name="0.0.0.0", favicon_path='bot_avatar.jpg', enable_queue=True,ssl_keyfile="vchat_cert/privkey1.pem",ssl_certfile="vchat_cert/cert1.pem",ssl_verify=False)
|
models/Qformer.py
ADDED
@@ -0,0 +1,1237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
* Copyright (c) 2023, salesforce.com, inc.
|
3 |
+
* All rights reserved.
|
4 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
* By Junnan Li
|
7 |
+
* Based on huggingface code base
|
8 |
+
* https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert
|
9 |
+
"""
|
10 |
+
|
11 |
+
import math
|
12 |
+
import os
|
13 |
+
import warnings
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Optional, Tuple, Dict, Any
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from torch import Tensor, device, dtype, nn
|
19 |
+
import torch.utils.checkpoint
|
20 |
+
from torch import nn
|
21 |
+
from torch.nn import CrossEntropyLoss
|
22 |
+
import torch.nn.functional as F
|
23 |
+
|
24 |
+
from timm.models.layers import drop_path
|
25 |
+
from transformers.activations import ACT2FN
|
26 |
+
from transformers.file_utils import (
|
27 |
+
ModelOutput,
|
28 |
+
)
|
29 |
+
from transformers.modeling_outputs import (
|
30 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
31 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
32 |
+
CausalLMOutputWithCrossAttentions,
|
33 |
+
MaskedLMOutput,
|
34 |
+
MultipleChoiceModelOutput,
|
35 |
+
NextSentencePredictorOutput,
|
36 |
+
QuestionAnsweringModelOutput,
|
37 |
+
SequenceClassifierOutput,
|
38 |
+
TokenClassifierOutput,
|
39 |
+
)
|
40 |
+
from transformers.modeling_utils import (
|
41 |
+
PreTrainedModel,
|
42 |
+
apply_chunking_to_forward,
|
43 |
+
find_pruneable_heads_and_indices,
|
44 |
+
prune_linear_layer,
|
45 |
+
)
|
46 |
+
from transformers.utils import logging
|
47 |
+
from transformers.models.bert.configuration_bert import BertConfig
|
48 |
+
|
49 |
+
logger = logging.get_logger(__name__)
|
50 |
+
|
51 |
+
|
52 |
+
class BertEmbeddings(nn.Module):
|
53 |
+
"""Construct the embeddings from word and position embeddings."""
|
54 |
+
|
55 |
+
def __init__(self, config):
|
56 |
+
super().__init__()
|
57 |
+
self.word_embeddings = nn.Embedding(
|
58 |
+
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
|
59 |
+
)
|
60 |
+
self.position_embeddings = nn.Embedding(
|
61 |
+
config.max_position_embeddings, config.hidden_size
|
62 |
+
)
|
63 |
+
|
64 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
65 |
+
# any TensorFlow checkpoint file
|
66 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
67 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
68 |
+
|
69 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
70 |
+
self.register_buffer(
|
71 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))
|
72 |
+
)
|
73 |
+
self.position_embedding_type = getattr(
|
74 |
+
config, "position_embedding_type", "absolute"
|
75 |
+
)
|
76 |
+
|
77 |
+
self.config = config
|
78 |
+
|
79 |
+
def forward(
|
80 |
+
self,
|
81 |
+
input_ids=None,
|
82 |
+
position_ids=None,
|
83 |
+
query_embeds=None,
|
84 |
+
past_key_values_length=0,
|
85 |
+
):
|
86 |
+
if input_ids is not None:
|
87 |
+
seq_length = input_ids.size()[1]
|
88 |
+
else:
|
89 |
+
seq_length = 0
|
90 |
+
|
91 |
+
if position_ids is None:
|
92 |
+
position_ids = self.position_ids[
|
93 |
+
:, past_key_values_length : seq_length + past_key_values_length
|
94 |
+
].clone()
|
95 |
+
|
96 |
+
if input_ids is not None:
|
97 |
+
embeddings = self.word_embeddings(input_ids)
|
98 |
+
if self.position_embedding_type == "absolute":
|
99 |
+
position_embeddings = self.position_embeddings(position_ids)
|
100 |
+
embeddings = embeddings + position_embeddings
|
101 |
+
|
102 |
+
if query_embeds is not None:
|
103 |
+
embeddings = torch.cat((query_embeds, embeddings), dim=1)
|
104 |
+
else:
|
105 |
+
embeddings = query_embeds
|
106 |
+
|
107 |
+
embeddings = self.LayerNorm(embeddings)
|
108 |
+
embeddings = self.dropout(embeddings)
|
109 |
+
return embeddings
|
110 |
+
|
111 |
+
|
112 |
+
class BertSelfAttention(nn.Module):
|
113 |
+
def __init__(self, config, is_cross_attention):
|
114 |
+
super().__init__()
|
115 |
+
self.config = config
|
116 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
|
117 |
+
config, "embedding_size"
|
118 |
+
):
|
119 |
+
raise ValueError(
|
120 |
+
"The hidden size (%d) is not a multiple of the number of attention "
|
121 |
+
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
|
122 |
+
)
|
123 |
+
|
124 |
+
self.num_attention_heads = config.num_attention_heads
|
125 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
126 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
127 |
+
|
128 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
129 |
+
if is_cross_attention:
|
130 |
+
self.key = nn.Linear(config.encoder_width, self.all_head_size)
|
131 |
+
self.value = nn.Linear(config.encoder_width, self.all_head_size)
|
132 |
+
else:
|
133 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
134 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
135 |
+
|
136 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
137 |
+
self.position_embedding_type = getattr(
|
138 |
+
config, "position_embedding_type", "absolute"
|
139 |
+
)
|
140 |
+
if (
|
141 |
+
self.position_embedding_type == "relative_key"
|
142 |
+
or self.position_embedding_type == "relative_key_query"
|
143 |
+
):
|
144 |
+
self.max_position_embeddings = config.max_position_embeddings
|
145 |
+
self.distance_embedding = nn.Embedding(
|
146 |
+
2 * config.max_position_embeddings - 1, self.attention_head_size
|
147 |
+
)
|
148 |
+
self.save_attention = False
|
149 |
+
|
150 |
+
def save_attn_gradients(self, attn_gradients):
|
151 |
+
self.attn_gradients = attn_gradients
|
152 |
+
|
153 |
+
def get_attn_gradients(self):
|
154 |
+
return self.attn_gradients
|
155 |
+
|
156 |
+
def save_attention_map(self, attention_map):
|
157 |
+
self.attention_map = attention_map
|
158 |
+
|
159 |
+
def get_attention_map(self):
|
160 |
+
return self.attention_map
|
161 |
+
|
162 |
+
def transpose_for_scores(self, x):
|
163 |
+
new_x_shape = x.size()[:-1] + (
|
164 |
+
self.num_attention_heads,
|
165 |
+
self.attention_head_size,
|
166 |
+
)
|
167 |
+
x = x.view(*new_x_shape)
|
168 |
+
return x.permute(0, 2, 1, 3)
|
169 |
+
|
170 |
+
def forward(
|
171 |
+
self,
|
172 |
+
hidden_states,
|
173 |
+
attention_mask=None,
|
174 |
+
head_mask=None,
|
175 |
+
encoder_hidden_states=None,
|
176 |
+
encoder_attention_mask=None,
|
177 |
+
past_key_value=None,
|
178 |
+
output_attentions=False,
|
179 |
+
):
|
180 |
+
|
181 |
+
# If this is instantiated as a cross-attention module, the keys
|
182 |
+
# and values come from an encoder; the attention mask needs to be
|
183 |
+
# such that the encoder's padding tokens are not attended to.
|
184 |
+
is_cross_attention = encoder_hidden_states is not None
|
185 |
+
|
186 |
+
if is_cross_attention:
|
187 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
188 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
189 |
+
attention_mask = encoder_attention_mask
|
190 |
+
elif past_key_value is not None:
|
191 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
192 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
193 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
194 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
195 |
+
else:
|
196 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
197 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
198 |
+
|
199 |
+
mixed_query_layer = self.query(hidden_states)
|
200 |
+
|
201 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
202 |
+
|
203 |
+
past_key_value = (key_layer, value_layer)
|
204 |
+
|
205 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
206 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
207 |
+
|
208 |
+
if (
|
209 |
+
self.position_embedding_type == "relative_key"
|
210 |
+
or self.position_embedding_type == "relative_key_query"
|
211 |
+
):
|
212 |
+
seq_length = hidden_states.size()[1]
|
213 |
+
position_ids_l = torch.arange(
|
214 |
+
seq_length, dtype=torch.long, device=hidden_states.device
|
215 |
+
).view(-1, 1)
|
216 |
+
position_ids_r = torch.arange(
|
217 |
+
seq_length, dtype=torch.long, device=hidden_states.device
|
218 |
+
).view(1, -1)
|
219 |
+
distance = position_ids_l - position_ids_r
|
220 |
+
positional_embedding = self.distance_embedding(
|
221 |
+
distance + self.max_position_embeddings - 1
|
222 |
+
)
|
223 |
+
positional_embedding = positional_embedding.to(
|
224 |
+
dtype=query_layer.dtype
|
225 |
+
) # fp16 compatibility
|
226 |
+
|
227 |
+
if self.position_embedding_type == "relative_key":
|
228 |
+
relative_position_scores = torch.einsum(
|
229 |
+
"bhld,lrd->bhlr", query_layer, positional_embedding
|
230 |
+
)
|
231 |
+
attention_scores = attention_scores + relative_position_scores
|
232 |
+
elif self.position_embedding_type == "relative_key_query":
|
233 |
+
relative_position_scores_query = torch.einsum(
|
234 |
+
"bhld,lrd->bhlr", query_layer, positional_embedding
|
235 |
+
)
|
236 |
+
relative_position_scores_key = torch.einsum(
|
237 |
+
"bhrd,lrd->bhlr", key_layer, positional_embedding
|
238 |
+
)
|
239 |
+
attention_scores = (
|
240 |
+
attention_scores
|
241 |
+
+ relative_position_scores_query
|
242 |
+
+ relative_position_scores_key
|
243 |
+
)
|
244 |
+
|
245 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
246 |
+
if attention_mask is not None:
|
247 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
248 |
+
attention_scores = attention_scores + attention_mask
|
249 |
+
|
250 |
+
# Normalize the attention scores to probabilities.
|
251 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
252 |
+
|
253 |
+
if is_cross_attention and self.save_attention:
|
254 |
+
self.save_attention_map(attention_probs)
|
255 |
+
attention_probs.register_hook(self.save_attn_gradients)
|
256 |
+
|
257 |
+
# This is actually dropping out entire tokens to attend to, which might
|
258 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
259 |
+
attention_probs_dropped = self.dropout(attention_probs)
|
260 |
+
|
261 |
+
# Mask heads if we want to
|
262 |
+
if head_mask is not None:
|
263 |
+
attention_probs_dropped = attention_probs_dropped * head_mask
|
264 |
+
|
265 |
+
context_layer = torch.matmul(attention_probs_dropped, value_layer)
|
266 |
+
|
267 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
268 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
269 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
270 |
+
|
271 |
+
outputs = (
|
272 |
+
(context_layer, attention_probs) if output_attentions else (context_layer,)
|
273 |
+
)
|
274 |
+
|
275 |
+
outputs = outputs + (past_key_value,)
|
276 |
+
return outputs
|
277 |
+
|
278 |
+
|
279 |
+
class DropPath(nn.Module):
|
280 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
281 |
+
"""
|
282 |
+
def __init__(self, drop_prob=None):
|
283 |
+
super(DropPath, self).__init__()
|
284 |
+
self.drop_prob = drop_prob
|
285 |
+
|
286 |
+
def forward(self, x):
|
287 |
+
return drop_path(x, self.drop_prob, self.training)
|
288 |
+
|
289 |
+
def extra_repr(self) -> str:
|
290 |
+
return 'p={}'.format(self.drop_prob)
|
291 |
+
|
292 |
+
|
293 |
+
class BertSelfOutput(nn.Module):
|
294 |
+
def __init__(self, config, drop_path=0.):
|
295 |
+
super().__init__()
|
296 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
297 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
298 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
299 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
300 |
+
|
301 |
+
def forward(self, hidden_states, input_tensor):
|
302 |
+
hidden_states = self.dense(hidden_states)
|
303 |
+
hidden_states = self.dropout(hidden_states)
|
304 |
+
hidden_states = self.drop_path(hidden_states)
|
305 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
306 |
+
return hidden_states
|
307 |
+
|
308 |
+
|
309 |
+
class BertAttention(nn.Module):
|
310 |
+
def __init__(self, config, is_cross_attention=False, drop_path=0.,):
|
311 |
+
super().__init__()
|
312 |
+
self.self = BertSelfAttention(config, is_cross_attention)
|
313 |
+
self.output = BertSelfOutput(config, drop_path=drop_path)
|
314 |
+
self.pruned_heads = set()
|
315 |
+
|
316 |
+
def prune_heads(self, heads):
|
317 |
+
if len(heads) == 0:
|
318 |
+
return
|
319 |
+
heads, index = find_pruneable_heads_and_indices(
|
320 |
+
heads,
|
321 |
+
self.self.num_attention_heads,
|
322 |
+
self.self.attention_head_size,
|
323 |
+
self.pruned_heads,
|
324 |
+
)
|
325 |
+
|
326 |
+
# Prune linear layers
|
327 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
328 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
329 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
330 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
331 |
+
|
332 |
+
# Update hyper params and store pruned heads
|
333 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
334 |
+
self.self.all_head_size = (
|
335 |
+
self.self.attention_head_size * self.self.num_attention_heads
|
336 |
+
)
|
337 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
338 |
+
|
339 |
+
def forward(
|
340 |
+
self,
|
341 |
+
hidden_states,
|
342 |
+
attention_mask=None,
|
343 |
+
head_mask=None,
|
344 |
+
encoder_hidden_states=None,
|
345 |
+
encoder_attention_mask=None,
|
346 |
+
past_key_value=None,
|
347 |
+
output_attentions=False,
|
348 |
+
):
|
349 |
+
self_outputs = self.self(
|
350 |
+
hidden_states,
|
351 |
+
attention_mask,
|
352 |
+
head_mask,
|
353 |
+
encoder_hidden_states,
|
354 |
+
encoder_attention_mask,
|
355 |
+
past_key_value,
|
356 |
+
output_attentions,
|
357 |
+
)
|
358 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
359 |
+
|
360 |
+
outputs = (attention_output,) + self_outputs[
|
361 |
+
1:
|
362 |
+
] # add attentions if we output them
|
363 |
+
return outputs
|
364 |
+
|
365 |
+
|
366 |
+
class BertIntermediate(nn.Module):
|
367 |
+
def __init__(self, config):
|
368 |
+
super().__init__()
|
369 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
370 |
+
if isinstance(config.hidden_act, str):
|
371 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
372 |
+
else:
|
373 |
+
self.intermediate_act_fn = config.hidden_act
|
374 |
+
|
375 |
+
def forward(self, hidden_states):
|
376 |
+
hidden_states = self.dense(hidden_states)
|
377 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
378 |
+
return hidden_states
|
379 |
+
|
380 |
+
|
381 |
+
class BertOutput(nn.Module):
|
382 |
+
def __init__(self, config, drop_path=0.):
|
383 |
+
super().__init__()
|
384 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
385 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
386 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
387 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
388 |
+
|
389 |
+
def forward(self, hidden_states, input_tensor):
|
390 |
+
hidden_states = self.dense(hidden_states)
|
391 |
+
hidden_states = self.dropout(hidden_states)
|
392 |
+
hidden_states = self.drop_path(hidden_states)
|
393 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
394 |
+
return hidden_states
|
395 |
+
|
396 |
+
|
397 |
+
class BertLayer(nn.Module):
|
398 |
+
def __init__(self, config, layer_num):
|
399 |
+
super().__init__()
|
400 |
+
self.config = config
|
401 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
402 |
+
self.seq_len_dim = 1
|
403 |
+
drop_path = config.drop_path_list[layer_num]
|
404 |
+
self.attention = BertAttention(config, drop_path=drop_path)
|
405 |
+
self.layer_num = layer_num
|
406 |
+
if (
|
407 |
+
self.config.add_cross_attention
|
408 |
+
and layer_num % self.config.cross_attention_freq == 0
|
409 |
+
):
|
410 |
+
self.crossattention = BertAttention(
|
411 |
+
config, is_cross_attention=self.config.add_cross_attention,
|
412 |
+
drop_path=drop_path
|
413 |
+
)
|
414 |
+
self.has_cross_attention = True
|
415 |
+
else:
|
416 |
+
self.has_cross_attention = False
|
417 |
+
self.intermediate = BertIntermediate(config)
|
418 |
+
self.output = BertOutput(config, drop_path=drop_path)
|
419 |
+
|
420 |
+
self.intermediate_query = BertIntermediate(config)
|
421 |
+
self.output_query = BertOutput(config, drop_path=drop_path)
|
422 |
+
|
423 |
+
def forward(
|
424 |
+
self,
|
425 |
+
hidden_states,
|
426 |
+
attention_mask=None,
|
427 |
+
head_mask=None,
|
428 |
+
encoder_hidden_states=None,
|
429 |
+
encoder_attention_mask=None,
|
430 |
+
past_key_value=None,
|
431 |
+
output_attentions=False,
|
432 |
+
query_length=0,
|
433 |
+
):
|
434 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
435 |
+
self_attn_past_key_value = (
|
436 |
+
past_key_value[:2] if past_key_value is not None else None
|
437 |
+
)
|
438 |
+
self_attention_outputs = self.attention(
|
439 |
+
hidden_states,
|
440 |
+
attention_mask,
|
441 |
+
head_mask,
|
442 |
+
output_attentions=output_attentions,
|
443 |
+
past_key_value=self_attn_past_key_value,
|
444 |
+
)
|
445 |
+
attention_output = self_attention_outputs[0]
|
446 |
+
outputs = self_attention_outputs[1:-1]
|
447 |
+
|
448 |
+
present_key_value = self_attention_outputs[-1]
|
449 |
+
|
450 |
+
if query_length > 0:
|
451 |
+
query_attention_output = attention_output[:, :query_length, :]
|
452 |
+
|
453 |
+
if self.has_cross_attention:
|
454 |
+
assert (
|
455 |
+
encoder_hidden_states is not None
|
456 |
+
), "encoder_hidden_states must be given for cross-attention layers"
|
457 |
+
cross_attention_outputs = self.crossattention(
|
458 |
+
query_attention_output,
|
459 |
+
attention_mask,
|
460 |
+
head_mask,
|
461 |
+
encoder_hidden_states,
|
462 |
+
encoder_attention_mask,
|
463 |
+
output_attentions=output_attentions,
|
464 |
+
)
|
465 |
+
query_attention_output = cross_attention_outputs[0]
|
466 |
+
outputs = (
|
467 |
+
outputs + cross_attention_outputs[1:-1]
|
468 |
+
) # add cross attentions if we output attention weights
|
469 |
+
|
470 |
+
layer_output = apply_chunking_to_forward(
|
471 |
+
self.feed_forward_chunk_query,
|
472 |
+
self.chunk_size_feed_forward,
|
473 |
+
self.seq_len_dim,
|
474 |
+
query_attention_output,
|
475 |
+
)
|
476 |
+
if attention_output.shape[1] > query_length:
|
477 |
+
layer_output_text = apply_chunking_to_forward(
|
478 |
+
self.feed_forward_chunk,
|
479 |
+
self.chunk_size_feed_forward,
|
480 |
+
self.seq_len_dim,
|
481 |
+
attention_output[:, query_length:, :],
|
482 |
+
)
|
483 |
+
layer_output = torch.cat([layer_output, layer_output_text], dim=1)
|
484 |
+
else:
|
485 |
+
layer_output = apply_chunking_to_forward(
|
486 |
+
self.feed_forward_chunk,
|
487 |
+
self.chunk_size_feed_forward,
|
488 |
+
self.seq_len_dim,
|
489 |
+
attention_output,
|
490 |
+
)
|
491 |
+
outputs = (layer_output,) + outputs
|
492 |
+
|
493 |
+
outputs = outputs + (present_key_value,)
|
494 |
+
|
495 |
+
return outputs
|
496 |
+
|
497 |
+
def feed_forward_chunk(self, attention_output):
|
498 |
+
intermediate_output = self.intermediate(attention_output)
|
499 |
+
layer_output = self.output(intermediate_output, attention_output)
|
500 |
+
return layer_output
|
501 |
+
|
502 |
+
def feed_forward_chunk_query(self, attention_output):
|
503 |
+
intermediate_output = self.intermediate_query(attention_output)
|
504 |
+
layer_output = self.output_query(intermediate_output, attention_output)
|
505 |
+
return layer_output
|
506 |
+
|
507 |
+
|
508 |
+
class BertEncoder(nn.Module):
|
509 |
+
def __init__(self, config):
|
510 |
+
super().__init__()
|
511 |
+
self.config = config
|
512 |
+
self.layer = nn.ModuleList(
|
513 |
+
[BertLayer(config, i) for i in range(config.num_hidden_layers)]
|
514 |
+
)
|
515 |
+
|
516 |
+
def forward(
|
517 |
+
self,
|
518 |
+
hidden_states,
|
519 |
+
attention_mask=None,
|
520 |
+
head_mask=None,
|
521 |
+
encoder_hidden_states=None,
|
522 |
+
encoder_attention_mask=None,
|
523 |
+
past_key_values=None,
|
524 |
+
use_cache=None,
|
525 |
+
output_attentions=False,
|
526 |
+
output_hidden_states=False,
|
527 |
+
return_dict=True,
|
528 |
+
query_length=0,
|
529 |
+
):
|
530 |
+
all_hidden_states = () if output_hidden_states else None
|
531 |
+
all_self_attentions = () if output_attentions else None
|
532 |
+
all_cross_attentions = (
|
533 |
+
() if output_attentions and self.config.add_cross_attention else None
|
534 |
+
)
|
535 |
+
|
536 |
+
next_decoder_cache = () if use_cache else None
|
537 |
+
|
538 |
+
for i in range(self.config.num_hidden_layers):
|
539 |
+
layer_module = self.layer[i]
|
540 |
+
if output_hidden_states:
|
541 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
542 |
+
|
543 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
544 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
545 |
+
|
546 |
+
if getattr(self.config, "gradient_checkpointing", False) and self.training:
|
547 |
+
|
548 |
+
if use_cache:
|
549 |
+
logger.warn(
|
550 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
551 |
+
)
|
552 |
+
use_cache = False
|
553 |
+
|
554 |
+
def create_custom_forward(module):
|
555 |
+
def custom_forward(*inputs):
|
556 |
+
return module(
|
557 |
+
*inputs, past_key_value, output_attentions, query_length
|
558 |
+
)
|
559 |
+
|
560 |
+
return custom_forward
|
561 |
+
|
562 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
563 |
+
create_custom_forward(layer_module),
|
564 |
+
hidden_states,
|
565 |
+
attention_mask,
|
566 |
+
layer_head_mask,
|
567 |
+
encoder_hidden_states,
|
568 |
+
encoder_attention_mask,
|
569 |
+
)
|
570 |
+
else:
|
571 |
+
layer_outputs = layer_module(
|
572 |
+
hidden_states,
|
573 |
+
attention_mask,
|
574 |
+
layer_head_mask,
|
575 |
+
encoder_hidden_states,
|
576 |
+
encoder_attention_mask,
|
577 |
+
past_key_value,
|
578 |
+
output_attentions,
|
579 |
+
query_length,
|
580 |
+
)
|
581 |
+
|
582 |
+
hidden_states = layer_outputs[0]
|
583 |
+
if use_cache:
|
584 |
+
next_decoder_cache += (layer_outputs[-1],)
|
585 |
+
if output_attentions:
|
586 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
587 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
588 |
+
|
589 |
+
if output_hidden_states:
|
590 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
591 |
+
|
592 |
+
if not return_dict:
|
593 |
+
return tuple(
|
594 |
+
v
|
595 |
+
for v in [
|
596 |
+
hidden_states,
|
597 |
+
next_decoder_cache,
|
598 |
+
all_hidden_states,
|
599 |
+
all_self_attentions,
|
600 |
+
all_cross_attentions,
|
601 |
+
]
|
602 |
+
if v is not None
|
603 |
+
)
|
604 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
605 |
+
last_hidden_state=hidden_states,
|
606 |
+
past_key_values=next_decoder_cache,
|
607 |
+
hidden_states=all_hidden_states,
|
608 |
+
attentions=all_self_attentions,
|
609 |
+
cross_attentions=all_cross_attentions,
|
610 |
+
)
|
611 |
+
|
612 |
+
|
613 |
+
class BertPooler(nn.Module):
|
614 |
+
def __init__(self, config):
|
615 |
+
super().__init__()
|
616 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
617 |
+
self.activation = nn.Tanh()
|
618 |
+
|
619 |
+
def forward(self, hidden_states):
