File size: 9,946 Bytes
6cc79fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f14294
 
6cc79fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268fcce
6cc79fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268fcce
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import torch
import gradio as gr
from gradio.themes.utils import colors, fonts, sizes

from conversation import Chat

# videochat
from utils.config import Config
from utils.easydict import EasyDict
from models.videochat import VideoChat


# ========================================
#             Model Initialization
# ========================================
def init_model():
    print('Initializing VideoChat')
    config_file = "configs/config.json"
    cfg = Config.from_file(config_file)
    model = VideoChat(config=cfg.model)
    model = model.to(torch.device(cfg.device))
    model = model.eval()
    chat = Chat(model)
    print('Initialization Finished')
    return chat


# ========================================
#             Gradio Setting
# ========================================
def gradio_reset(chat_state, img_list):
    if chat_state is not None:
        chat_state.messages = []
    if img_list is not None:
        img_list = []
    return None, gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your video first', interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list


def upload_img(gr_img, gr_video, chat_state, num_segments):
    # print(gr_img, gr_video)
    chat_state = EasyDict({
        "system": "",
        "roles": ("Human", "Assistant"),
        "messages": [],
        "sep": "###"
    })
    img_list = []
    if gr_img is None and gr_video is None:
        return None, None, gr.update(interactive=True), chat_state, None
    if gr_video: 
        llm_message, img_list, chat_state = chat.upload_video(gr_video, chat_state, img_list, num_segments)
        return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list
    if gr_img:
        llm_message, img_list,chat_state = chat.upload_img(gr_img, chat_state, img_list)
        return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list


def gradio_ask(user_message, chatbot, chat_state):
    if len(user_message) == 0:
        return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
    #print(chat_state)
    chat_state =  chat.ask(user_message, chat_state)
    chatbot = chatbot + [[user_message, None]]
    return '', chatbot, chat_state


def gradio_answer(gr_img, gr_video,chatbot, chat_state, img_list, num_beams, temperature):
    llm_message,llm_message_token, chat_state = chat.answer(conv=chat_state, img_list=img_list, max_new_tokens=1000, num_beams=num_beams, temperature=temperature)
    llm_message = llm_message.replace("<s>", "") # handle <s>
    chatbot[-1][1] = llm_message
    print(f"========{gr_img}##<BOS>##{gr_video}========")
    print(chat_state,flush=True)
    print(f"========{gr_img}##<END>##{gr_video}========")
    # print(f"Answer: {llm_message}")
    return chatbot, chat_state, img_list


class OpenGVLab(gr.themes.base.Base):
    def __init__(
        self,
        *,
        primary_hue=colors.blue,
        secondary_hue=colors.sky,
        neutral_hue=colors.gray,
        spacing_size=sizes.spacing_md,
        radius_size=sizes.radius_sm,
        text_size=sizes.text_md,
        font=(
            fonts.GoogleFont("Noto Sans"),
            "ui-sans-serif",
            "sans-serif",
        ),
        font_mono=(
            fonts.GoogleFont("IBM Plex Mono"),
            "ui-monospace",
            "monospace",
        ),
    ):
        super().__init__(
            primary_hue=primary_hue,
            secondary_hue=secondary_hue,
            neutral_hue=neutral_hue,
            spacing_size=spacing_size,
            radius_size=radius_size,
            text_size=text_size,
            font=font,
            font_mono=font_mono,
        )
        super().set(
            body_background_fill="*neutral_50",
        )


gvlabtheme = OpenGVLab(primary_hue=colors.blue,
        secondary_hue=colors.sky,
        neutral_hue=colors.gray,
        spacing_size=sizes.spacing_md,
        radius_size=sizes.radius_sm,
        text_size=sizes.text_md,
        )