|
620 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
621 |
+
# to the first token.
|
622 |
+
first_token_tensor = hidden_states[:, 0]
|
623 |
+
pooled_output = self.dense(first_token_tensor)
|
624 |
+
pooled_output = self.activation(pooled_output)
|
625 |
+
return pooled_output
|
626 |
+
|
627 |
+
|
628 |
+
class BertPredictionHeadTransform(nn.Module):
|
629 |
+
def __init__(self, config):
|
630 |
+
super().__init__()
|
631 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
632 |
+
if isinstance(config.hidden_act, str):
|
633 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
634 |
+
else:
|
635 |
+
self.transform_act_fn = config.hidden_act
|
636 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
637 |
+
|
638 |
+
def forward(self, hidden_states):
|
639 |
+
hidden_states = self.dense(hidden_states)
|
640 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
641 |
+
hidden_states = self.LayerNorm(hidden_states)
|
642 |
+
return hidden_states
|
643 |
+
|
644 |
+
|
645 |
+
class BertLMPredictionHead(nn.Module):
|
646 |
+
def __init__(self, config):
|
647 |
+
super().__init__()
|
648 |
+
self.transform = BertPredictionHeadTransform(config)
|
649 |
+
|
650 |
+
# The output weights are the same as the input embeddings, but there is
|
651 |
+
# an output-only bias for each token.
|
652 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
653 |
+
|
654 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
655 |
+
|
656 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
657 |
+
self.decoder.bias = self.bias
|
658 |
+
|
659 |
+
def forward(self, hidden_states):
|
660 |
+
hidden_states = self.transform(hidden_states)
|
661 |
+
hidden_states = self.decoder(hidden_states)
|
662 |
+
return hidden_states
|
663 |
+
|
664 |
+
|
665 |
+
class BertOnlyMLMHead(nn.Module):
|
666 |
+
def __init__(self, config):
|
667 |
+
super().__init__()
|
668 |
+
self.predictions = BertLMPredictionHead(config)
|
669 |
+
|
670 |
+
def forward(self, sequence_output):
|
671 |
+
prediction_scores = self.predictions(sequence_output)
|
672 |
+
return prediction_scores
|
673 |
+
|
674 |
+
|
675 |
+
class BertPreTrainedModel(PreTrainedModel):
|
676 |
+
"""
|
677 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
678 |
+
models.
|
679 |
+
"""
|
680 |
+
|
681 |
+
config_class = BertConfig
|
682 |
+
base_model_prefix = "bert"
|
683 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
684 |
+
|
685 |
+
def _init_weights(self, module):
|
686 |
+
"""Initialize the weights"""
|
687 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
688 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
689 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
690 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
691 |
+
elif isinstance(module, nn.LayerNorm):
|
692 |
+
module.bias.data.zero_()
|
693 |
+
module.weight.data.fill_(1.0)
|
694 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
695 |
+
module.bias.data.zero_()
|
696 |
+
|
697 |
+
|
698 |
+
class BertModel(BertPreTrainedModel):
|
699 |
+
"""
|
700 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
701 |
+
cross-attention is added between the self-attention layers, following the architecture described in `Attention is
|
702 |
+
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
703 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
704 |
+
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
|
705 |
+
input to the forward pass.
|
706 |
+
"""
|
707 |
+
|
708 |
+
def __init__(self, config, add_pooling_layer=False):
|
709 |
+
super().__init__(config)
|
710 |
+
self.config = config
|
711 |
+
|
712 |
+
self.embeddings = BertEmbeddings(config)
|
713 |
+
|
714 |
+
self.encoder = BertEncoder(config)
|
715 |
+
|
716 |
+
self.pooler = BertPooler(config) if add_pooling_layer else None
|
717 |
+
|
718 |
+
self.init_weights()
|
719 |
+
|
720 |
+
def get_input_embeddings(self):
|
721 |
+
return self.embeddings.word_embeddings
|
722 |
+
|
723 |
+
def set_input_embeddings(self, value):
|
724 |
+
self.embeddings.word_embeddings = value
|
725 |
+
|
726 |
+
def _prune_heads(self, heads_to_prune):
|
727 |
+
"""
|
728 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
729 |
+
class PreTrainedModel
|
730 |
+
"""
|
731 |
+
for layer, heads in heads_to_prune.items():
|
732 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
733 |
+
|
734 |
+
def get_extended_attention_mask(
|
735 |
+
self,
|
736 |
+
attention_mask: Tensor,
|
737 |
+
input_shape: Tuple[int],
|
738 |
+
device: device,
|
739 |
+
is_decoder: bool,
|
740 |
+
has_query: bool = False,
|
741 |
+
) -> Tensor:
|
742 |
+
"""
|
743 |
+
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
|
744 |
+
|
745 |
+
Arguments:
|
746 |
+
attention_mask (:obj:`torch.Tensor`):
|
747 |
+
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
|
748 |
+
input_shape (:obj:`Tuple[int]`):
|
749 |
+
The shape of the input to the model.
|
750 |
+
device: (:obj:`torch.device`):
|
751 |
+
The device of the input to the model.
|
752 |
+
|
753 |
+
Returns:
|
754 |
+
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
|
755 |
+
"""
|
756 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
757 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
758 |
+
if attention_mask.dim() == 3:
|
759 |
+
extended_attention_mask = attention_mask[:, None, :, :]
|
760 |
+
elif attention_mask.dim() == 2:
|
761 |
+
# Provided a padding mask of dimensions [batch_size, seq_length]
|
762 |
+
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
763 |
+
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
764 |
+
if is_decoder:
|
765 |
+
batch_size, seq_length = input_shape
|
766 |
+
|
767 |
+
seq_ids = torch.arange(seq_length, device=device)
|
768 |
+
causal_mask = (
|
769 |
+
seq_ids[None, None, :].repeat(batch_size, seq_length, 1)
|
770 |
+
<= seq_ids[None, :, None]
|
771 |
+
)
|
772 |
+
|
773 |
+
# add a prefix ones mask to the causal mask
|
774 |
+
# causal and attention masks must have same type with pytorch version < 1.3
|
775 |
+
causal_mask = causal_mask.to(attention_mask.dtype)
|
776 |
+
|
777 |
+
if causal_mask.shape[1] < attention_mask.shape[1]:
|
778 |
+
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
|
779 |
+
if has_query: # UniLM style attention mask
|
780 |
+
causal_mask = torch.cat(
|
781 |
+
[
|
782 |
+
torch.zeros(
|
783 |
+
(batch_size, prefix_seq_len, seq_length),
|
784 |
+
device=device,
|
785 |
+
dtype=causal_mask.dtype,
|
786 |
+
),
|
787 |
+
causal_mask,
|
788 |
+
],
|
789 |
+
axis=1,
|
790 |
+
)
|
791 |
+
causal_mask = torch.cat(
|
792 |
+
[
|
793 |
+
torch.ones(
|
794 |
+
(batch_size, causal_mask.shape[1], prefix_seq_len),
|
795 |
+
device=device,
|
796 |
+
dtype=causal_mask.dtype,
|
797 |
+
),
|
798 |
+
causal_mask,
|
799 |
+
],
|
800 |
+
axis=-1,
|
801 |
+
)
|
802 |
+
extended_attention_mask = (
|
803 |
+
causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
|
804 |
+
)
|
805 |
+
else:
|
806 |
+
extended_attention_mask = attention_mask[:, None, None, :]
|
807 |
+
else:
|
808 |
+
raise ValueError(
|
809 |
+
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
|
810 |
+
input_shape, attention_mask.shape
|
811 |
+
)
|
812 |
+
)
|
813 |
+
|
814 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
815 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
816 |
+
# positions we want to attend and -10000.0 for masked positions.
|
817 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
818 |
+
# effectively the same as removing these entirely.
|
819 |
+
extended_attention_mask = extended_attention_mask.to(
|
820 |
+
dtype=self.dtype
|
821 |
+
) # fp16 compatibility
|
822 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
823 |
+
return extended_attention_mask
|
824 |
+
|
825 |
+
def forward(
|
826 |
+
self,
|
827 |
+
input_ids=None,
|
828 |
+
attention_mask=None,
|
829 |
+
position_ids=None,
|
830 |
+
head_mask=None,
|
831 |
+
query_embeds=None,
|
832 |
+
encoder_hidden_states=None,
|
833 |
+
encoder_attention_mask=None,
|
834 |
+
past_key_values=None,
|
835 |
+
use_cache=None,
|
836 |
+
output_attentions=None,
|
837 |
+
output_hidden_states=None,
|
838 |
+
return_dict=None,
|
839 |
+
is_decoder=False,
|
840 |
+
):
|
841 |
+
r"""
|
842 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
843 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
844 |
+
the model is configured as a decoder.
|
845 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
846 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
847 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
848 |
+
- 1 for tokens that are **not masked**,
|
849 |
+
- 0 for tokens that are **masked**.
|
850 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
851 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
852 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
853 |
+
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
854 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
855 |
+
use_cache (:obj:`bool`, `optional`):
|
856 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
857 |
+
decoding (see :obj:`past_key_values`).
|
858 |
+
"""
|
859 |
+
output_attentions = (
|
860 |
+
output_attentions
|
861 |
+
if output_attentions is not None
|
862 |
+
else self.config.output_attentions
|
863 |
+
)
|
864 |
+
output_hidden_states = (
|
865 |
+
output_hidden_states
|
866 |
+
if output_hidden_states is not None
|
867 |
+
else self.config.output_hidden_states
|
868 |
+
)
|
869 |
+
return_dict = (
|
870 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
871 |
+
)
|
872 |
+
|
873 |
+
# use_cache = use_cache if use_cache is not None else self.config.use_cache
|
874 |
+
|
875 |
+
if input_ids is None:
|
876 |
+
assert (
|
877 |
+
query_embeds is not None
|
878 |
+
), "You have to specify query_embeds when input_ids is None"
|
879 |
+
|
880 |
+
# past_key_values_length
|
881 |
+
past_key_values_length = (
|
882 |
+
past_key_values[0][0].shape[2] - self.config.query_length
|
883 |
+
if past_key_values is not None
|
884 |
+
else 0
|
885 |
+
)
|
886 |
+
|
887 |
+
query_length = query_embeds.shape[1] if query_embeds is not None else 0
|
888 |
+
|
889 |
+
embedding_output = self.embeddings(
|
890 |
+
input_ids=input_ids,
|
891 |
+
position_ids=position_ids,
|
892 |
+
query_embeds=query_embeds,
|
893 |
+
past_key_values_length=past_key_values_length,
|
894 |
+
)
|
895 |
+
|
896 |
+
input_shape = embedding_output.size()[:-1]
|
897 |
+
batch_size, seq_length = input_shape
|
898 |
+
device = embedding_output.device
|
899 |
+
|
900 |
+
if attention_mask is None:
|
901 |
+
attention_mask = torch.ones(
|
902 |
+
((batch_size, seq_length + past_key_values_length)), device=device
|
903 |
+
)
|
904 |
+
|
905 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
906 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
907 |
+
if is_decoder:
|
908 |
+
extended_attention_mask = self.get_extended_attention_mask(
|
909 |
+
attention_mask,
|
910 |
+
input_ids.shape,
|
911 |
+
device,
|
912 |
+
is_decoder,
|
913 |
+
has_query=(query_embeds is not None),
|
914 |
+
)
|
915 |
+
else:
|
916 |
+
extended_attention_mask = self.get_extended_attention_mask(
|
917 |
+
attention_mask, input_shape, device, is_decoder
|
918 |
+
)
|
919 |
+
|
920 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
921 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
922 |
+
if encoder_hidden_states is not None:
|
923 |
+
if type(encoder_hidden_states) == list:
|
924 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[
|
925 |
+
0
|
926 |
+
].size()
|
927 |
+
else:
|
928 |
+
(
|
929 |
+
encoder_batch_size,
|
930 |
+
encoder_sequence_length,
|
931 |
+
_,
|
932 |
+
) = encoder_hidden_states.size()
|
933 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
934 |
+
|
935 |
+
if type(encoder_attention_mask) == list:
|
936 |
+
encoder_extended_attention_mask = [
|
937 |
+
self.invert_attention_mask(mask) for mask in encoder_attention_mask
|
938 |
+
]
|
939 |
+
elif encoder_attention_mask is None:
|
940 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
941 |
+
encoder_extended_attention_mask = self.invert_attention_mask(
|
942 |
+
encoder_attention_mask
|
943 |
+
)
|
944 |
+
else:
|
945 |
+
encoder_extended_attention_mask = self.invert_attention_mask(
|
946 |
+
encoder_attention_mask
|
947 |
+
)
|
948 |
+
else:
|
949 |
+
encoder_extended_attention_mask = None
|
950 |
+
|
951 |
+
# Prepare head mask if needed
|
952 |
+
# 1.0 in head_mask indicate we keep the head
|
953 |
+
# attention_probs has shape bsz x n_heads x N x N
|
954 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
955 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
956 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
957 |
+
|
958 |
+
encoder_outputs = self.encoder(
|
959 |
+
embedding_output,
|
960 |
+
attention_mask=extended_attention_mask,
|
961 |
+
head_mask=head_mask,
|
962 |
+
encoder_hidden_states=encoder_hidden_states,
|
963 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
964 |
+
past_key_values=past_key_values,
|
965 |
+
use_cache=use_cache,
|
966 |
+
output_attentions=output_attentions,
|
967 |
+
output_hidden_states=output_hidden_states,
|
968 |
+
return_dict=return_dict,
|
969 |
+
query_length=query_length,
|
970 |
+
)
|
971 |
+
sequence_output = encoder_outputs[0]
|
972 |
+
pooled_output = (
|
973 |
+
self.pooler(sequence_output) if self.pooler is not None else None
|
974 |
+
)
|
975 |
+
|
976 |
+
if not return_dict:
|
977 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
978 |
+
|
979 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
980 |
+
last_hidden_state=sequence_output,
|
981 |
+
pooler_output=pooled_output,
|
982 |
+
past_key_values=encoder_outputs.past_key_values,
|
983 |
+
hidden_states=encoder_outputs.hidden_states,
|
984 |
+
attentions=encoder_outputs.attentions,
|
985 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
986 |
+
)
|
987 |
+
|
988 |
+
|
989 |
+
class BertLMHeadModel(BertPreTrainedModel):
|
990 |
+
|
991 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
992 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
993 |
+
|
994 |
+
def __init__(self, config):
|
995 |
+
super().__init__(config)
|
996 |
+
|
997 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
998 |
+
self.cls = BertOnlyMLMHead(config)
|
999 |
+
|
1000 |
+
self.init_weights()
|
1001 |
+
|
1002 |
+
def get_output_embeddings(self):
|
1003 |
+
return self.cls.predictions.decoder
|
1004 |
+
|
1005 |
+
def set_output_embeddings(self, new_embeddings):
|
1006 |
+
self.cls.predictions.decoder = new_embeddings
|
1007 |
+
|
1008 |
+
def forward(
|
1009 |
+
self,
|
1010 |
+
input_ids=None,
|
1011 |
+
attention_mask=None,
|
1012 |
+
position_ids=None,
|
1013 |
+
head_mask=None,
|
1014 |
+
query_embeds=None,
|
1015 |
+
encoder_hidden_states=None,
|
1016 |
+
encoder_attention_mask=None,
|
1017 |
+
labels=None,
|
1018 |
+
past_key_values=None,
|
1019 |
+
use_cache=True,
|
1020 |
+
output_attentions=None,
|
1021 |
+
output_hidden_states=None,
|
1022 |
+
return_dict=None,
|
1023 |
+
return_logits=False,
|
1024 |
+
is_decoder=True,
|
1025 |
+
reduction="mean",
|
1026 |
+
):
|
1027 |
+
r"""
|
1028 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
1029 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
1030 |
+
the model is configured as a decoder.
|
1031 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1032 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1033 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
1034 |
+
- 1 for tokens that are **not masked**,
|
1035 |
+
- 0 for tokens that are **masked**.
|
1036 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1037 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
1038 |
+
``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
|
1039 |
+
ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
|
1040 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
1041 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1042 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
1043 |
+
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
1044 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
1045 |
+
use_cache (:obj:`bool`, `optional`):
|
1046 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
1047 |
+
decoding (see :obj:`past_key_values`).
|
1048 |
+
Returns:
|
1049 |
+
Example::
|
1050 |
+
>>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
|
1051 |
+
>>> import torch
|
1052 |
+
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
|
1053 |
+
>>> config = BertConfig.from_pretrained("bert-base-cased")
|
1054 |
+
>>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
|
1055 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
1056 |
+
>>> outputs = model(**inputs)
|
1057 |
+
>>> prediction_logits = outputs.logits
|
1058 |
+
"""
|
1059 |
+
return_dict = (
|
1060 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1061 |
+
)
|
1062 |
+
if labels is not None:
|
1063 |
+
use_cache = False
|
1064 |
+
if past_key_values is not None:
|
1065 |
+
query_embeds = None
|
1066 |
+
|
1067 |
+
outputs = self.bert(
|
1068 |
+
input_ids,
|
1069 |
+
attention_mask=attention_mask,
|
1070 |
+
position_ids=position_ids,
|
1071 |
+
head_mask=head_mask,
|
1072 |
+
query_embeds=query_embeds,
|
1073 |
+
encoder_hidden_states=encoder_hidden_states,
|
1074 |
+
encoder_attention_mask=encoder_attention_mask,
|
1075 |
+
past_key_values=past_key_values,
|
1076 |
+
use_cache=use_cache,
|
1077 |
+
output_attentions=output_attentions,
|
1078 |
+
output_hidden_states=output_hidden_states,
|
1079 |
+
return_dict=return_dict,
|
1080 |
+
is_decoder=is_decoder,
|
1081 |
+
)
|
1082 |
+
|
1083 |
+
sequence_output = outputs[0]
|
1084 |
+
if query_embeds is not None:
|
1085 |
+
sequence_output = outputs[0][:, query_embeds.shape[1] :, :]
|
1086 |
+
|
1087 |
+
prediction_scores = self.cls(sequence_output)
|
1088 |
+
|
1089 |
+
if return_logits:
|
1090 |
+
return prediction_scores[:, :-1, :].contiguous()
|
1091 |
+
|
1092 |
+
lm_loss = None
|
1093 |
+
if labels is not None:
|
1094 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
1095 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
1096 |
+
labels = labels[:, 1:].contiguous()
|
1097 |
+
loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1)
|
1098 |
+
lm_loss = loss_fct(
|
1099 |
+
shifted_prediction_scores.view(-1, self.config.vocab_size),
|
1100 |
+
labels.view(-1),
|
1101 |
+
)
|
1102 |
+
if reduction == "none":
|
1103 |
+
lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1)
|
1104 |
+
|
1105 |
+
if not return_dict:
|
1106 |
+
output = (prediction_scores,) + outputs[2:]
|
1107 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
1108 |
+
|
1109 |
+
return CausalLMOutputWithCrossAttentions(
|
1110 |
+
loss=lm_loss,
|
1111 |
+
logits=prediction_scores,
|
1112 |
+
past_key_values=outputs.past_key_values,
|
1113 |
+
hidden_states=outputs.hidden_states,
|
1114 |
+
attentions=outputs.attentions,
|
1115 |
+
cross_attentions=outputs.cross_attentions,
|
1116 |
+
)
|
1117 |
+
|
1118 |
+
def prepare_inputs_for_generation(
|
1119 |
+
self, input_ids, query_embeds, past=None, attention_mask=None, **model_kwargs
|
1120 |
+
):
|
1121 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1122 |
+
if attention_mask is None:
|
1123 |
+
attention_mask = input_ids.new_ones(input_ids.shape)
|
1124 |
+
query_mask = input_ids.new_ones(query_embeds.shape[:-1])
|
1125 |
+
attention_mask = torch.cat([query_mask, attention_mask], dim=-1)
|
1126 |
+
|
1127 |
+
# cut decoder_input_ids if past is used
|
1128 |
+
if past is not None:
|
1129 |
+
input_ids = input_ids[:, -1:]
|
1130 |
+
|
1131 |
+
return {
|
1132 |
+
"input_ids": input_ids,
|
1133 |
+
"query_embeds": query_embeds,
|
1134 |
+
"attention_mask": attention_mask,
|
1135 |
+
"past_key_values": past,
|
1136 |
+
"encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
|
1137 |
+
"encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
|
1138 |
+
"is_decoder": True,
|
1139 |
+
}
|
1140 |
+
|
1141 |
+
def _reorder_cache(self, past, beam_idx):
|
1142 |
+
reordered_past = ()
|
1143 |
+
for layer_past in past:
|
1144 |
+
reordered_past += (
|
1145 |
+
tuple(
|
1146 |
+
past_state.index_select(0, beam_idx) for past_state in layer_past
|
1147 |
+
),
|
1148 |
+
)
|
1149 |
+
return reordered_past
|
1150 |
+
|
1151 |
+
|
1152 |
+
class BertForMaskedLM(BertPreTrainedModel):
|
1153 |
+
|
1154 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1155 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
1156 |
+
|
1157 |
+
def __init__(self, config):
|
1158 |
+
super().__init__(config)
|
1159 |
+
|
1160 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
1161 |
+
self.cls = BertOnlyMLMHead(config)
|
1162 |
+
|
1163 |
+
self.init_weights()
|
1164 |
+
|
1165 |
+
def get_output_embeddings(self):
|
1166 |
+
return self.cls.predictions.decoder
|
1167 |
+
|
1168 |
+
def set_output_embeddings(self, new_embeddings):
|
1169 |
+
self.cls.predictions.decoder = new_embeddings
|
1170 |
+
|
1171 |
+
def forward(
|
1172 |
+
self,
|
1173 |
+
input_ids=None,
|
1174 |
+
attention_mask=None,
|
1175 |
+
position_ids=None,
|
1176 |
+
head_mask=None,
|
1177 |
+
query_embeds=None,
|
1178 |
+
encoder_hidden_states=None,
|
1179 |
+
encoder_attention_mask=None,
|
1180 |
+
labels=None,
|
1181 |
+
output_attentions=None,
|
1182 |
+
output_hidden_states=None,
|
1183 |
+
return_dict=None,
|
1184 |
+
return_logits=False,
|
1185 |
+
is_decoder=False,
|
1186 |
+
):
|
1187 |
+
r"""
|
1188 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1189 |
+
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
|
1190 |
+
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
|
1191 |
+
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
|
1192 |
+
"""
|
1193 |
+
|
1194 |
+
return_dict = (
|
1195 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1196 |
+
)
|
1197 |
+
|
1198 |
+
outputs = self.bert(
|
1199 |
+
input_ids,
|
1200 |
+
attention_mask=attention_mask,
|
1201 |
+
position_ids=position_ids,
|
1202 |
+
head_mask=head_mask,
|
1203 |
+
query_embeds=query_embeds,
|
1204 |
+
encoder_hidden_states=encoder_hidden_states,
|
1205 |
+
encoder_attention_mask=encoder_attention_mask,
|
1206 |
+
output_attentions=output_attentions,
|
1207 |
+
output_hidden_states=output_hidden_states,
|
1208 |
+
return_dict=return_dict,
|
1209 |
+
is_decoder=is_decoder,
|
1210 |
+
)
|
1211 |
+
|
1212 |
+
if query_embeds is not None:
|
1213 |
+
sequence_output = outputs[0][:, query_embeds.shape[1] :, :]
|
1214 |
+
prediction_scores = self.cls(sequence_output)
|
1215 |
+
|
1216 |
+
if return_logits:
|
1217 |
+
return prediction_scores
|
1218 |
+
|
1219 |
+
masked_lm_loss = None
|
1220 |
+
if labels is not None:
|
1221 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
1222 |
+
masked_lm_loss = loss_fct(
|
1223 |
+
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
|
1224 |
+
)
|
1225 |
+
|
1226 |
+
if not return_dict:
|
1227 |
+
output = (prediction_scores,) + outputs[2:]
|
1228 |
+
return (
|
1229 |
+
((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1230 |
+
)
|
1231 |
+
|
1232 |
+
return MaskedLMOutput(
|
1233 |
+
loss=masked_lm_loss,
|
1234 |
+
logits=prediction_scores,
|
1235 |
+
hidden_states=outputs.hidden_states,
|
1236 |
+
attentions=outputs.attentions,
|
1237 |
+
)
|
models/__init__.py
ADDED
File without changes
|
models/__pycache__/Qformer.cpython-38.pyc
ADDED
Binary file (32 kB). View file
|
|
models/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (147 Bytes). View file
|
|
models/__pycache__/blip2.cpython-38.pyc
ADDED
Binary file (4.48 kB). View file
|
|
models/__pycache__/eva_vit.cpython-38.pyc
ADDED
Binary file (19.9 kB). View file
|
|
models/__pycache__/modeling_llama.cpython-38.pyc
ADDED
Binary file (25.1 kB). View file
|
|
models/__pycache__/video_transformers.cpython-38.pyc
ADDED
Binary file (14.4 kB). View file
|
|
models/__pycache__/videochat.cpython-38.pyc
ADDED
Binary file (4.85 kB). View file
|
|
models/blip2.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copyright (c) 2023, salesforce.com, inc.
|
3 |
+
All rights reserved.
|
4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
"""
|
7 |
+
import contextlib
|
8 |
+
import os
|
9 |
+
import logging
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
|
14 |
+
from .Qformer import BertConfig, BertLMHeadModel
|
15 |
+
from .eva_vit import create_eva_vit_g
|
16 |
+
from transformers import BertTokenizer
|
17 |
+
|
18 |
+
|
19 |
+
class Blip2Base(nn.Module):
|
20 |
+
def __init__(self):
|
21 |
+
super().__init__()
|
22 |
+
|
23 |
+
@classmethod
|
24 |
+
def init_tokenizer(cls):
|
25 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
26 |
+
tokenizer.add_special_tokens({"bos_token": "[DEC]"})
|
27 |
+
return tokenizer
|
28 |
+
|
29 |
+
@property
|
30 |
+
def device(self):
|
31 |
+
return list(self.parameters())[0].device
|
32 |
+
|
33 |
+
def maybe_autocast(self, dtype=torch.float16):
|
34 |
+
# if on cpu, don't use autocast
|
35 |
+
# if on gpu, use autocast with dtype if provided, otherwise use torch.float16
|
36 |
+
enable_autocast = self.device != torch.device("cpu")
|
37 |
+
|
38 |
+
if enable_autocast:
|
39 |
+
return torch.cuda.amp.autocast(dtype=dtype)
|
40 |
+
else:
|
41 |
+
return contextlib.nullcontext()
|
42 |
+
|
43 |
+
@classmethod
|
44 |
+
def init_Qformer(
|
45 |
+
cls,
|
46 |
+
num_query_token, vision_width,
|
47 |
+
qformer_hidden_dropout_prob=0.,
|
48 |
+
qformer_attention_probs_dropout_prob=0.,
|
49 |
+
qformer_drop_path_rate=0.,
|
50 |
+
):
|
51 |
+
encoder_config = BertConfig.from_pretrained("bert-base-uncased")
|
52 |
+
encoder_config.encoder_width = vision_width
|
53 |
+
# insert cross-attention layer every other block
|
54 |
+
encoder_config.add_cross_attention = True
|
55 |
+
encoder_config.cross_attention_freq = 2
|
56 |
+
encoder_config.query_length = num_query_token
|
57 |
+
encoder_config.hidden_dropout_prob = qformer_hidden_dropout_prob
|
58 |
+
encoder_config.attention_probs_dropout_prob = qformer_attention_probs_dropout_prob
|
59 |
+
encoder_config.drop_path_list = [x.item() for x in torch.linspace(0, qformer_drop_path_rate, encoder_config.num_hidden_layers)]
|
60 |
+
print(f"Drop_path:{encoder_config.drop_path_list}")
|
61 |
+
print(encoder_config)
|
62 |
+
Qformer = BertLMHeadModel(config=encoder_config)
|
63 |
+
query_tokens = nn.Parameter(
|
64 |
+
torch.zeros(1, num_query_token, encoder_config.hidden_size)
|
65 |
+
)
|
66 |
+
query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range)
|
67 |
+
return Qformer, query_tokens
|
68 |
+
|
69 |
+
@classmethod
|
70 |
+
def init_vision_encoder(
|
71 |
+
cls,
|
72 |
+
model_name, img_size, drop_path_rate,
|
73 |
+
use_grad_checkpoint, precision, vit_model_path,
|
74 |
+
temporal_downsample=True,
|
75 |
+
no_lmhra=False,
|
76 |
+
double_lmhra=False,
|
77 |
+
lmhra_reduction=2.0,
|
78 |
+
gmhra_layers=8,
|
79 |
+
gmhra_drop_path_rate=0.,
|
80 |
+
gmhra_dropout=0.5,
|
81 |
+
):
|
82 |
+
assert model_name == "eva_clip_g", "vit model must be eva_clip_g for current version of VideoChat"
|
83 |
+
visual_encoder = create_eva_vit_g(
|
84 |
+
img_size, drop_path_rate,
|
85 |
+
use_grad_checkpoint, precision, vit_model_path,
|
86 |
+
temporal_downsample=temporal_downsample,
|
87 |
+
no_lmhra=no_lmhra,
|
88 |
+
double_lmhra=double_lmhra,
|
89 |
+
lmhra_reduction=lmhra_reduction,
|
90 |
+
gmhra_layers=gmhra_layers,
|
91 |
+
gmhra_drop_path_rate=gmhra_drop_path_rate,
|
92 |
+
gmhra_dropout=gmhra_dropout,
|
93 |
+
)
|
94 |
+
|
95 |
+
ln_vision = LayerNorm(visual_encoder.num_features)
|
96 |
+
return visual_encoder, ln_vision
|
97 |
+
|
98 |
+
def load_from_pretrained(self, model_path):
|
99 |
+
if model_path is not None and os.path.isfile(model_path):
|
100 |
+
checkpoint = torch.load(model_path, map_location="cpu")
|
101 |
+
else:
|
102 |
+
raise RuntimeError("checkpoint url or path is invalid")
|
103 |
+
|
104 |
+
state_dict = checkpoint["model"]
|
105 |
+
|
106 |
+
msg = self.load_state_dict(state_dict, strict=False)
|
107 |
+
|
108 |
+
print(f"Load QFormer from {model_path}")
|
109 |
+
print(msg)
|
110 |
+
|
111 |
+
return msg
|
112 |
+
|
113 |
+
|
114 |
+
def disabled_train(self, mode=True):
|
115 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
116 |
+
does not change anymore."""
|
117 |
+
return self
|
118 |
+
|
119 |
+
|
120 |
+
class LayerNorm(nn.LayerNorm):
|
121 |
+
"""Subclass torch's LayerNorm to handle fp16."""