title = """<h1 align="center"><a href="https://github.com/OpenGVLab/Ask-Anything"><img src="https://i.328888.xyz/2023/05/11/iqrAkZ.md.png" alt="Ask-Anything" border="0" style="margin: 0 auto; height: 100px;" /></a> </h1>"""
description ="""
        <a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/OpenGVLab/VideoChatGPT?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-xl-dark.svg" alt="Duplicate Space"></ a> 
        Due to the limited GPU vRAM, here is the Video Chat-7B-8BIT. You can duplicate and use it with a paid private GPU.  Alternatively, you can also use the demo on our [project page](https://vchat.opengvlab.com) with vchat-13B. 
        <p> VideoChat, an end-to-end chat-centric video understanding system powered by <a href='https://github.com/OpenGVLab/InternVideo'>InternVideo</a>. It integrates video foundation models and large language models via a learnable neural interface, excelling in spatiotemporal reasoning, event localization, and causal relationship inference.</p>
        <div style='display:flex; gap: 0.25rem; '>
        <a src="https://img.shields.io/badge/Github-Code-blue?logo=github" href="https://github.com/OpenGVLab/Ask-Anything"> <img src="https://img.shields.io/badge/Github-Code-blue?logo=github">
        <a src="https://img.shields.io/badge/cs.CV-2305.06355-b31b1b?logo=arxiv&logoColor=red" href="https://arxiv.org/abs/2305.06355"> <img src="https://img.shields.io/badge/cs.CV-2305.06355-b31b1b?logo=arxiv&logoColor=red">
        <a src="https://img.shields.io/badge/WeChat-Group-green?logo=wechat" href="https://pjlab-gvm-data.oss-cn-shanghai.aliyuncs.com/papers/media/wechat_group.jpg"> <img src="https://img.shields.io/badge/WeChat-Group-green?logo=wechat">
        <a src="https://img.shields.io/discord/1099920215724277770?label=Discord&logo=discord" href="https://discord.gg/A2Ex6Pph6A"> <img src="https://img.shields.io/discord/1099920215724277770?label=Discord&logo=discord"> </div>
        """


with gr.Blocks(title="InternVideo-VideoChat!",theme=gvlabtheme,css="#chatbot {overflow:auto; height:500px;} #InputVideo {overflow:visible; height:320px;} footer {visibility: none}") as demo:
    gr.Markdown(title)
    gr.Markdown(description)

    with gr.Row():
        with gr.Column(scale=0.5, visible=True) as video_upload:
            with gr.Column(elem_id="image") as img_part:
                with gr.Tab("Video", elem_id='video_tab'):
                    up_video = gr.Video(interactive=True, include_audio=True, elem_id="video_upload")#.style(height=320)
                with gr.Tab("Image", elem_id='image_tab'):
                    up_image = gr.Image(type="pil", interactive=True, elem_id="image_upload")#.style(height=320)
            upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
            
            num_beams = gr.Slider(
                minimum=1,
                maximum=10,
                value=1,
                step=1,
                interactive=True,
                label="beam search numbers",
            )
            
            temperature = gr.Slider(
                minimum=0.1,
                maximum=2.0,
                value=1.0,
                step=0.1,
                interactive=True,
                label="Temperature",

            )
            
            num_segments = gr.Slider(
                minimum=8,
                maximum=64,
                value=8,
                step=1,
                interactive=True,
                label="Video Segments",
            )
        
        
        with gr.Column(visible=True)  as input_raws:
            chat_state = gr.State(EasyDict({
                "system": "",
                "roles": ("Human", "Assistant"),
                "messages": [],
                "sep": "###"
            }))
            img_list = gr.State()
            chatbot = gr.Chatbot(elem_id="chatbot",label='VideoChat')
            with gr.Row():
                with gr.Column(scale=0.7):
                    text_input = gr.Textbox(show_label=False, placeholder='Please upload your video first', interactive=False).style(container=False)
                with gr.Column(scale=0.15, min_width=0):
                    run = gr.Button("πŸ’­Send")
                with gr.Column(scale=0.15, min_width=0):
                    clear = gr.Button("πŸ”„Clear️")     
    
    chat = init_model()
    upload_button.click(upload_img, [up_image, up_video, chat_state, num_segments], [up_image, up_video, text_input, upload_button, chat_state, img_list])
    
    text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
        gradio_answer, [up_image, up_video, chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
    )
    run.click(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
        gradio_answer, [up_image, up_video,chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
    )
    run.click(lambda: "", None, text_input)  
    clear.click(gradio_reset, [chat_state, img_list], [chatbot, up_image, up_video, text_input, upload_button, chat_state, img_list], queue=False)

#demo.launch(server_name="0.0.0.0", favicon_path='bot_avatar.jpg', enable_queue=True,ssl_keyfile="vchat_cert/privkey1.pem",ssl_certfile="vchat_cert/cert1.pem",ssl_verify=False)
demo.launch(server_name="0.0.0.0", enable_queue=True)