|
122 |
+
|
123 |
+
def forward(self, x: torch.Tensor):
|
124 |
+
orig_type = x.dtype
|
125 |
+
ret = super().forward(x.type(torch.float32))
|
126 |
+
return ret.type(orig_type)
|
models/eva_vit.py
ADDED
@@ -0,0 +1,631 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Based on EVA, BEIT, timm and DeiT code bases
|
2 |
+
# https://github.com/baaivision/EVA
|
3 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
|
4 |
+
# https://github.com/microsoft/unilm/tree/master/beit
|
5 |
+
# https://github.com/facebookresearch/deit/
|
6 |
+
# https://github.com/facebookresearch/dino
|
7 |
+
# --------------------------------------------------------'
|
8 |
+
import os
|
9 |
+
import math
|
10 |
+
import logging
|
11 |
+
from functools import partial
|
12 |
+
from collections import OrderedDict
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
import torch.nn.functional as F
|
17 |
+
import torch.utils.checkpoint as checkpoint
|
18 |
+
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
|
19 |
+
|
20 |
+
|
21 |
+
def _cfg(url='', **kwargs):
|
22 |
+
return {
|
23 |
+
'url': url,
|
24 |
+
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
25 |
+
'crop_pct': .9, 'interpolation': 'bicubic',
|
26 |
+
'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5),
|
27 |
+
**kwargs
|
28 |
+
}
|
29 |
+
|
30 |
+
|
31 |
+
class DropPath(nn.Module):
|
32 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
33 |
+
"""
|
34 |
+
def __init__(self, drop_prob=None):
|
35 |
+
super(DropPath, self).__init__()
|
36 |
+
self.drop_prob = drop_prob
|
37 |
+
|
38 |
+
def forward(self, x):
|
39 |
+
return drop_path(x, self.drop_prob, self.training)
|
40 |
+
|
41 |
+
def extra_repr(self):
|
42 |
+
return 'p={}'.format(self.drop_prob)
|
43 |
+
|
44 |
+
|
45 |
+
class Mlp(nn.Module):
|
46 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
47 |
+
super().__init__()
|
48 |
+
out_features = out_features or in_features
|
49 |
+
hidden_features = hidden_features or in_features
|
50 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
51 |
+
self.act = act_layer()
|
52 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
53 |
+
self.drop = nn.Dropout(drop)
|
54 |
+
|
55 |
+
def forward(self, x):
|
56 |
+
x = self.fc1(x)
|
57 |
+
x = self.act(x)
|
58 |
+
# x = self.drop(x)
|
59 |
+
# commit this for the orignal BERT implement
|
60 |
+
x = self.fc2(x)
|
61 |
+
x = self.drop(x)
|
62 |
+
return x
|
63 |
+
|
64 |
+
|
65 |
+
class Local_MHRA(nn.Module):
|
66 |
+
def __init__(self, d_model, dw_reduction=1.5, pos_kernel_size=3):
|
67 |
+
super().__init__()
|
68 |
+
|
69 |
+
padding = pos_kernel_size // 2
|
70 |
+
re_d_model = int(d_model // dw_reduction)
|
71 |
+
self.pos_embed = nn.Sequential(
|
72 |
+
nn.BatchNorm3d(d_model),
|
73 |
+
nn.Conv3d(d_model, re_d_model, kernel_size=1, stride=1, padding=0),
|
74 |
+
nn.Conv3d(re_d_model, re_d_model, kernel_size=(pos_kernel_size, 1, 1), stride=(1, 1, 1), padding=(padding, 0, 0), groups=re_d_model),
|
75 |
+
nn.Conv3d(re_d_model, d_model, kernel_size=1, stride=1, padding=0),
|
76 |
+
)
|
77 |
+
|
78 |
+
# init zero
|
79 |
+
# print('Init zero for Conv in pos_emb')
|
80 |
+
nn.init.constant_(self.pos_embed[3].weight, 0)
|
81 |
+
nn.init.constant_(self.pos_embed[3].bias, 0)
|
82 |
+
|
83 |
+
def forward(self, x):
|
84 |
+
out = self.pos_embed(x)
|
85 |
+
return out
|
86 |
+
|
87 |
+
|
88 |
+
class Attention(nn.Module):
|
89 |
+
def __init__(
|
90 |
+
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
|
91 |
+
proj_drop=0., window_size=None, attn_head_dim=None):
|
92 |
+
super().__init__()
|
93 |
+
self.num_heads = num_heads
|
94 |
+
head_dim = dim // num_heads
|
95 |
+
if attn_head_dim is not None:
|
96 |
+
head_dim = attn_head_dim
|
97 |
+
all_head_dim = head_dim * self.num_heads
|
98 |
+
self.scale = qk_scale or head_dim ** -0.5
|
99 |
+
|
100 |
+
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
|
101 |
+
if qkv_bias:
|
102 |
+
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
|
103 |
+
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
|
104 |
+
else:
|
105 |
+
self.q_bias = None
|
106 |
+
self.v_bias = None
|
107 |
+
|
108 |
+
if window_size:
|
109 |
+
self.window_size = window_size
|
110 |
+
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
111 |
+
self.relative_position_bias_table = nn.Parameter(
|
112 |
+
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
113 |
+
# cls to token & token 2 cls & cls to cls
|
114 |
+
|
115 |
+
# get pair-wise relative position index for each token inside the window
|
116 |
+
coords_h = torch.arange(window_size[0])
|
117 |
+
coords_w = torch.arange(window_size[1])
|
118 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
119 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
120 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
121 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
122 |
+
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
123 |
+
relative_coords[:, :, 1] += window_size[1] - 1
|
124 |
+
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
125 |
+
relative_position_index = \
|
126 |
+
torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype)
|
127 |
+
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
128 |
+
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
129 |
+
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
130 |
+
relative_position_index[0, 0] = self.num_relative_distance - 1
|
131 |
+
|
132 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
133 |
+
else:
|
134 |
+
self.window_size = None
|
135 |
+
self.relative_position_bias_table = None
|
136 |
+
self.relative_position_index = None
|
137 |
+
|
138 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
139 |
+
self.proj = nn.Linear(all_head_dim, dim)
|
140 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
141 |
+
|
142 |
+
def forward(self, x, rel_pos_bias=None):
|
143 |
+
B, N, C = x.shape
|
144 |
+
qkv_bias = None
|
145 |
+
if self.q_bias is not None:
|
146 |
+
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
147 |
+
# qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
148 |
+
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
149 |
+
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
150 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
151 |
+
|
152 |
+
q = q * self.scale
|
153 |
+
attn = (q @ k.transpose(-2, -1))
|
154 |
+
|
155 |
+
if self.relative_position_bias_table is not None:
|
156 |
+
relative_position_bias = \
|
157 |
+
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
158 |
+
self.window_size[0] * self.window_size[1] + 1,
|
159 |
+
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
160 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
161 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
162 |
+
|
163 |
+
if rel_pos_bias is not None:
|
164 |
+
attn = attn + rel_pos_bias
|
165 |
+
|
166 |
+
attn = attn.softmax(dim=-1)
|
167 |
+
attn = self.attn_drop(attn)
|
168 |
+
|
169 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
170 |
+
x = self.proj(x)
|
171 |
+
x = self.proj_drop(x)
|
172 |
+
return x
|
173 |
+
|
174 |
+
|
175 |
+
class Block(nn.Module):
|
176 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
177 |
+
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
|
178 |
+
window_size=None, attn_head_dim=None,
|
179 |
+
no_lmhra=False, double_lmhra=True, lmhra_reduction=2.0,
|
180 |
+
):
|
181 |
+
super().__init__()
|
182 |
+
self.no_lmhra = no_lmhra
|
183 |
+
self.double_lmhra = double_lmhra
|
184 |
+
if not no_lmhra:
|
185 |
+
self.lmhra1 = Local_MHRA(dim, dw_reduction=lmhra_reduction)
|
186 |
+
if double_lmhra:
|
187 |
+
self.lmhra2 = Local_MHRA(dim, dw_reduction=lmhra_reduction)
|
188 |
+
|
189 |
+
self.norm1 = norm_layer(dim)
|
190 |
+
self.attn = Attention(
|
191 |
+
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
192 |
+
attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim)
|
193 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
194 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
195 |
+
self.norm2 = norm_layer(dim)
|
196 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
197 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
198 |
+
|
199 |
+
if init_values is not None and init_values > 0:
|
200 |
+
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
201 |
+
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
202 |
+
else:
|
203 |
+
self.gamma_1, self.gamma_2 = None, None
|
204 |
+
|
205 |
+
def forward(self, x, rel_pos_bias=None, T=8):
|
206 |
+
# Local MHRA
|
207 |
+
if not self.no_lmhra:
|
208 |
+
# x: BT, HW+1, C
|
209 |
+
tmp_x = x[:, 1:, :]
|
210 |
+
BT, N, C = tmp_x.shape
|
211 |
+
B = BT // T
|
212 |
+
H = W = int(N ** 0.5)
|
213 |
+
tmp_x = tmp_x.view(B, T, H, W, C).permute(0, 4, 1, 2, 3).contiguous()
|
214 |
+
tmp_x = tmp_x + self.drop_path(self.lmhra1(tmp_x))
|
215 |
+
tmp_x = tmp_x.view(B, C, T, N).permute(0, 2, 3, 1).contiguous().view(BT, N, C)
|
216 |
+
x = torch.cat([x[:, :1, :], tmp_x], dim=1)
|
217 |
+
|
218 |
+
# MHSA
|
219 |
+
if self.gamma_1 is None:
|
220 |
+
x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
|
221 |
+
else:
|
222 |
+
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
|
223 |
+
|
224 |
+
# Local MHRA
|
225 |
+
if not self.no_lmhra and self.double_lmhra:
|
226 |
+
tmp_x = x[:, 1:, :]
|
227 |
+
tmp_x = tmp_x.view(B, T, H, W, C).permute(0, 4, 1, 2, 3).contiguous()
|
228 |
+
tmp_x = tmp_x + self.drop_path(self.lmhra2(tmp_x))
|
229 |
+
tmp_x = tmp_x.view(B, C, T, N).permute(0, 2, 3, 1).contiguous().view(BT, N, C)
|
230 |
+
x = torch.cat([x[:, :1, :], tmp_x], dim=1)
|
231 |
+
|
232 |
+
# MLP
|
233 |
+
if self.gamma_1 is None:
|
234 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
235 |
+
else:
|
236 |
+
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
237 |
+
|
238 |
+
return x
|
239 |
+
|
240 |
+
|
241 |
+
class PatchEmbed(nn.Module):
|
242 |
+
""" Image to Patch Embedding
|
243 |
+
"""
|
244 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, temporal_downsample=False):
|
245 |
+
super().__init__()
|
246 |
+
img_size = to_2tuple(img_size)
|
247 |
+
patch_size = to_2tuple(patch_size)
|
248 |
+
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
|
249 |
+
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
|
250 |
+
self.img_size = img_size
|
251 |
+
self.patch_size = patch_size
|
252 |
+
self.num_patches = num_patches
|
253 |
+
if temporal_downsample:
|
254 |
+
self.proj = nn.Conv3d(
|
255 |
+
in_chans, embed_dim, kernel_size=(3, patch_size[0], patch_size[1]),
|
256 |
+
stride=(2, patch_size[0], patch_size[1]), padding=(1, 0, 0)
|
257 |
+
)
|
258 |
+
else:
|
259 |
+
self.proj = nn.Conv3d(
|
260 |
+
in_chans, embed_dim, kernel_size=(1, patch_size[0], patch_size[1]),
|
261 |
+
stride=(1, patch_size[0], patch_size[1]), padding=(0, 0, 0)
|
262 |
+
)
|
263 |
+
|
264 |
+
def forward(self, x, **kwargs):
|
265 |
+
B, C, T, H, W = x.shape
|
266 |
+
# FIXME look at relaxing size constraints
|
267 |
+
assert H == self.img_size[0] and W == self.img_size[1], \
|
268 |
+
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
269 |
+
x = self.proj(x)
|
270 |
+
return x
|
271 |
+
|
272 |
+
|
273 |
+
class RelativePositionBias(nn.Module):
|
274 |
+
def __init__(self, window_size, num_heads):
|
275 |
+
super().__init__()
|
276 |
+
self.window_size = window_size
|
277 |
+
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
278 |
+
self.relative_position_bias_table = nn.Parameter(
|
279 |
+
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
280 |
+
# cls to token & token 2 cls & cls to cls
|
281 |
+
|
282 |
+
# get pair-wise relative position index for each token inside the window
|
283 |
+
coords_h = torch.arange(window_size[0])
|
284 |
+
coords_w = torch.arange(window_size[1])
|
285 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
286 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
287 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
288 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
289 |
+
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
290 |
+
relative_coords[:, :, 1] += window_size[1] - 1
|
291 |
+
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
292 |
+
relative_position_index = \
|
293 |
+
torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
|
294 |
+
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
295 |
+
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
296 |
+
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
297 |
+
relative_position_index[0, 0] = self.num_relative_distance - 1
|
298 |
+
|
299 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
300 |
+
|
301 |
+
# trunc_normal_(self.relative_position_bias_table, std=.02)
|
302 |
+
|
303 |
+
def forward(self):
|
304 |
+
relative_position_bias = \
|
305 |
+
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
306 |
+
self.window_size[0] * self.window_size[1] + 1,
|
307 |
+
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
308 |
+
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
309 |
+
|
310 |
+
|
311 |
+
class Global_MHRA(nn.Module):
|
312 |
+
def __init__(
|
313 |
+
self, d_model, n_head, attn_mask=None,
|
314 |
+
mlp_factor=4.0, drop_path=0., dropout=0.,
|
315 |
+
):
|
316 |
+
super().__init__()
|
317 |
+
print(f'Drop path rate: {drop_path}')
|
318 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
319 |
+
|
320 |
+
self.dpe = nn.Conv3d(d_model, d_model, kernel_size=3, stride=1, padding=1, bias=True, groups=d_model)
|
321 |
+
nn.init.constant_(self.dpe.bias, 0.)
|
322 |
+
|
323 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
324 |
+
self.ln_1 = nn.LayerNorm(d_model)
|
325 |
+
d_mlp = round(mlp_factor * d_model)
|
326 |
+
self.mlp = nn.Sequential(OrderedDict([
|
327 |
+
("c_fc", nn.Linear(d_model, d_mlp)),
|
328 |
+
("gelu", nn.GELU()),
|
329 |
+
("dropout", nn.Dropout(dropout)),
|
330 |
+
("c_proj", nn.Linear(d_mlp, d_model))
|
331 |
+
]))
|
332 |
+
self.ln_2 = nn.LayerNorm(d_model)
|
333 |
+
self.ln_3 = nn.LayerNorm(d_model)
|
334 |
+
self.attn_mask = attn_mask
|
335 |
+
|
336 |
+
# zero init
|
337 |
+
nn.init.xavier_uniform_(self.attn.in_proj_weight)
|
338 |
+
nn.init.constant_(self.attn.out_proj.weight, 0.)
|
339 |
+
nn.init.constant_(self.attn.out_proj.bias, 0.)
|
340 |
+
nn.init.xavier_uniform_(self.mlp[0].weight)
|
341 |
+
nn.init.constant_(self.mlp[-1].weight, 0.)
|
342 |
+
nn.init.constant_(self.mlp[-1].bias, 0.)
|
343 |
+
|
344 |
+
def attention(self, x, y, T):
|
345 |
+
# x: 1, B, C
|
346 |
+
# y: BT, HW+1, C
|
347 |
+
BT, N, C = y.shape
|
348 |
+
B = BT // T
|
349 |
+
H = W = int(N ** 0.5)
|
350 |
+
y = y.view(B, T, N, C)
|
351 |
+
_, tmp_feats = y[:, :, :1], y[:, :, 1:]
|
352 |
+
tmp_feats = tmp_feats.view(B, T, H, W, C).permute(0, 4, 1, 2, 3).contiguous()
|
353 |
+
tmp_feats = self.dpe(tmp_feats.clone()).view(B, C, T, N - 1).permute(0, 2, 3, 1).contiguous()
|
354 |
+
y[:, :, 1:] = y[:, :, 1:] + tmp_feats
|
355 |
+
y = y.permute(1, 2, 0, 3).flatten(0, 1) # T(HW+1), B, C
|
356 |
+
|
357 |
+
d_model = self.ln_1.weight.size(0)
|
358 |
+
q = (x @ self.attn.in_proj_weight[:d_model].T) + self.attn.in_proj_bias[:d_model]
|
359 |
+
|
360 |
+
k = (y @ self.attn.in_proj_weight[d_model:-d_model].T) + self.attn.in_proj_bias[d_model:-d_model]
|
361 |
+
v = (y @ self.attn.in_proj_weight[-d_model:].T) + self.attn.in_proj_bias[-d_model:]
|
362 |
+
Tx, Ty, N = q.size(0), k.size(0), q.size(1)
|
363 |
+
q = q.view(Tx, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3)
|
364 |
+
k = k.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3)
|
365 |
+
v = v.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3)
|
366 |
+
aff = (q @ k.transpose(-2, -1) / (self.attn.head_dim ** 0.5))
|
367 |
+
|
368 |
+
aff = aff.softmax(dim=-1)
|
369 |
+
out = aff @ v
|
370 |
+
out = out.permute(2, 0, 1, 3).flatten(2)
|
371 |
+
out = self.attn.out_proj(out)
|
372 |
+
return out
|
373 |
+
|
374 |
+
def forward(self, x, y, T):
|
375 |
+
x = x + self.drop_path(self.attention(self.ln_1(x), self.ln_3(y), T=T))
|
376 |
+
x = x + self.drop_path(self.mlp(self.ln_2(x)))
|
377 |
+
return x
|
378 |
+
|
379 |
+
|
380 |
+
class VisionTransformer(nn.Module):
|
381 |
+
""" Vision Transformer with support for patch or hybrid CNN input stage
|
382 |
+
"""
|
383 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
|
384 |
+
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
|
385 |
+
drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None,
|
386 |
+
use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False,
|
387 |
+
use_mean_pooling=True, init_scale=0.001, use_checkpoint=False,
|
388 |
+
temporal_downsample=True,
|
389 |
+
no_lmhra=False, double_lmhra=True, lmhra_reduction=1.5,
|
390 |
+
gmhra_layers=4, gmhra_drop_path_rate=0., gmhra_dropout=0.5,
|
391 |
+
):
|
392 |
+
super().__init__()
|
393 |
+
self.image_size = img_size
|
394 |
+
self.num_classes = num_classes
|
395 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
396 |
+
|
397 |
+
print(f"Temporal downsample: {temporal_downsample}")
|
398 |
+
self.patch_embed = PatchEmbed(
|
399 |
+
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
|
400 |
+
temporal_downsample=temporal_downsample,
|
401 |
+
)
|
402 |
+
num_patches = self.patch_embed.num_patches
|
403 |
+
|
404 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
405 |
+
if use_abs_pos_emb:
|
406 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
407 |
+
else:
|
408 |
+
self.pos_embed = None
|
409 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
410 |
+
|
411 |
+
if use_shared_rel_pos_bias:
|
412 |
+
self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads)
|
413 |
+
else:
|
414 |
+
self.rel_pos_bias = None
|
415 |
+
self.use_checkpoint = use_checkpoint
|
416 |
+
|
417 |
+
print(f'No L_MHRA: {no_lmhra}')
|
418 |
+
print(f'Double L_MHRA: {double_lmhra}')
|
419 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
420 |
+
self.use_rel_pos_bias = use_rel_pos_bias
|
421 |
+
self.blocks = nn.ModuleList([
|
422 |
+
Block(
|
423 |
+
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
424 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
|
425 |
+
init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None,
|
426 |
+
no_lmhra=no_lmhra, double_lmhra=double_lmhra, lmhra_reduction=lmhra_reduction,
|
427 |
+
)
|
428 |
+
for i in range(depth)])
|
429 |
+
|
430 |
+
# global MHRA
|
431 |
+
self.gmhra_layers = gmhra_layers
|
432 |
+
self.gmhra_layer_idx = [(depth - 1 - idx) for idx in range(gmhra_layers)]
|
433 |
+
print(f"GMHRA index: {self.gmhra_layer_idx}")
|
434 |
+
print(f"GMHRA dropout: {gmhra_dropout}")
|
435 |
+
if gmhra_layers > 0:
|
436 |
+
self.gmhra_cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
437 |
+
gmhra_dpr = [x.item() for x in torch.linspace(0, gmhra_drop_path_rate, gmhra_layers)]
|
438 |
+
self.gmhra = nn.ModuleList([
|
439 |
+
Global_MHRA(
|
440 |
+
embed_dim, num_heads, mlp_factor=mlp_ratio,
|
441 |
+
drop_path=gmhra_dpr[i], dropout=gmhra_dropout,
|
442 |
+
) for i in range(gmhra_layers)
|
443 |
+
])
|
444 |
+
|
445 |
+
if self.pos_embed is not None:
|
446 |
+
trunc_normal_(self.pos_embed, std=.02)
|
447 |
+
trunc_normal_(self.cls_token, std=.02)
|
448 |
+
self.fix_init_weight()
|
449 |
+
|
450 |
+
def fix_init_weight(self):
|
451 |
+
def rescale(param, layer_id):
|
452 |
+
param.div_(math.sqrt(2.0 * layer_id))
|
453 |
+
|
454 |
+
for layer_id, layer in enumerate(self.blocks):
|
455 |
+
rescale(layer.attn.proj.weight.data, layer_id + 1)
|
456 |
+
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
|
457 |
+
|
458 |
+
def forward_features(self, x):
|
459 |
+
x = self.patch_embed(x)
|
460 |
+
B, C, T, H, W = x.shape
|
461 |
+
x = x.permute(0, 2, 3, 4, 1).reshape(B * T, H * W, C)
|
462 |
+
|
463 |
+
cls_tokens = self.cls_token.expand(B * T, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
464 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
465 |
+
if self.pos_embed is not None:
|
466 |
+
x = x + self.pos_embed
|
467 |
+
x = self.pos_drop(x)
|
468 |
+
|
469 |
+
# the input of global MHRA should be (THW+1)xBx1
|
470 |
+
if self.gmhra_layers > 0:
|
471 |
+
gmhra_cls_token = self.gmhra_cls_token.repeat(1, B, 1)
|
472 |
+
|
473 |
+
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
|
474 |
+
j = -1
|
475 |
+
for idx, blk in enumerate(self.blocks):
|
476 |
+
if self.use_checkpoint:
|
477 |
+
x = checkpoint.checkpoint(blk, x, rel_pos_bias, T=T)
|
478 |
+
else:
|
479 |
+
x = blk(x, rel_pos_bias, T=T)
|
480 |
+
if idx in self.gmhra_layer_idx:
|
481 |
+
j += 1
|
482 |
+
tmp_x = x.clone()
|
483 |
+
gmhra_cls_token = self.gmhra[j](gmhra_cls_token, tmp_x, T=T)
|
484 |
+
z = torch.cat([x.view(B, -1, C), gmhra_cls_token.permute(1, 0, 2)], dim=1)
|
485 |
+
return z
|
486 |
+
|
487 |
+
def forward(self, x):
|
488 |
+
x = self.forward_features(x)
|
489 |
+
return x
|
490 |
+
|
491 |
+
|
492 |
+
def interpolate_pos_embed(model, checkpoint_model):
|
493 |
+
if 'pos_embed' in checkpoint_model:
|
494 |
+
pos_embed_checkpoint = checkpoint_model['pos_embed'].float()
|
495 |
+
embedding_size = pos_embed_checkpoint.shape[-1]
|
496 |
+
num_patches = model.patch_embed.num_patches
|
497 |
+
num_extra_tokens = model.pos_embed.shape[-2] - num_patches
|
498 |
+
# height (== width) for the checkpoint position embedding
|
499 |
+
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
500 |
+
# height (== width) for the new position embedding
|
501 |
+
new_size = int(num_patches ** 0.5)
|
502 |
+
# class_token and dist_token are kept unchanged
|
503 |
+
if orig_size != new_size:
|
504 |
+
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
|
505 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
506 |
+
# only the position tokens are interpolated
|
507 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
508 |
+
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
509 |
+
pos_tokens = torch.nn.functional.interpolate(
|
510 |
+
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
511 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
512 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
513 |
+
checkpoint_model['pos_embed'] = new_pos_embed
|
514 |
+
|
515 |
+
|
516 |
+
def convert_weights_to_fp16(model: nn.Module):
|
517 |
+
"""Convert applicable model parameters to fp16"""
|
518 |
+
def _convert_weights_to_fp16(l):
|
519 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
520 |
+
l.weight.data = l.weight.data.half()
|
521 |
+
if l.bias is not None:
|
522 |
+
l.bias.data = l.bias.data.half()
|
523 |
+
if isinstance(l, (nn.MultiheadAttention, Attention)):
|
524 |
+
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
|
525 |
+
tensor = getattr(l, attr)
|
526 |
+
if tensor is not None:
|
527 |
+
tensor.data = tensor.data.half()
|
528 |
+
model.apply(_convert_weights_to_fp16)
|
529 |
+
|
530 |
+
|
531 |
+
def inflate_weight(weight_2d, time_dim, center=True):
|
532 |
+
print(f'Init center: {center}')
|
533 |
+
if center:
|
534 |
+
weight_3d = torch.zeros(*weight_2d.shape)
|
535 |
+
weight_3d = weight_3d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1)
|
536 |
+
middle_idx = time_dim // 2
|
537 |
+
weight_3d[:, :, middle_idx, :, :] = weight_2d
|
538 |
+
else:
|
539 |
+
weight_3d = weight_2d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1)
|
540 |
+
weight_3d = weight_3d / time_dim
|
541 |
+
return weight_3d
|
542 |
+
|
543 |
+
|
544 |
+
def load_state_dict(model, state_dict, strict=True):
|
545 |
+
state_dict_3d = model.state_dict()
|
546 |
+
for k in state_dict.keys():
|
547 |
+
if k in state_dict_3d.keys() and state_dict[k].shape != state_dict_3d[k].shape:
|
548 |
+
if len(state_dict_3d[k].shape) <= 2:
|
549 |
+
print(f'Ignore: {k}')
|
550 |
+
continue
|
551 |
+
print(f'Inflate: {k}, {state_dict[k].shape} => {state_dict_3d[k].shape}')
|
552 |
+
time_dim = state_dict_3d[k].shape[2]
|
553 |
+
state_dict[k] = inflate_weight(state_dict[k], time_dim)
|
554 |
+
msg = model.load_state_dict(state_dict, strict=strict)
|
555 |
+
return msg
|
556 |
+
|
557 |
+
|
558 |
+
def create_eva_vit_g(
|
559 |
+
img_size=224, drop_path_rate=0.4, use_checkpoint=False,
|
560 |
+
precision="fp16", vit_model_path=None,
|
561 |
+
# UniFormerV2
|
562 |
+
temporal_downsample=True,
|
563 |
+
no_lmhra=False,
|
564 |
+
double_lmhra=False,
|
565 |
+
lmhra_reduction=2.0,
|
566 |
+
gmhra_layers=8,
|
567 |
+
gmhra_drop_path_rate=0.,
|
568 |
+
gmhra_dropout=0.5,
|
569 |
+
):
|
570 |
+
model = VisionTransformer(
|
571 |
+
img_size=img_size,
|
572 |
+
patch_size=14,
|
573 |
+
use_mean_pooling=False,
|
574 |
+
embed_dim=1408,
|
575 |
+
depth=39,
|
576 |
+
num_heads=1408//88,
|
577 |
+
mlp_ratio=4.3637,
|
578 |
+
qkv_bias=True,
|
579 |
+
drop_path_rate=drop_path_rate,
|
580 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
581 |
+
use_checkpoint=use_checkpoint,
|
582 |
+
temporal_downsample=temporal_downsample,
|
583 |
+
no_lmhra=no_lmhra,
|
584 |
+
double_lmhra=double_lmhra,
|
585 |
+
lmhra_reduction=lmhra_reduction,
|
586 |
+
gmhra_layers=gmhra_layers,
|
587 |
+
gmhra_drop_path_rate=gmhra_drop_path_rate,
|
588 |
+
gmhra_dropout=gmhra_dropout,
|
589 |
+
)
|
590 |
+
if vit_model_path is not None and os.path.isfile(vit_model_path):
|
591 |
+
state_dict = torch.load(vit_model_path, map_location="cpu")
|
592 |
+
print(f"Load ViT model from: {vit_model_path}")
|
593 |
+
interpolate_pos_embed(model, state_dict)
|
594 |
+
msg = load_state_dict(model, state_dict, strict=False)
|
595 |
+
print(msg)
|
596 |
+
|
597 |
+
if precision == "fp16":
|
598 |
+
# model.to("cuda")
|
599 |
+
convert_weights_to_fp16(model)
|
600 |
+
return model
|
601 |
+
|
602 |
+
|
603 |
+
if __name__ == '__main__':
|
604 |
+
import time
|
605 |
+
from fvcore.nn import FlopCountAnalysis
|
606 |
+
from fvcore.nn import flop_count_table
|
607 |
+
import numpy as np
|
608 |
+
|
609 |
+
seed = 4217
|
610 |
+
np.random.seed(seed)
|
611 |
+
torch.manual_seed(seed)
|
612 |
+
torch.cuda.manual_seed(seed)
|
613 |
+
torch.cuda.manual_seed_all(seed)
|
614 |
+
num_frames = 8
|
615 |
+
|
616 |
+
model = create_eva_vit_g(
|
617 |
+
img_size=224, drop_path_rate=0.4, use_checkpoint=False,
|
618 |
+
precision="fp16", vit_model_path=None,
|
619 |
+
temporal_downsample=True,
|
620 |
+
no_lmhra=False,
|
621 |
+
double_lmhra=False,
|
622 |
+
lmhra_reduction=2.0,
|
623 |
+
gmhra_layers=12,
|
624 |
+
gmhra_drop_path_rate=0.,
|
625 |
+
gmhra_dropout=0.5,
|
626 |
+
)
|
627 |
+
video = torch.rand(1, 3, num_frames, 224, 224)
|
628 |
+
flops = FlopCountAnalysis(model, video)
|
629 |
+
s = time.time()
|
630 |
+
print(flop_count_table(flops, max_depth=1))
|
631 |
+
print(time.time()-s)
|
models/modeling_llama.py
ADDED
@@ -0,0 +1,755 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This script is based on https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
|
2 |
+
|
3 |
+
""" PyTorch LLaMA model."""
|
4 |
+
import math
|
5 |
+
from typing import List, Optional, Tuple, Union
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.utils.checkpoint
|
9 |
+
from torch import nn
|
10 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
11 |
+
|
12 |
+
from transformers.activations import ACT2FN
|
13 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
14 |
+
from transformers.modeling_utils import PreTrainedModel
|
15 |
+
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
16 |
+
from transformers.models.llama.configuration_llama import LlamaConfig
|
17 |
+
|
18 |
+
|
19 |
+
logger = logging.get_logger(__name__)
|
20 |
+
|
21 |
+
_CONFIG_FOR_DOC = "LlamaConfig"
|
22 |
+
|
23 |
+
|
24 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
25 |
+
def _make_causal_mask(
|
26 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
27 |
+
):
|
28 |
+
"""
|
29 |
+
Make causal mask used for bi-directional self-attention.
|
30 |
+
"""
|
31 |
+
bsz, tgt_len = input_ids_shape
|
32 |
+
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
|
33 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
34 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
35 |
+
mask = mask.to(dtype)
|
36 |
+
|
37 |
+
if past_key_values_length > 0:
|
38 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
39 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
40 |
+
|
41 |
+
|
42 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
43 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
44 |
+
"""
|
45 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
46 |
+
"""
|
47 |
+
bsz, src_len = mask.size()
|
48 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
49 |
+
|
50 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
51 |
+
|
52 |
+
inverted_mask = 1.0 - expanded_mask
|
53 |
+
|
54 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
55 |
+
|
56 |
+
|
57 |
+
class LlamaRMSNorm(nn.Module):
|
58 |
+
def __init__(self, hidden_size, eps=1e-6):
|
59 |
+
"""
|
60 |
+
LlamaRMSNorm is equivalent to T5LayerNorm
|
61 |
+
"""
|
62 |
+
super().__init__()
|
63 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
64 |
+
self.variance_epsilon = eps
|
65 |
+
|
66 |
+
def forward(self, hidden_states):
|
67 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
68 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
69 |
+
|
70 |
+
# convert into half-precision if necessary
|
71 |
+
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
72 |
+
hidden_states = hidden_states.to(self.weight.dtype)
|
73 |
+
|
74 |
+
return self.weight * hidden_states
|
75 |
+
|
76 |
+
|
77 |
+
class LlamaRotaryEmbedding(torch.nn.Module):
|
78 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
79 |
+
super().__init__()
|
80 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
81 |
+
self.register_buffer("inv_freq", inv_freq)
|
82 |
+
|
83 |
+
# Build here to make `torch.jit.trace` work.
|
84 |
+
self.max_seq_len_cached = max_position_embeddings
|
85 |
+
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
86 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
87 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
88 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
89 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
|
90 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
|
91 |
+
|
92 |
+
def forward(self, x, seq_len=None):
|
93 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
94 |
+
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
|
95 |
+
if seq_len > self.max_seq_len_cached:
|
96 |
+
self.max_seq_len_cached = seq_len
|
97 |
+
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
|
98 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
99 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
100 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
101 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
|
102 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
|
103 |
+
return (
|
104 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
105 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
106 |
+
)
|
107 |
+
|
108 |
+
|
109 |
+
def rotate_half(x):
|
110 |
+
"""Rotates half the hidden dims of the input."""
|
111 |
+
x1 = x[..., : x.shape[-1] // 2]
|
112 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
113 |
+
return torch.cat((-x2, x1), dim=-1)
|
114 |
+
|
115 |
+
|
116 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
117 |
+
gather_indices = position_ids[:, None, :, None] # [bs, 1, seq_len, 1]
|
118 |
+
gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3])
|
119 |
+
cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
|
120 |
+
sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
|
121 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
122 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
123 |
+
return q_embed, k_embed
|
124 |
+
|
125 |
+
|
126 |
+
class LlamaMLP(nn.Module):
|
127 |
+
def __init__(
|
128 |
+
self,
|
129 |
+
hidden_size: int,
|
130 |
+
intermediate_size: int,
|
131 |
+
hidden_act: str,
|
132 |
+
):
|
133 |
+
super().__init__()
|
134 |
+
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
135 |
+
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
|
136 |
+
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
137 |
+
self.act_fn = ACT2FN[hidden_act]
|
138 |
+
|
139 |
+
def forward(self, x):
|
140 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
141 |
+
|
142 |
+
|
143 |
+
class LlamaAttention(nn.Module):
|
144 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
145 |
+
|
146 |
+
def __init__(self, config: LlamaConfig):
|
147 |
+
super().__init__()
|
148 |
+
self.config = config
|
149 |
+
self.hidden_size = config.hidden_size
|
150 |
+
self.num_heads = config.num_attention_heads
|
151 |
+
self.head_dim = self.hidden_size // self.num_heads
|
152 |
+
self.max_position_embeddings = config.max_position_embeddings
|
153 |
+
|
154 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
155 |
+
raise ValueError(
|
156 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
157 |
+
f" and `num_heads`: {self.num_heads})."
|
158 |
+
)
|
159 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
160 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
161 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
162 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
163 |
+
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
|
164 |
+
|
165 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
166 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
167 |
+
|
168 |
+
def forward(
|
169 |
+
self,
|
170 |
+
hidden_states: torch.Tensor,
|
171 |
+
attention_mask: Optional[torch.Tensor] = None,
|
172 |
+
position_ids: Optional[torch.LongTensor] = None,
|
173 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
174 |
+
output_attentions: bool = False,
|
175 |
+
use_cache: bool = False,
|
176 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
177 |
+
bsz, q_len, _ = hidden_states.size()
|
178 |
+
|
179 |
+
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
180 |
+
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
181 |
+
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
182 |
+
|
183 |
+
kv_seq_len = key_states.shape[-2]
|
184 |
+
if past_key_value is not None:
|
185 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
186 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
187 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
188 |
+
# [bsz, nh, t, hd]
|
189 |
+
|
190 |
+
if past_key_value is not None:
|
191 |
+
# reuse k, v, self_attention
|
192 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
193 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
194 |
+
|
195 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
196 |
+
|
197 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
198 |
+
|
199 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
200 |
+
raise ValueError(
|
201 |
+
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
|
202 |
+
f" {attn_weights.size()}"
|
203 |
+
)
|
204 |
+
|
205 |
+
if attention_mask is not None:
|
206 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
207 |
+
raise ValueError(
|
208 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
209 |
+
)
|
210 |
+
attn_weights = attn_weights + attention_mask
|
211 |
+
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
|
212 |
+
|
213 |
+
# upcast attention to fp32
|
214 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
215 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
216 |
+
|
217 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
218 |
+
raise ValueError(
|
219 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
220 |
+
f" {attn_output.size()}"
|
221 |
+
)
|
222 |
+
|
223 |
+
attn_output = attn_output.transpose(1, 2)
|
224 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
225 |
+
|
226 |
+
attn_output = self.o_proj(attn_output)
|
227 |
+
|
228 |
+
if not output_attentions:
|
229 |
+
attn_weights = None
|
230 |
+
|
231 |
+
return attn_output, attn_weights, past_key_value
|
232 |
+
|
233 |
+
|
234 |
+
class LlamaDecoderLayer(nn.Module):
|
235 |
+
def __init__(self, config: LlamaConfig):
|
236 |
+
super().__init__()
|
237 |
+
self.hidden_size = config.hidden_size
|
238 |
+
self.self_attn = LlamaAttention(config=config)
|
239 |
+
self.mlp = LlamaMLP(
|
240 |
+
hidden_size=self.hidden_size,
|
241 |
+
intermediate_size=config.intermediate_size,
|
242 |
+
hidden_act=config.hidden_act,
|
243 |
+
)
|
244 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
245 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
246 |
+
|
247 |
+
def forward(
|
248 |
+
self,
|
249 |
+
hidden_states: torch.Tensor,
|
250 |
+
attention_mask: Optional[torch.Tensor] = None,
|
251 |
+
position_ids: Optional[torch.LongTensor] = None,
|
252 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
253 |
+
output_attentions: Optional[bool] = False,
|
254 |
+
use_cache: Optional[bool] = False,
|
255 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
256 |
+
"""
|
257 |
+
Args:
|
258 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
259 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
260 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
261 |
+
output_attentions (`bool`, *optional*):
|
262 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
263 |
+
returned tensors for more detail.
|
264 |
+
use_cache (`bool`, *optional*):
|
265 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
266 |
+
(see `past_key_values`).
|
267 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
268 |
+
"""
|
269 |
+
|
270 |
+
residual = hidden_states
|
271 |
+
|
272 |
+
hidden_states = self.input_layernorm(hidden_states)
|
273 |
+
|
274 |
+
# Self Attention
|
275 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
276 |
+
hidden_states=hidden_states,
|
277 |
+
attention_mask=attention_mask,
|
278 |
+
position_ids=position_ids,
|
279 |
+
past_key_value=past_key_value,
|
280 |
+
output_attentions=output_attentions,
|
281 |
+
use_cache=use_cache,
|
282 |
+
)
|
283 |
+
hidden_states = residual + hidden_states
|
284 |
+
|
285 |
+
# Fully Connected
|
286 |
+
residual = hidden_states
|
287 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
288 |
+
hidden_states = self.mlp(hidden_states)
|
289 |
+
hidden_states = residual + hidden_states
|
290 |
+
|
291 |
+
outputs = (hidden_states,)
|
292 |
+
|
293 |
+
if output_attentions:
|
294 |
+
outputs += (self_attn_weights,)
|
295 |
+
|
296 |
+
if use_cache:
|
297 |
+
outputs += (present_key_value,)
|
298 |
+
|
299 |
+
return outputs
|
300 |
+
|
301 |
+
|
302 |
+
LLAMA_START_DOCSTRING = r"""
|
303 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
304 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
305 |
+
etc.)
|
306 |
+
|
307 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
308 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
309 |
+
and behavior.
|
310 |
+
|
311 |
+
Parameters:
|
312 |
+
config ([`LlamaConfig`]):
|
313 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
314 |
+
load the weights associated with the model, only the configuration. Check out the
|
315 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
316 |
+
"""
|
317 |
+
|
318 |
+
|
319 |
+
@add_start_docstrings(
|
320 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
321 |
+
LLAMA_START_DOCSTRING,
|
322 |
+
)
|
323 |
+
class LlamaPreTrainedModel(PreTrainedModel):
|
324 |
+
config_class = LlamaConfig
|
325 |
+
base_model_prefix = "model"
|
326 |
+
supports_gradient_checkpointing = True
|
327 |
+
_no_split_modules = ["LlamaDecoderLayer"]
|
328 |
+
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
329 |
+
|
330 |
+
def _init_weights(self, module):
|
331 |
+
std = self.config.initializer_range
|
332 |
+
if isinstance(module, nn.Linear):
|
333 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
334 |
+
if module.bias is not None:
|
335 |
+
module.bias.data.zero_()
|
336 |
+
elif isinstance(module, nn.Embedding):
|
337 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
338 |
+
if module.padding_idx is not None:
|
339 |
+
module.weight.data[module.padding_idx].zero_()
|
340 |
+
|
341 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
342 |
+
if isinstance(module, LlamaModel):
|
343 |
+
module.gradient_checkpointing = value
|
344 |
+
|
345 |
+
|
346 |
+
LLAMA_INPUTS_DOCSTRING = r"""
|
347 |
+
Args:
|
348 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
349 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
350 |
+
it.
|
351 |
+
|
352 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
353 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
354 |
+
|
355 |
+
[What are input IDs?](../glossary#input-ids)
|
356 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
357 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
358 |
+
|
359 |
+
- 1 for tokens that are **not masked**,
|
360 |
+
- 0 for tokens that are **masked**.
|
361 |
+
|
362 |
+
[What are attention masks?](../glossary#attention-mask)
|
363 |
+
|
364 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
365 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
366 |
+
|
367 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
368 |
+
`past_key_values`).
|
369 |
+
|
370 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
371 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
372 |
+
information on the default strategy.
|
373 |
+
|
374 |
+
- 1 indicates the head is **not masked**,
|
375 |
+
- 0 indicates the head is **masked**.
|
376 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
377 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
378 |
+
config.n_positions - 1]`.
|
379 |
+
|
380 |
+
[What are position IDs?](../glossary#position-ids)
|
381 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
382 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
383 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
384 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
385 |
+
|
386 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
387 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
388 |
+
|
389 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
390 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
391 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
392 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
393 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
394 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
395 |
+
model's internal embedding lookup matrix.
|
396 |
+
use_cache (`bool`, *optional*):
|
397 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
398 |
+
`past_key_values`).
|
399 |
+
output_attentions (`bool`, *optional*):
|
400 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
401 |
+
tensors for more detail.
|
402 |
+
output_hidden_states (`bool`, *optional*):
|
403 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
404 |
+
more detail.
|
405 |
+
return_dict (`bool`, *optional*):
|
406 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
407 |
+
"""
|
408 |
+
|
409 |
+
|
410 |
+
@add_start_docstrings(
|
411 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
412 |
+
LLAMA_START_DOCSTRING,
|
413 |
+
)
|
414 |
+
class LlamaModel(LlamaPreTrainedModel):
|
415 |
+
"""
|
416 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
417 |
+
|
418 |
+
Args:
|
419 |
+
config: LlamaConfig
|
420 |
+
"""
|
421 |
+
|
422 |
+
def __init__(self, config: LlamaConfig):
|
423 |
+
super().__init__(config)
|
424 |
+
self.padding_idx = config.pad_token_id
|
425 |
+
self.vocab_size = config.vocab_size
|
426 |
+
|
427 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
428 |
+
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
429 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
430 |
+
|
431 |
+
self.gradient_checkpointing = False
|
432 |
+
# Initialize weights and apply final processing
|
433 |
+
self.post_init()
|
434 |
+
|
435 |
+
def get_input_embeddings(self):
|
436 |
+
return self.embed_tokens
|
437 |
+
|
438 |
+
def set_input_embeddings(self, value):
|
439 |
+
self.embed_tokens = value
|
440 |
+
|
441 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
442 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
443 |
+
# create causal mask
|
444 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
445 |
+
combined_attention_mask = None
|
446 |
+
if input_shape[-1] > 1:
|
447 |
+
combined_attention_mask = _make_causal_mask(
|
448 |
+
input_shape,
|
449 |
+
inputs_embeds.dtype,
|
450 |
+
device=inputs_embeds.device,
|
451 |
+
past_key_values_length=past_key_values_length,
|
452 |
+
)
|
453 |
+
|
454 |
+
if attention_mask is not None:
|
455 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
456 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
457 |
+
inputs_embeds.device
|
458 |
+
)
|
459 |
+
combined_attention_mask = (
|
460 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
461 |
+
)
|
462 |
+
|
463 |
+
return combined_attention_mask
|
464 |
+
|
465 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
466 |
+
def forward(
|
467 |
+
self,
|
468 |
+
input_ids: torch.LongTensor = None,
|
469 |
+
attention_mask: Optional[torch.Tensor] = None,
|
470 |
+
position_ids: Optional[torch.LongTensor] = None,
|
471 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
472 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
473 |
+
query_embeds: Optional[torch.FloatTensor] = None,
|
474 |
+
use_cache: Optional[bool] = None,
|
475 |
+
output_attentions: Optional[bool] = None,
|
476 |
+
output_hidden_states: Optional[bool] = None,
|
477 |
+
return_dict: Optional[bool] = None,
|
478 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
479 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
480 |
+
output_hidden_states = (
|
481 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
482 |
+
)
|
483 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
484 |
+
|
485 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
486 |
+
|
487 |
+
# retrieve input_ids and inputs_embeds
|
488 |
+
if input_ids is not None and inputs_embeds is not None:
|
489 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
490 |
+
elif input_ids is not None:
|
491 |
+
batch_size, seq_length = input_ids.shape
|
492 |
+
elif inputs_embeds is not None:
|
493 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
494 |
+
else:
|
495 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
496 |
+
|
497 |
+
if inputs_embeds is None:
|
498 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
499 |
+
if query_embeds is not None:
|
500 |
+
inputs_embeds = torch.cat([query_embeds, inputs_embeds], dim=1)
|
501 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
502 |
+
|
503 |
+
seq_length_with_past = seq_length
|
504 |
+
past_key_values_length = 0
|
505 |
+
|
506 |
+
if past_key_values is not None:
|
507 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
508 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
509 |
+
|
510 |
+
if position_ids is None:
|
511 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
512 |
+
position_ids = torch.arange(
|
513 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
514 |
+
)
|
515 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
516 |
+
else:
|
517 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
518 |
+
|
519 |
+
# embed positions
|
520 |
+
if attention_mask is None:
|
521 |
+
attention_mask = torch.ones(
|
522 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
523 |
+
)
|
524 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
525 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
526 |
+
)
|
527 |
+
|
528 |
+
hidden_states = inputs_embeds
|
529 |
+
|
530 |
+
if self.gradient_checkpointing and self.training:
|
531 |
+
if use_cache:
|
532 |
+
logger.warning_once(
|
533 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
534 |
+
)
|
535 |
+
use_cache = False
|
536 |
+
|
537 |
+
# decoder layers
|
538 |
+
all_hidden_states = () if output_hidden_states else None
|
539 |
+
all_self_attns = () if output_attentions else None
|
540 |
+
next_decoder_cache = () if use_cache else None
|
541 |
+
|
542 |
+
for idx, decoder_layer in enumerate(self.layers):
|
543 |
+
if output_hidden_states:
|
544 |
+
all_hidden_states += (hidden_states,)
|
545 |
+
|
546 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
547 |
+
|
548 |
+
if self.gradient_checkpointing and self.training:
|
549 |
+
|
550 |
+
def create_custom_forward(module):
|
551 |
+
def custom_forward(*inputs):
|
552 |
+
# None for past_key_value
|
553 |
+
return module(*inputs, output_attentions, None)
|
554 |
+
|
555 |
+
return custom_forward
|
556 |
+
|
557 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
558 |
+
create_custom_forward(decoder_layer),
|
559 |
+
hidden_states,
|
560 |
+
attention_mask,
|
561 |
+
position_ids,
|
562 |
+
None,
|
563 |
+
)
|
564 |
+
else:
|
565 |
+
layer_outputs = decoder_layer(
|
566 |
+
hidden_states,
|
567 |
+
attention_mask=attention_mask,
|
568 |
+
position_ids=position_ids,
|
569 |
+
past_key_value=past_key_value,
|
570 |
+
output_attentions=output_attentions,
|
571 |
+
use_cache=use_cache,
|
572 |
+
)
|
573 |
+
|
574 |
+
hidden_states = layer_outputs[0]
|
575 |
+
|
576 |
+
if use_cache:
|
577 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
578 |
+
|
579 |
+
if output_attentions:
|
580 |
+
all_self_attns += (layer_outputs[1],)
|
581 |
+
|
582 |
+
hidden_states = self.norm(hidden_states)
|
583 |
+
|
584 |
+
# add hidden states from the last decoder layer
|
585 |
+
if output_hidden_states:
|
586 |
+
all_hidden_states += (hidden_states,)
|
587 |
+
|
588 |
+
next_cache = next_decoder_cache if use_cache else None
|
589 |
+
if not return_dict:
|
590 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
591 |
+
return BaseModelOutputWithPast(
|
592 |
+
last_hidden_state=hidden_states,
|
593 |
+
past_key_values=next_cache,
|
594 |
+
hidden_states=all_hidden_states,
|
595 |
+
attentions=all_self_attns,
|
596 |
+
)
|
597 |
+
|
598 |
+
|
599 |
+
class LlamaForCausalLM(LlamaPreTrainedModel):
|
600 |
+
def __init__(self, config):
|
601 |
+
super().__init__(config)
|
602 |
+
self.model = LlamaModel(config)
|
603 |
+
|
604 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
605 |
+
|
606 |
+
# Initialize weights and apply final processing
|
607 |
+
self.post_init()
|
608 |
+
|
609 |
+
def get_input_embeddings(self):
|
610 |
+
return self.model.embed_tokens
|
611 |
+
|
612 |
+
def set_input_embeddings(self, value):
|
613 |
+
self.model.embed_tokens = value
|
614 |
+
|
615 |
+
def get_output_embeddings(self):
|
616 |
+
return self.lm_head
|
617 |
+
|
618 |
+
def set_output_embeddings(self, new_embeddings):
|
619 |
+
self.lm_head = new_embeddings
|
620 |
+
|
621 |
+
def set_decoder(self, decoder):
|
622 |
+
self.model = decoder
|
623 |
+
|
624 |
+
def get_decoder(self):
|
625 |
+
return self.model
|
626 |
+
|
627 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
628 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
629 |
+
def forward(
|
630 |
+
self,
|
631 |
+
input_ids: torch.LongTensor = None,
|
632 |
+
attention_mask: Optional[torch.Tensor] = None,
|
633 |
+
position_ids: Optional[torch.LongTensor] = None,
|
634 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
635 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
636 |
+
query_embeds: Optional[torch.FloatTensor] = None,
|
637 |
+
labels: Optional[torch.LongTensor] = None,
|
638 |
+
use_cache: Optional[bool] = None,
|
639 |
+
output_attentions: Optional[bool] = None,
|
640 |
+
output_hidden_states: Optional[bool] = None,
|
641 |
+
return_dict: Optional[bool] = None,
|
642 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
643 |
+
r"""
|
644 |
+
Args:
|
645 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
646 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
647 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
648 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
649 |
+
|
650 |
+
Returns:
|
651 |
+
|
652 |
+
Example:
|
653 |
+
|
654 |
+
```python
|
655 |
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
656 |
+
|
657 |
+
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
658 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
659 |
+
|
660 |
+
>>> prompt = "Hey, are you consciours? Can you talk to me?"
|
661 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
662 |
+
|
663 |
+
>>> # Generate
|
664 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
665 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
666 |
+
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
|
667 |
+
```"""
|
668 |
+
|
669 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
670 |
+
output_hidden_states = (
|
671 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
672 |
+
)
|
673 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
674 |
+
|
675 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
676 |
+
outputs = self.model(
|
677 |
+
input_ids=input_ids,
|
678 |
+
attention_mask=attention_mask,
|
679 |
+
position_ids=position_ids,
|
680 |
+
past_key_values=past_key_values,
|
681 |
+
inputs_embeds=inputs_embeds,
|
682 |
+
query_embeds=query_embeds,
|
683 |
+
use_cache=use_cache,
|
684 |
+
output_attentions=output_attentions,
|
685 |
+
output_hidden_states=output_hidden_states,
|
686 |
+
return_dict=return_dict,
|
687 |
+
)
|
688 |
+
|
689 |
+
hidden_states = outputs[0]
|
690 |
+
logits = self.lm_head(hidden_states)
|
691 |
+
|
692 |
+
loss = None
|
693 |
+
if labels is not None:
|
694 |
+
# Shift so that tokens < n predict n
|
695 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
696 |
+
shift_labels = labels[..., 1:].contiguous()
|
697 |
+
# Flatten the tokens
|
698 |
+
loss_fct = CrossEntropyLoss()
|
699 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
700 |
+
shift_labels = shift_labels.view(-1)
|
701 |
+
# Enable model parallelism
|
702 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
703 |
+
loss = loss_fct(shift_logits, shift_labels)
|
704 |
+
|
705 |
+
if not return_dict:
|
706 |
+
output = (logits,) + outputs[1:]
|
707 |
+
return (loss,) + output if loss is not None else output
|
708 |
+
|
709 |
+
return CausalLMOutputWithPast(
|
710 |
+
loss=loss,
|
711 |
+
logits=logits,
|
712 |
+
past_key_values=outputs.past_key_values,
|
713 |
+
hidden_states=outputs.hidden_states,
|
714 |
+
attentions=outputs.attentions,
|
715 |
+
)
|
716 |
+
|
717 |
+
def prepare_inputs_for_generation(
|
718 |
+
self, input_ids, query_embeds=None, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
719 |
+
):
|
720 |
+
if past_key_values:
|
721 |
+
input_ids = input_ids[:, -1:]
|
722 |
+
|
723 |
+
position_ids = kwargs.get("position_ids", None)
|
724 |
+
if attention_mask is not None and position_ids is None:
|
725 |
+
# create position_ids on the fly for batch generation
|
726 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
727 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
728 |
+
if past_key_values:
|
729 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
730 |
+
query_embeds = None
|
731 |
+
|
732 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
733 |
+
if inputs_embeds is not None and past_key_values is None:
|
734 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
735 |
+
else:
|
736 |
+
model_inputs = {"input_ids": input_ids}
|
737 |
+
|
738 |
+
model_inputs.update(
|
739 |
+
{
|
740 |
+
"position_ids": position_ids,
|
741 |
+
"query_embeds": query_embeds,
|
742 |
+
"past_key_values": past_key_values,
|
743 |
+
"use_cache": kwargs.get("use_cache"),
|
744 |
+
"attention_mask": attention_mask,
|
745 |
+
}
|
746 |
+
)
|
747 |
+
return model_inputs
|
748 |
+
|
749 |
+
@staticmethod
|
750 |
+
def _reorder_cache(past_key_values, beam_idx):
|
751 |
+
reordered_past = ()
|
752 |
+
for layer_past in past_key_values:
|
753 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
754 |
+
return reordered_past
|
755 |
+
|
models/video_transformers.py
ADDED
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torchvision
|
2 |
+
import random
|
3 |
+
from PIL import Image, ImageOps
|
4 |
+
import numpy as np
|
5 |
+
import numbers
|
6 |
+
import math
|
7 |
+
import torch
|
8 |
+
|
9 |
+
|
10 |
+
class GroupRandomCrop(object):
|
11 |
+
def __init__(self, size):
|
12 |
+
if isinstance(size, numbers.Number):
|
13 |
+
self.size = (int(size), int(size))
|
14 |
+
else:
|
15 |
+
self.size = size
|
16 |
+
|
17 |
+
def __call__(self, img_group):
|
18 |
+
|
19 |
+
w, h = img_group[0].size
|
20 |
+
th, tw = self.size
|
21 |
+
|
22 |
+
out_images = list()
|
23 |
+
|
24 |
+
x1 = random.randint(0, w - tw)
|
25 |
+
y1 = random.randint(0, h - th)
|
26 |
+
|
27 |
+
for img in img_group:
|
28 |
+
assert(img.size[0] == w and img.size[1] == h)
|
29 |
+
if w == tw and h == th:
|
30 |
+
out_images.append(img)
|
31 |
+
else:
|
32 |
+
out_images.append(img.crop((x1, y1, x1 + tw, y1 + th)))
|
33 |
+
|
34 |
+
return out_images
|
35 |
+
|
36 |
+
|
37 |
+
class MultiGroupRandomCrop(object):
|
38 |
+
def __init__(self, size, groups=1):
|
39 |
+
if isinstance(size, numbers.Number):
|
40 |
+
self.size = (int(size), int(size))
|
41 |
+
else:
|
42 |
+
self.size = size
|
43 |
+
self.groups = groups
|
44 |
+
|
45 |
+
def __call__(self, img_group):
|
46 |
+
|
47 |
+
w, h = img_group[0].size
|
48 |
+
th, tw = self.size
|
49 |
+
|
50 |
+
out_images = list()
|
51 |
+
|
52 |
+
for i in range(self.groups):
|
53 |
+
x1 = random.randint(0, w - tw)
|
54 |
+
y1 = random.randint(0, h - th)
|
55 |
+
|
56 |
+
for img in img_group:
|
57 |
+
assert(img.size[0] == w and img.size[1] == h)
|
58 |
+
if w == tw and h == th:
|
59 |
+
out_images.append(img)
|
60 |
+
else:
|
61 |
+
out_images.append(img.crop((x1, y1, x1 + tw, y1 + th)))
|
62 |
+
|
63 |
+
return out_images
|
64 |
+
|
65 |
+
|
66 |
+
class GroupCenterCrop(object):
|
67 |
+
def __init__(self, size):
|
68 |
+
self.worker = torchvision.transforms.CenterCrop(size)
|
69 |
+
|
70 |
+
def __call__(self, img_group):
|
71 |
+
return [self.worker(img) for img in img_group]
|
72 |
+
|
73 |
+
|
74 |
+
class GroupRandomHorizontalFlip(object):
|
75 |
+
"""Randomly horizontally flips the given PIL.Image with a probability of 0.5
|
76 |
+
"""
|
77 |
+
|
78 |
+
def __init__(self, is_flow=False):
|
79 |
+
self.is_flow = is_flow
|
80 |
+
|
81 |
+
def __call__(self, img_group, is_flow=False):
|
82 |
+
v = random.random()
|
83 |
+
if v < 0.5:
|
84 |
+
ret = [img.transpose(Image.FLIP_LEFT_RIGHT) for img in img_group]
|
85 |
+
if self.is_flow:
|
86 |
+
for i in range(0, len(ret), 2):
|
87 |
+
# invert flow pixel values when flipping
|
88 |
+
ret[i] = ImageOps.invert(ret[i])
|
89 |
+
return ret
|
90 |
+
else:
|
91 |
+
return img_group
|
92 |
+
|
93 |
+
|
94 |
+
class GroupNormalize(object):
|
95 |
+
def __init__(self, mean, std):
|
96 |
+
self.mean = mean
|
97 |
+
self.std = std
|
98 |
+
|
99 |
+
def __call__(self, tensor):
|
100 |
+
rep_mean = self.mean * (tensor.size()[0] // len(self.mean))
|
101 |
+
rep_std = self.std * (tensor.size()[0] // len(self.std))
|
102 |
+
|
103 |
+
# TODO: make efficient
|
104 |
+
for t, m, s in zip(tensor, rep_mean, rep_std):
|
105 |
+
t.sub_(m).div_(s)
|
106 |
+
|
107 |
+
return tensor
|
108 |
+
|
109 |
+
|
110 |
+
class GroupScale(object):
|
111 |
+
""" Rescales the input PIL.Image to the given 'size'.
|
112 |
+
'size' will be the size of the smaller edge.
|
113 |
+
For example, if height > width, then image will be
|
114 |
+
rescaled to (size * height / width, size)
|
115 |
+
size: size of the smaller edge
|
116 |
+
interpolation: Default: PIL.Image.BILINEAR
|
117 |
+
"""
|
118 |
+
|
119 |
+
def __init__(self, size, interpolation=Image.BILINEAR):
|
120 |
+
self.worker = torchvision.transforms.Resize(size, interpolation)
|
121 |
+
|
122 |
+
def __call__(self, img_group):
|
123 |
+
return [self.worker(img) for img in img_group]
|
124 |
+
|
125 |
+
|
126 |
+
class GroupOverSample(object):
|
127 |
+
def __init__(self, crop_size, scale_size=None, flip=True):
|
128 |
+
self.crop_size = crop_size if not isinstance(
|
129 |
+
crop_size, int) else (crop_size, crop_size)
|
130 |
+
|
131 |
+
if scale_size is not None:
|
132 |
+
self.scale_worker = GroupScale(scale_size)
|
133 |
+
else:
|
134 |
+
self.scale_worker = None
|
135 |
+
self.flip = flip
|
136 |
+
|
137 |
+
def __call__(self, img_group):
|
138 |
+
|
139 |
+
if self.scale_worker is not None:
|
140 |
+
img_group = self.scale_worker(img_group)
|
141 |
+
|
142 |
+
image_w, image_h = img_group[0].size
|
143 |
+
crop_w, crop_h = self.crop_size
|
144 |
+
|
145 |
+
offsets = GroupMultiScaleCrop.fill_fix_offset(
|
146 |
+
False, image_w, image_h, crop_w, crop_h)
|
147 |
+
oversample_group = list()
|
148 |
+
for o_w, o_h in offsets:
|
149 |
+
normal_group = list()
|
150 |
+
flip_group = list()
|
151 |
+
for i, img in enumerate(img_group):
|
152 |
+
crop = img.crop((o_w, o_h, o_w + crop_w, o_h + crop_h))
|
153 |
+
normal_group.append(crop)
|
154 |
+
flip_crop = crop.copy().transpose(Image.FLIP_LEFT_RIGHT)
|
155 |
+
|
156 |
+
if img.mode == 'L' and i % 2 == 0:
|
157 |
+
flip_group.append(ImageOps.invert(flip_crop))
|
158 |
+
else:
|
159 |
+
flip_group.append(flip_crop)
|
160 |
+
|
161 |
+
oversample_group.extend(normal_group)
|
162 |
+
if self.flip:
|
163 |
+
oversample_group.extend(flip_group)
|
164 |
+
return oversample_group
|
165 |
+
|
166 |
+
|
167 |
+
class GroupFullResSample(object):
|
168 |
+
def __init__(self, crop_size, scale_size=None, flip=True):
|
169 |
+
self.crop_size = crop_size if not isinstance(
|
170 |
+
crop_size, int) else (crop_size, crop_size)
|
171 |
+
|
172 |
+
if scale_size is not None:
|
173 |
+
self.scale_worker = GroupScale(scale_size)
|
174 |
+
else:
|
175 |
+
self.scale_worker = None
|
176 |
+
self.flip = flip
|
177 |
+
|
178 |
+
def __call__(self, img_group):
|
179 |
+
|
180 |
+
if self.scale_worker is not None:
|
181 |
+
img_group = self.scale_worker(img_group)
|
182 |
+
|
183 |
+
image_w, image_h = img_group[0].size
|
184 |
+
crop_w, crop_h = self.crop_size
|
185 |
+
|
186 |
+
w_step = (image_w - crop_w) // 4
|
187 |
+
h_step = (image_h - crop_h) // 4
|
188 |
+
|
189 |
+
offsets = list()
|
190 |
+
offsets.append((0 * w_step, 2 * h_step)) # left
|
191 |
+
offsets.append((4 * w_step, 2 * h_step)) # right
|
192 |
+
offsets.append((2 * w_step, 2 * h_step)) # center
|
193 |
+
|
194 |
+
oversample_group = list()
|
195 |
+
for o_w, o_h in offsets:
|
196 |
+
normal_group = list()
|
197 |
+
flip_group = list()
|
198 |
+
for i, img in enumerate(img_group):
|
199 |
+
crop = img.crop((o_w, o_h, o_w + crop_w, o_h + crop_h))
|
200 |
+
normal_group.append(crop)
|
201 |
+
if self.flip:
|
202 |
+
flip_crop = crop.copy().transpose(Image.FLIP_LEFT_RIGHT)
|
203 |
+
|
204 |
+
if img.mode == 'L' and i % 2 == 0:
|
205 |
+
flip_group.append(ImageOps.invert(flip_crop))
|
206 |
+
else:
|
207 |
+
flip_group.append(flip_crop)
|
208 |
+
|
209 |
+
oversample_group.extend(normal_group)
|
210 |
+
oversample_group.extend(flip_group)
|
211 |
+
return oversample_group
|
212 |
+
|
213 |
+
|
214 |
+
class GroupMultiScaleCrop(object):
|
215 |
+
|
216 |
+
def __init__(self, input_size, scales=None, max_distort=1,
|
217 |
+
fix_crop=True, more_fix_crop=True):
|
218 |
+
self.scales = scales if scales is not None else [1, .875, .75, .66]
|
219 |
+
self.max_distort = max_distort
|
220 |
+
self.fix_crop = fix_crop
|
221 |
+
self.more_fix_crop = more_fix_crop
|
222 |
+
self.input_size = input_size if not isinstance(input_size, int) else [
|
223 |
+
input_size, input_size]
|
224 |
+
self.interpolation = Image.BILINEAR
|
225 |
+
|
226 |
+
def __call__(self, img_group):
|
227 |
+
|
228 |
+
im_size = img_group[0].size
|
229 |
+
|
230 |
+
crop_w, crop_h, offset_w, offset_h = self._sample_crop_size(im_size)
|
231 |
+
crop_img_group = [
|
232 |
+
img.crop(
|
233 |
+
(offset_w,
|
234 |
+
offset_h,
|
235 |
+
offset_w +
|
236 |
+
crop_w,
|
237 |
+
offset_h +
|
238 |
+
crop_h)) for img in img_group]
|
239 |
+
ret_img_group = [img.resize((self.input_size[0], self.input_size[1]), self.interpolation)
|
240 |
+
for img in crop_img_group]
|
241 |
+
return ret_img_group
|
242 |
+
|
243 |
+
def _sample_crop_size(self, im_size):
|
244 |
+
image_w, image_h = im_size[0], im_size[1]
|
245 |
+
|
246 |
+
# find a crop size
|
247 |
+
base_size = min(image_w, image_h)
|
248 |
+
crop_sizes = [int(base_size * x) for x in self.scales]
|
249 |
+
crop_h = [
|
250 |
+
self.input_size[1] if abs(
|
251 |
+
x - self.input_size[1]) < 3 else x for x in crop_sizes]
|
252 |
+
crop_w = [
|
253 |
+
self.input_size[0] if abs(
|
254 |
+
x - self.input_size[0]) < 3 else x for x in crop_sizes]
|
255 |
+
|
256 |
+
pairs = []
|
257 |
+
for i, h in enumerate(crop_h):
|
258 |
+
for j, w in enumerate(crop_w):
|
259 |
+
if abs(i - j) <= self.max_distort:
|
260 |
+
pairs.append((w, h))
|
261 |
+
|
262 |
+
crop_pair = random.choice(pairs)
|
263 |
+
if not self.fix_crop:
|
264 |
+
w_offset = random.randint(0, image_w - crop_pair[0])
|
265 |
+
h_offset = random.randint(0, image_h - crop_pair[1])
|
266 |
+
else:
|
267 |
+
w_offset, h_offset = self._sample_fix_offset(
|
268 |
+
image_w, image_h, crop_pair[0], crop_pair[1])
|
269 |
+
|
270 |
+
return crop_pair[0], crop_pair[1], w_offset, h_offset
|
271 |
+
|
272 |
+
def _sample_fix_offset(self, image_w, image_h, crop_w, crop_h):
|
273 |
+
offsets = self.fill_fix_offset(
|
274 |
+
self.more_fix_crop, image_w, image_h, crop_w, crop_h)
|
275 |
+
return random.choice(offsets)
|
276 |
+
|
277 |
+
@staticmethod
|
278 |
+
def fill_fix_offset(more_fix_crop, image_w, image_h, crop_w, crop_h):
|
279 |
+
w_step = (image_w - crop_w) // 4
|
280 |
+
h_step = (image_h - crop_h) // 4
|
281 |
+
|
282 |
+
ret = list()
|
283 |
+
ret.append((0, 0)) # upper left
|
284 |
+
ret.append((4 * w_step, 0)) # upper right
|
285 |
+
ret.append((0, 4 * h_step)) # lower left
|
286 |
+
ret.append((4 * w_step, 4 * h_step)) # lower right
|
287 |
+
ret.append((2 * w_step, 2 * h_step)) # center
|
288 |
+
|
289 |
+
if more_fix_crop:
|
290 |
+
ret.append((0, 2 * h_step)) # center left
|
291 |
+
ret.append((4 * w_step, 2 * h_step)) # center right
|
292 |
+
ret.append((2 * w_step, 4 * h_step)) # lower center
|
293 |
+
ret.append((2 * w_step, 0 * h_step)) # upper center
|
294 |
+
|
295 |
+
ret.append((1 * w_step, 1 * h_step)) # upper left quarter
|
296 |
+
ret.append((3 * w_step, 1 * h_step)) # upper right quarter
|
297 |
+
ret.append((1 * w_step, 3 * h_step)) # lower left quarter
|
298 |
+
ret.append((3 * w_step, 3 * h_step)) # lower righ quarter
|
299 |
+
|
300 |
+
return ret
|
301 |
+
|
302 |
+
|
303 |
+
class GroupRandomSizedCrop(object):
|
304 |
+
"""Random crop the given PIL.Image to a random size of (0.08 to 1.0) of the original size
|
305 |
+
and and a random aspect ratio of 3/4 to 4/3 of the original aspect ratio
|
306 |
+
This is popularly used to train the Inception networks
|
307 |
+
size: size of the smaller edge
|
308 |
+
interpolation: Default: PIL.Image.BILINEAR
|
309 |
+
"""
|
310 |
+
|
311 |
+
def __init__(self, size, interpolation=Image.BILINEAR):
|
312 |
+
self.size = size
|
313 |
+
self.interpolation = interpolation
|
314 |
+
|
315 |
+
def __call__(self, img_group):
|
316 |
+
for attempt in range(10):
|
317 |
+
area = img_group[0].size[0] * img_group[0].size[1]
|
318 |
+
target_area = random.uniform(0.08, 1.0) * area
|
319 |
+
aspect_ratio = random.uniform(3. / 4, 4. / 3)
|
320 |
+
|
321 |
+
w = int(round(math.sqrt(target_area * aspect_ratio)))
|
322 |
+
h = int(round(math.sqrt(target_area / aspect_ratio)))
|
323 |
+
|
324 |
+
if random.random() < 0.5:
|
325 |
+
w, h = h, w
|
326 |
+
|
327 |
+
if w <= img_group[0].size[0] and h <= img_group[0].size[1]:
|
328 |
+
x1 = random.randint(0, img_group[0].size[0] - w)
|
329 |
+
y1 = random.randint(0, img_group[0].size[1] - h)
|
330 |
+
found = True
|
331 |
+
break
|
332 |
+
else:
|
333 |
+
found = False
|
334 |
+
x1 = 0
|
335 |
+
y1 = 0
|
336 |
+
|
337 |
+
if found:
|
338 |
+
out_group = list()
|
339 |
+
for img in img_group:
|
340 |
+
img = img.crop((x1, y1, x1 + w, y1 + h))
|
341 |
+
assert(img.size == (w, h))
|
342 |
+
out_group.append(
|
343 |
+
img.resize(
|
344 |
+
(self.size, self.size), self.interpolation))
|
345 |
+
return out_group
|
346 |
+
else:
|
347 |
+
# Fallback
|
348 |
+
scale = GroupScale(self.size, interpolation=self.interpolation)
|
349 |
+
crop = GroupRandomCrop(self.size)
|
350 |
+
return crop(scale(img_group))
|
351 |
+
|
352 |
+
|
353 |
+
class ConvertDataFormat(object):
|
354 |
+
def __init__(self, model_type):
|
355 |
+
self.model_type = model_type
|
356 |
+
|
357 |
+
def __call__(self, images):
|
358 |
+
if self.model_type == '2D':
|
359 |
+
return images
|
360 |
+
tc, h, w = images.size()
|
361 |
+
t = tc // 3
|
362 |
+
images = images.view(t, 3, h, w)
|
363 |
+
images = images.permute(1, 0, 2, 3)
|
364 |
+
return images
|
365 |
+
|
366 |
+
|
367 |
+
class Stack(object):
|
368 |
+
|
369 |
+
def __init__(self, roll=False):
|
370 |
+
self.roll = roll
|
371 |
+
|
372 |
+
def __call__(self, img_group):
|
373 |
+
if img_group[0].mode == 'L':
|
374 |
+
return np.concatenate([np.expand_dims(x, 2)
|
375 |
+
for x in img_group], axis=2)
|
376 |
+
elif img_group[0].mode == 'RGB':
|
377 |
+
if self.roll:
|
378 |
+
return np.concatenate([np.array(x)[:, :, ::-1]
|
379 |
+
for x in img_group], axis=2)
|
380 |
+
else:
|
381 |
+
#print(np.concatenate(img_group, axis=2).shape)
|
382 |
+
# print(img_group[0].shape)
|
383 |
+
return np.concatenate(img_group, axis=2)
|
384 |
+
|
385 |
+
|
386 |
+
class ToTorchFormatTensor(object):
|
387 |
+
""" Converts a PIL.Image (RGB) or numpy.ndarray (H x W x C) in the range [0, 255]
|
388 |
+
to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] """
|
389 |
+
|
390 |
+
def __init__(self, div=True):
|
391 |
+
self.div = div
|
392 |
+
|
393 |
+
def __call__(self, pic):
|
394 |
+
if isinstance(pic, np.ndarray):
|
395 |
+
# handle numpy array
|
396 |
+
img = torch.from_numpy(pic).permute(2, 0, 1).contiguous()
|
397 |
+
else:
|
398 |
+
# handle PIL Image
|
399 |
+
img = torch.ByteTensor(
|
400 |
+
torch.ByteStorage.from_buffer(
|
401 |
+
pic.tobytes()))
|
402 |
+
img = img.view(pic.size[1], pic.size[0], len(pic.mode))
|
403 |
+
# put it from HWC to CHW format
|
404 |
+
# yikes, this transpose takes 80% of the loading time/CPU
|
405 |
+
img = img.transpose(0, 1).transpose(0, 2).contiguous()
|
406 |
+
return img.float().div(255) if self.div else img.float()
|
407 |
+
|
408 |
+
|
409 |
+
class IdentityTransform(object):
|
410 |
+
|
411 |
+
def __call__(self, data):
|
412 |
+
return data
|
413 |
+
|
414 |
+
|
415 |
+
if __name__ == "__main__":
|
416 |
+
trans = torchvision.transforms.Compose([
|
417 |
+
GroupScale(256),
|
418 |
+
GroupRandomCrop(224),
|
419 |
+
Stack(),
|
420 |
+
ToTorchFormatTensor(),
|
421 |
+
GroupNormalize(
|
422 |
+
mean=[.485, .456, .406],
|
423 |
+
std=[.229, .224, .225]
|
424 |
+
)]
|
425 |
+
)
|
426 |
+
|
427 |
+
im = Image.open('../tensorflow-model-zoo.torch/lena_299.png')
|
428 |
+
|
429 |
+
color_group = [im] * 3
|
430 |
+
rst = trans(color_group)
|
431 |
+
|
432 |
+
gray_group = [im.convert('L')] * 9
|
433 |
+
gray_rst = trans(gray_group)
|
434 |
+
|
435 |
+
trans2 = torchvision.transforms.Compose([
|
436 |
+
GroupRandomSizedCrop(256),
|
437 |
+
Stack(),
|
438 |
+
ToTorchFormatTensor(),
|
439 |
+
GroupNormalize(
|
440 |
+
mean=[.485, .456, .406],
|
441 |
+
std=[.229, .224, .225])
|
442 |
+
])
|
443 |
+
print(trans2(color_group))
|
models/videochat.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import logging
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch.cuda.amp import autocast as autocast
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from .blip2 import Blip2Base, disabled_train
|
9 |
+
from .modeling_llama import LlamaForCausalLM
|
10 |
+
from transformers import LlamaTokenizer, LlamaConfig
|
11 |
+
|
12 |
+
|
13 |
+
class VideoChat(Blip2Base):
|
14 |
+
"""
|
15 |
+
VideoChat model.
|
16 |
+
"""
|
17 |
+
def __init__(self, config):
|
18 |
+
super().__init__()
|
19 |
+
|
20 |
+
vit_model = config.get("vit_model", "eva_clip_g")
|
21 |
+
vit_model_path = config.get("vit_model_path", None)
|
22 |
+
q_former_model_path = config.get("q_former_model_path", None)
|
23 |
+
llama_model_path = config.get("llama_model_path")
|
24 |
+
videochat_model_path = config.get("videochat_model_path", "")
|
25 |
+
img_size = config.get("img_size")
|
26 |
+
|
27 |
+
drop_path_rate = config.get("drop_path_rate", 0)
|
28 |
+
use_grad_checkpoint = config.get("use_grad_checkpoint", False)
|
29 |
+
vit_precision = config.get("vit_precision", "fp16")
|
30 |
+
freeze_vit = config.get("freeze_vit", True)
|
31 |
+
freeze_qformer = config.get("freeze_qformer", True)
|
32 |
+
low_resource = config.get("low_resource", False) # use 8 bit and put vit in cpu
|
33 |
+
max_txt_len = config.get("max_txt_len", 32)
|
34 |
+
|
35 |
+
# uniformerv2
|
36 |
+
freeze_mhra = config.get("freeze_mhra", False)
|
37 |
+
temporal_downsample = config.get("temporal_downsample", True)
|
38 |
+
no_lmhra = config.get("no_lmhra", False)
|
39 |
+
double_lmhra = config.get("double_lmhra", False)
|
40 |
+
lmhra_reduction = config.get("lmhra_reduction", 2.0)
|
41 |
+
gmhra_layers = config.get("gmhra_layers", 8)
|
42 |
+
gmhra_drop_path_rate = config.get("gmhra_drop_path_rate", 0.)
|
43 |
+
gmhra_dropout = config.get("gmhra_dropout", 0.5)
|
44 |
+
# qformer
|
45 |
+
num_query_token = config.get("num_query_token")
|
46 |
+
extra_num_query_token = config.get("extra_num_query_token", 64)
|
47 |
+
|
48 |
+
self.tokenizer = self.init_tokenizer()
|
49 |
+
self.low_resource = low_resource
|
50 |
+
|
51 |
+
self.vit_precision = vit_precision
|
52 |
+
print(f'Loading VIT. Use fp16: {vit_precision}')
|
53 |
+
self.visual_encoder, self.ln_vision = self.init_vision_encoder(
|
54 |
+
vit_model, img_size, drop_path_rate,
|
55 |
+
use_grad_checkpoint, vit_precision, vit_model_path,
|
56 |
+
temporal_downsample=temporal_downsample,
|
57 |
+
no_lmhra=no_lmhra,
|
58 |
+
double_lmhra=double_lmhra,
|
59 |
+
lmhra_reduction=lmhra_reduction,
|
60 |
+
gmhra_layers=gmhra_layers,
|
61 |
+
gmhra_drop_path_rate=gmhra_drop_path_rate,
|
62 |
+
gmhra_dropout=gmhra_dropout,
|
63 |
+
)
|
64 |
+
if freeze_vit:
|
65 |
+
print("freeze vision encoder")
|
66 |
+
if not freeze_mhra:
|
67 |
+
open_list = []
|
68 |
+
for name, param in self.visual_encoder.named_parameters():
|
69 |
+
if 'mhra' not in name:
|
70 |
+
param.requires_grad = False
|
71 |
+
else:
|
72 |
+
open_list.append(name)
|
73 |
+
print(f"open module: {open_list}")
|
74 |
+
print("open ln_vision")
|
75 |
+
else:
|
76 |
+
for name, param in self.visual_encoder.named_parameters():
|
77 |
+
param.requires_grad = False
|
78 |
+
self.visual_encoder = self.visual_encoder.eval()
|
79 |
+
self.visual_encoder.train = disabled_train
|
80 |
+
for name, param in self.ln_vision.named_parameters():
|
81 |
+
param.requires_grad = False
|
82 |
+
self.ln_vision = self.ln_vision.eval()
|
83 |
+
self.ln_vision.train = disabled_train
|
84 |
+
print('Loading VIT Done')
|
85 |
+
|
86 |
+
print('Loading Q-Former')
|
87 |
+
self.Qformer, self.query_tokens = self.init_Qformer(
|
88 |
+
num_query_token, self.visual_encoder.num_features,
|
89 |
+
)
|
90 |
+
self.Qformer.cls = None
|
91 |
+
self.Qformer.bert.embeddings.word_embeddings = None
|
92 |
+
self.Qformer.bert.embeddings.position_embeddings = None
|
93 |
+
for layer in self.Qformer.bert.encoder.layer:
|
94 |
+
layer.output = None
|
95 |
+
layer.intermediate = None
|
96 |
+
self.load_from_pretrained(model_path=q_former_model_path)
|
97 |
+
print(f"Add extra {extra_num_query_token} tokens in QFormer")
|
98 |
+
self.extra_query_tokens = nn.Parameter(
|
99 |
+
torch.zeros(1, extra_num_query_token, self.query_tokens.shape[-1])
|
100 |
+
)
|
101 |
+
|
102 |
+
if freeze_qformer:
|
103 |
+
print("freeze Qformer")
|
104 |
+
for name, param in self.Qformer.named_parameters():
|
105 |
+
param.requires_grad = False
|
106 |
+
self.Qformer = self.Qformer.eval()
|
107 |
+
self.Qformer.train = disabled_train
|
108 |
+
self.query_tokens.requires_grad = False
|
109 |
+
print('Loading Q-Former Done')
|
110 |
+
|
111 |
+
print('Loading LLAMA')
|
112 |
+
self.llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model_path, use_fast=False)
|
113 |
+
self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token
|
114 |
+
|
115 |
+
if self.low_resource:
|
116 |
+
self.llama_model = LlamaForCausalLM.from_pretrained(
|
117 |
+
llama_model_path,
|
118 |
+
torch_dtype=torch.float16,
|
119 |
+
load_in_8bit=True,
|
120 |
+
device_map="auto"
|
121 |
+
)
|
122 |
+
else:
|
123 |
+
self.llama_model = LlamaForCausalLM.from_pretrained(
|
124 |
+
llama_model_path,
|
125 |
+
torch_dtype=torch.float16,
|
126 |
+
)
|
127 |
+
|
128 |
+
print("freeze LLAMA")
|
129 |
+
for name, param in self.llama_model.named_parameters():
|
130 |
+
param.requires_grad = False
|
131 |
+
print('Loading LLAMA Done')
|
132 |
+
|
133 |
+
self.llama_proj = nn.Linear(
|
134 |
+
self.Qformer.config.hidden_size, self.llama_model.config.hidden_size
|
135 |
+
)
|
136 |
+
self.max_txt_len = max_txt_len
|
137 |
+
|
138 |
+
# load weights of VideoChat
|
139 |
+
if videochat_model_path:
|
140 |
+
print(f"Load VideoChat from: {videochat_model_path}")
|
141 |
+
ckpt = torch.load(videochat_model_path, map_location="cpu")
|
142 |
+
msg = self.load_state_dict(ckpt['model'], strict=False)
|
143 |
+
print(msg)
|
144 |
+
|
145 |
+
def vit_to_cpu(self):
|
146 |
+
self.ln_vision.to("cpu")
|
147 |
+
self.ln_vision.float()
|
148 |
+
self.visual_encoder.to("cpu")
|
149 |
+
self.visual_encoder.float()
|
150 |
+
|
151 |
+
def encode_img(self, image):
|
152 |
+
device = image.device
|
153 |
+
if self.low_resource:
|
154 |
+
self.vit_to_cpu()
|
155 |
+
image = image.to("cpu")
|
156 |
+
|
157 |
+
with self.maybe_autocast():
|
158 |
+
T = image.shape[1]
|
159 |
+
# use_image = True if T == 1 else False
|
160 |
+
image = image.permute(0, 2, 1, 3, 4) # [B,T,C,H,W] -> [B,C,T,H,W]
|
161 |
+
|
162 |
+
image_embeds = self.ln_vision(self.visual_encoder(image)).to(device)
|
163 |
+
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device)
|
164 |
+
|
165 |
+
query_tokens = torch.cat([self.query_tokens, self.extra_query_tokens], dim=1)
|
166 |
+
query_tokens = query_tokens.expand(image_embeds.shape[0], -1, -1)
|
167 |
+
query_output = self.Qformer.bert(
|
168 |
+
query_embeds=query_tokens,
|
169 |
+
encoder_hidden_states=image_embeds,
|
170 |
+
encoder_attention_mask=image_atts,
|
171 |
+
return_dict=True,
|
172 |
+
)
|
173 |
+
|
174 |
+
inputs_llama = self.llama_proj(query_output.last_hidden_state)
|
175 |
+
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device)
|
176 |
+
return inputs_llama, atts_llama
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
decord==0.6.0
|
2 |
+
fvcore==0.1.5.post20221221
|
3 |
+
gradio==3.29.0
|
4 |
+
numpy==1.24.3
|
5 |
+
Pillow==9.5.0
|
6 |
+
PyYAML==6.0
|
7 |
+
timm==0.6.13
|
8 |
+
torch==1.12.1
|
9 |
+
torchvision==0.13.1
|
10 |
+
transformers==4.28.1
|
11 |
+
sentencepiece==0.1.99
|
utils/__pycache__/config.cpython-38.pyc
ADDED
Binary file (6.82 kB). View file
|
|
utils/__pycache__/easydict.cpython-38.pyc
ADDED
Binary file (3.61 kB). View file
|
|
utils/config.py
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import argparse
|
4 |
+
import ast
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
import os.path as osp
|
8 |
+
import re
|
9 |
+
import shutil
|
10 |
+
import sys
|
11 |
+
import tempfile
|
12 |
+
from copy import deepcopy
|
13 |
+
from importlib import import_module
|
14 |
+
|
15 |
+
import yaml
|
16 |
+
|
17 |
+
from .easydict import EasyDict
|
18 |
+
|
19 |
+
__all__ = ["Config", "pretty_text"]
|
20 |
+
|
21 |
+
|
22 |
+
BASE_KEY = "_base_"
|
23 |
+
# BASE_CONFIG = {"OUTPUT_DIR": "./workspace", "SESSION": "base", "LOG_FILE": "log.txt"}
|
24 |
+
BASE_CONFIG = {}
|
25 |
+
|
26 |
+
cfg = None
|
27 |
+
|
28 |
+
|
29 |
+
class Config(object):
|
30 |
+
"""config"""
|
31 |
+
|
32 |
+
@classmethod
|
33 |
+
def pretty_text(cls, cfg: dict, indent=2) -> str:
|
34 |
+
"""format dict to a string
|
35 |
+
|
36 |
+
Args:
|
37 |
+
cfg (EasyDict): the params.
|
38 |
+
|
39 |
+
Returns: The string to display.
|
40 |
+
|
41 |
+
"""
|
42 |
+
msg = "{\n"
|
43 |
+
for i, (k, v) in enumerate(cfg.items()):
|
44 |
+
if isinstance(v, dict):
|
45 |
+
v = cls.pretty_text(v, indent + 4)
|
46 |
+
spaces = " " * indent
|
47 |
+
msg += spaces + "{}: {}".format(k, v)
|
48 |
+
if i == len(cfg) - 1:
|
49 |
+
msg += " }"
|
50 |
+
else:
|
51 |
+
msg += "\n"
|
52 |
+
return msg
|
53 |
+
|
54 |
+
@classmethod
|
55 |
+
def dump(cls, cfg, savepath=None):
|
56 |
+
"""dump cfg to `json` file.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
cfg (dict): The dict to dump.
|
60 |
+
savepath (str): The filepath to save the dumped dict.
|
61 |
+
|
62 |
+
Returns: TODO
|
63 |
+
|
64 |
+
"""
|
65 |
+
if savepath is None:
|
66 |
+
savepath = osp.join(cfg.WORKSPACE, "config.json")
|
67 |
+
json.dump(cfg, open(savepath, "w"), indent=2)
|
68 |
+
|
69 |
+
@classmethod
|
70 |
+
def get_config(cls, default_config: dict = None):
|
71 |
+
"""get a `Config` instance.
|
72 |
+
|
73 |
+
Args:
|
74 |
+
default_config (dict): The default config. `default_config` will be overrided
|
75 |
+
by config file `--cfg`, `--cfg` will be overrided by commandline args.
|
76 |
+
|
77 |
+
Returns: an EasyDict.
|
78 |
+
"""
|
79 |
+
global cfg
|
80 |
+
if cfg is not None:
|
81 |
+
return cfg
|
82 |
+
|
83 |
+
# define arg parser.
|
84 |
+
parser = argparse.ArgumentParser()
|
85 |
+
# parser.add_argument("--cfg", help="load configs from yaml file", default="", type=str)
|
86 |
+
parser.add_argument(
|
87 |
+
"config_file", help="the configuration file to load. support: .yaml, .json, .py"
|
88 |
+
)
|
89 |
+
parser.add_argument(
|
90 |
+
"opts",
|
91 |
+
default=None,
|
92 |
+
nargs="*",
|
93 |
+
help="overrided configs. List. Format: 'key1 name1 key2 name2'",
|
94 |
+
)
|
95 |
+
args = parser.parse_args()
|
96 |
+
|
97 |
+
cfg = EasyDict(BASE_CONFIG)
|
98 |
+
if osp.isfile(args.config_file):
|
99 |
+
cfg_from_file = cls.from_file(args.config_file)
|
100 |
+
cfg = merge_a_into_b(cfg_from_file, cfg)
|
101 |
+
cfg = cls.merge_list(cfg, args.opts)
|
102 |
+
cfg = eval_dict_leaf(cfg)
|
103 |
+
|
104 |
+
# update some keys to make them show at the last
|
105 |
+
for k in BASE_CONFIG:
|
106 |
+
cfg[k] = cfg.pop(k)
|
107 |
+
return cfg
|
108 |
+
|
109 |
+
@classmethod
|
110 |
+
def from_file(cls, filepath: str) -> EasyDict:
|
111 |
+
"""Build config from file. Supported filetypes: `.py`,`.yaml`,`.json`.
|
112 |
+
|
113 |
+
Args:
|
114 |
+
filepath (str): The config file path.
|
115 |
+
|
116 |
+
Returns: TODO
|
117 |
+
|
118 |
+
"""
|
119 |
+
filepath = osp.abspath(osp.expanduser(filepath))
|
120 |
+
if not osp.isfile(filepath):
|
121 |
+
raise IOError(f"File does not exist: {filepath}")
|
122 |
+
if filepath.endswith(".py"):
|
123 |
+
with tempfile.TemporaryDirectory() as temp_config_dir:
|
124 |
+
|
125 |
+
shutil.copytree(osp.dirname(filepath), osp.join(temp_config_dir, "tmp_config"))
|
126 |
+
sys.path.insert(0, temp_config_dir)
|
127 |
+
mod = import_module("tmp_config." + osp.splitext(osp.basename(filepath))[0])
|
128 |
+
# mod = import_module(temp_module_name)
|
129 |
+
sys.path.pop(0)
|
130 |
+
cfg_dict = {
|
131 |
+
name: value
|
132 |
+
for name, value in mod.__dict__.items()
|
133 |
+
if not name.startswith("__")
|
134 |
+
}
|
135 |
+
for k in list(sys.modules.keys()):
|
136 |
+
if "tmp_config" in k:
|
137 |
+
del sys.modules[k]
|
138 |
+
elif filepath.endswith((".yml", ".yaml")):
|
139 |
+
cfg_dict = yaml.load(open(filepath, "r"), Loader=yaml.Loader)
|
140 |
+
elif filepath.endswith(".json"):
|
141 |
+
cfg_dict = json.load(open(filepath, "r"))
|
142 |
+
else:
|
143 |
+
raise IOError("Only py/yml/yaml/json type are supported now!")
|
144 |
+
|
145 |
+
cfg_text = filepath + "\n"
|
146 |
+
with open(filepath, "r") as f:
|
147 |
+
cfg_text += f.read()
|
148 |
+
|
149 |
+
if BASE_KEY in cfg_dict: # load configs in `BASE_KEY`
|
150 |
+
cfg_dir = osp.dirname(filepath)
|
151 |
+
base_filename = cfg_dict.pop(BASE_KEY)
|
152 |
+
base_filename = (
|
153 |
+
base_filename if isinstance(base_filename, list) else [base_filename]
|
154 |
+
)
|
155 |
+
|
156 |
+
cfg_dict_list = list()
|
157 |
+
for f in base_filename:
|
158 |
+
_cfg_dict = Config.from_file(osp.join(cfg_dir, f))
|
159 |
+
cfg_dict_list.append(_cfg_dict)
|
160 |
+
|
161 |
+
base_cfg_dict = dict()
|
162 |
+
for c in cfg_dict_list:
|
163 |
+
if len(base_cfg_dict.keys() & c.keys()) > 0:
|
164 |
+
raise KeyError("Duplicate key is not allowed among bases")
|
165 |
+
base_cfg_dict.update(c)
|
166 |
+
|
167 |
+
cfg_dict = merge_a_into_b(cfg_dict, base_cfg_dict)
|
168 |
+
|
169 |
+
return EasyDict(cfg_dict)
|
170 |
+
|
171 |
+
@classmethod
|
172 |
+
def merge_list(cls, cfg, opts: list):
|
173 |
+
"""merge commandline opts.
|
174 |
+
|
175 |
+
Args:
|
176 |
+
cfg: (dict): The config to be merged.
|
177 |
+
opts (list): The list to merge. Format: [key1, name1, key2, name2,...].
|
178 |
+
The keys can be nested. For example, ["a.b", v] will be considered
|
179 |
+
as `dict(a=dict(b=v))`.
|
180 |
+
|
181 |
+
Returns: dict.
|
182 |
+
|
183 |
+
"""
|
184 |
+
assert len(opts) % 2 == 0, f"length of opts must be even. Got: {opts}"
|
185 |
+
for i in range(0, len(opts), 2):
|
186 |
+
full_k, v = opts[i], opts[i + 1]
|
187 |
+
keys = full_k.split(".")
|
188 |
+
sub_d = cfg
|
189 |
+
for i, k in enumerate(keys):
|
190 |
+
if not hasattr(sub_d, k):
|
191 |
+
raise ValueError(f"The key {k} not exist in the config. Full key:{full_k}")
|
192 |
+
if i != len(keys) - 1:
|
193 |
+
sub_d = sub_d[k]
|
194 |
+
else:
|
195 |
+
sub_d[k] = v
|
196 |
+
return cfg
|
197 |
+
|
198 |
+
|
199 |
+
def merge_a_into_b(a, b, inplace=False):
|
200 |
+
"""The values in a will override values in b.
|
201 |
+
|
202 |
+
Args:
|
203 |
+
a (dict): source dict.
|
204 |
+
b (dict): target dict.
|
205 |
+
|
206 |
+
Returns: dict. recursively merge dict a into dict b.
|
207 |
+
|
208 |
+
"""
|
209 |
+
if not inplace:
|
210 |
+
b = deepcopy(b)
|
211 |
+
for key in a:
|
212 |
+
if key in b:
|
213 |
+
if isinstance(a[key], dict) and isinstance(b[key], dict):
|
214 |
+
b[key] = merge_a_into_b(a[key], b[key], inplace=True)
|
215 |
+
else:
|
216 |
+
b[key] = a[key]
|
217 |
+
else:
|
218 |
+
b[key] = a[key]
|
219 |
+
return b
|
220 |
+
|
221 |
+
|
222 |
+
def eval_dict_leaf(d, orig_dict=None):
|
223 |
+
"""eval values of dict leaf.
|
224 |
+
|
225 |
+
Args:
|
226 |
+
d (dict): The dict to eval.
|
227 |
+
|
228 |
+
Returns: dict.
|
229 |
+
|
230 |
+
"""
|
231 |
+
if orig_dict is None:
|
232 |
+
orig_dict = d
|
233 |
+
for k, v in d.items():
|
234 |
+
if not isinstance(v, dict):
|
235 |
+
d[k] = eval_string(v, orig_dict)
|
236 |
+
else:
|
237 |
+
eval_dict_leaf(v, orig_dict)
|
238 |
+
return d
|
239 |
+
|
240 |
+
|
241 |
+
def eval_string(string, d):
|
242 |
+
"""automatically evaluate string to corresponding types.
|
243 |
+
|
244 |
+
For example:
|
245 |
+
not a string -> return the original input
|
246 |
+
'0' -> 0
|
247 |
+
'0.2' -> 0.2
|
248 |
+
'[0, 1, 2]' -> [0,1,2]
|
249 |
+
'eval(1+2)' -> 3
|
250 |
+
'eval(range(5))' -> [0,1,2,3,4]
|
251 |
+
'${a}' -> d.a
|
252 |
+
|
253 |
+
|
254 |
+
|
255 |
+
Args:
|
256 |
+
string (str): The value to evaluate.
|
257 |
+
d (dict): The
|
258 |
+
|
259 |
+
Returns: the corresponding type
|
260 |
+
|
261 |
+
"""
|
262 |
+
if not isinstance(string, str):
|
263 |
+
return string
|
264 |
+
# if len(string) > 1 and string[0] == "[" and string[-1] == "]":
|
265 |
+
# return eval(string)
|
266 |
+
if string[0:5] == "eval(":
|
267 |
+
return eval(string[5:-1])
|
268 |
+
|
269 |
+
s0 = string
|
270 |
+
s1 = re.sub(r"\${(.*)}", r"d.\1", s0)
|
271 |
+
if s1 != s0:
|
272 |
+
while s1 != s0:
|
273 |
+
s0 = s1
|
274 |
+
s1 = re.sub(r"\${(.*)}", r"d.\1", s0)
|
275 |
+
return eval(s1)
|
276 |
+
|
277 |
+
try:
|
278 |
+
v = ast.literal_eval(string)
|
279 |
+
except:
|
280 |
+
v = string
|
281 |
+
return v
|
utils/easydict.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class EasyDict(dict):
|
2 |
+
"""
|
3 |
+
Get attributes
|
4 |
+
|
5 |
+
>>> d = EasyDict({'foo':3})
|
6 |
+
>>> d['foo']
|
7 |
+
3
|
8 |
+
>>> d.foo
|
9 |
+
3
|
10 |
+
>>> d.bar
|
11 |
+
Traceback (most recent call last):
|
12 |
+
...
|
13 |
+
AttributeError: 'EasyDict' object has no attribute 'bar'
|
14 |
+
|
15 |
+
Works recursively
|
16 |
+
|
17 |
+
>>> d = EasyDict({'foo':3, 'bar':{'x':1, 'y':2}})
|
18 |
+
>>> isinstance(d.bar, dict)
|
19 |
+
True
|
20 |
+
>>> d.bar.x
|
21 |
+
1
|
22 |
+
|
23 |
+
Bullet-proof
|
24 |
+
|
25 |
+
>>> EasyDict({})
|
26 |
+
{}
|
27 |
+
>>> EasyDict(d={})
|
28 |
+
{}
|
29 |
+
>>> EasyDict(None)
|
30 |
+
{}
|
31 |
+
>>> d = {'a': 1}
|
32 |
+
>>> EasyDict(**d)
|
33 |
+
{'a': 1}
|
34 |
+
|
35 |
+
Set attributes
|
36 |
+
|
37 |
+
>>> d = EasyDict()
|
38 |
+
>>> d.foo = 3
|
39 |
+
>>> d.foo
|
40 |
+
3
|
41 |
+
>>> d.bar = {'prop': 'value'}
|
42 |
+
>>> d.bar.prop
|
43 |
+
'value'
|
44 |
+
>>> d
|
45 |
+
{'foo': 3, 'bar': {'prop': 'value'}}
|
46 |
+
>>> d.bar.prop = 'newer'
|
47 |
+
>>> d.bar.prop
|
48 |
+
'newer'
|
49 |
+
|
50 |
+
|
51 |
+
Values extraction
|
52 |
+
|
53 |
+
>>> d = EasyDict({'foo':0, 'bar':[{'x':1, 'y':2}, {'x':3, 'y':4}]})
|
54 |
+
>>> isinstance(d.bar, list)
|
55 |
+
True
|
56 |
+
>>> from operator import attrgetter
|
57 |
+
>>> map(attrgetter('x'), d.bar)
|
58 |
+
[1, 3]
|
59 |
+
>>> map(attrgetter('y'), d.bar)
|
60 |
+
[2, 4]
|
61 |
+
>>> d = EasyDict()
|
62 |
+
>>> d.keys()
|
63 |
+
[]
|
64 |
+
>>> d = EasyDict(foo=3, bar=dict(x=1, y=2))
|
65 |
+
>>> d.foo
|
66 |
+
3
|
67 |
+
>>> d.bar.x
|
68 |
+
1
|
69 |
+
|
70 |
+
Still like a dict though
|
71 |
+
|
72 |
+
>>> o = EasyDict({'clean':True})
|
73 |
+
>>> o.items()
|
74 |
+
[('clean', True)]
|
75 |
+
|
76 |
+
And like a class
|
77 |
+
|
78 |
+
>>> class Flower(EasyDict):
|
79 |
+
... power = 1
|
80 |
+
...
|
81 |
+
>>> f = Flower()
|
82 |
+
>>> f.power
|
83 |
+
1
|
84 |
+
>>> f = Flower({'height': 12})
|
85 |
+
>>> f.height
|
86 |
+
12
|
87 |
+
>>> f['power']
|
88 |
+
1
|
89 |
+
>>> sorted(f.keys())
|
90 |
+
['height', 'power']
|
91 |
+
|
92 |
+
update and pop items
|
93 |
+
>>> d = EasyDict(a=1, b='2')
|
94 |
+
>>> e = EasyDict(c=3.0, a=9.0)
|
95 |
+
>>> d.update(e)
|
96 |
+
>>> d.c
|
97 |
+
3.0
|
98 |
+
>>> d['c']
|
99 |
+
3.0
|
100 |
+
>>> d.get('c')
|
101 |
+
3.0
|
102 |
+
>>> d.update(a=4, b=4)
|
103 |
+
>>> d.b
|
104 |
+
4
|
105 |
+
>>> d.pop('a')
|
106 |
+
4
|
107 |
+
>>> d.a
|
108 |
+
Traceback (most recent call last):
|
109 |
+
...
|
110 |
+
AttributeError: 'EasyDict' object has no attribute 'a'
|
111 |
+
"""
|
112 |
+
|
113 |
+
def __init__(self, d=None, **kwargs):
|
114 |
+
if d is None:
|
115 |
+
d = {}
|
116 |
+
if kwargs:
|
117 |
+
d.update(**kwargs)
|
118 |
+
for k, v in d.items():
|
119 |
+
setattr(self, k, v)
|
120 |
+
# Class attributes
|
121 |
+
for k in self.__class__.__dict__.keys():
|
122 |
+
if not (k.startswith("__") and k.endswith("__")) and not k in ("update", "pop"):
|
123 |
+
setattr(self, k, getattr(self, k))
|
124 |
+
|
125 |
+
def __setattr__(self, name, value):
|
126 |
+
if isinstance(value, (list, tuple)):
|
127 |
+
value = [self.__class__(x) if isinstance(x, dict) else x for x in value]
|
128 |
+
elif isinstance(value, dict) and not isinstance(value, self.__class__):
|
129 |
+
value = self.__class__(value)
|
130 |
+
super(EasyDict, self).__setattr__(name, value)
|
131 |
+
super(EasyDict, self).__setitem__(name, value)
|
132 |
+
|
133 |
+
__setitem__ = __setattr__
|
134 |
+
|
135 |
+
def update(self, e=None, **f):
|
136 |
+
d = e or dict()
|
137 |
+
d.update(f)
|
138 |
+
for k in d:
|
139 |
+
setattr(self, k, d[k])
|
140 |
+
|
141 |
+
def pop(self, k, d=None):
|
142 |
+
if hasattr(self, k):
|
143 |
+
delattr(self, k)
|
144 |
+
return super(EasyDict, self).pop(k, d)
|
145 |
+
|
146 |
+
|
147 |
+
if __name__ == "__main__":
|
148 |
+
import doctest
|
149 |
+
|