File size: 21,296 Bytes
3f1b7f0
 
 
 
 
b56725a
 
 
 
3f1b7f0
 
 
 
 
 
 
 
 
373eef5
3f1b7f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
373eef5
3f1b7f0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
# --------------------------------------------------------
# InternVL
# Copyright (c) 2024 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import os

os.system('pip install opencv-python')
os.system('pip install streamlit_image_select')

import argparse
import base64
import datetime
import hashlib
import json
import os
import random
import re
import sys
# from streamlit_js_eval import streamlit_js_eval
from functools import partial
from io import BytesIO

import cv2
import numpy as np
import requests
import streamlit as st
from constants import LOGDIR, server_error_msg
from library import Library
from PIL import Image, ImageDraw, ImageFont
from streamlit_image_select import image_select

custom_args = sys.argv[1:]
parser = argparse.ArgumentParser()
parser.add_argument('--controller_url', type=str, default='http://10.140.60.209:10075', help='url of the controller')
parser.add_argument('--sd_worker_url', type=str, default='http://0.0.0.0:40006', help='url of the stable diffusion worker')
parser.add_argument('--max_image_limit', type=int, default=4, help='maximum number of images')
args = parser.parse_args(custom_args)
controller_url = args.controller_url
sd_worker_url = args.sd_worker_url
max_image_limit = args.max_image_limit
print('args:', args)


def get_model_list():
    ret = requests.post(controller_url + '/refresh_all_workers')
    assert ret.status_code == 200
    ret = requests.post(controller_url + '/list_models')
    models = ret.json()['models']
    return models


def load_upload_file_and_show():
    if uploaded_files is not None:
        images = []
        for file in uploaded_files:
            file_bytes = np.asarray(bytearray(file.read()), dtype=np.uint8)
            img = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR)
            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
            img = Image.fromarray(img)
            images.append(img)
        with upload_image_preview.container():
            Library(images)

        image_hashes = [hashlib.md5(image.tobytes()).hexdigest() for image in images]
        for image, hash in zip(images, image_hashes):
            t = datetime.datetime.now()
            filename = os.path.join(LOGDIR, 'serve_images', f'{t.year}-{t.month:02d}-{t.day:02d}', f'{hash}.jpg')
            if not os.path.isfile(filename):
                os.makedirs(os.path.dirname(filename), exist_ok=True)
                image.save(filename)
    return images


def get_selected_worker_ip():
    ret = requests.post(controller_url + '/get_worker_address',
            json={'model': selected_model})
    worker_addr = ret.json()['address']
    return worker_addr


def generate_response(messages):
    send_messages = [{'role': 'system', 'content': persona_rec}]
    for message in messages:
        if message['role'] == 'user':
            user_message = {'role': 'user', 'content': message['content']}
            if 'image' in message and len('image') > 0:
                user_message['image'] = []
                for image in message['image']:
                    user_message['image'].append(pil_image_to_base64(image))
            send_messages.append(user_message)
        else:
            send_messages.append({'role': 'assistant', 'content': message['content']})
    pload = {
        'model': selected_model,
        'prompt': send_messages,
        'temperature': float(temperature),
        'top_p': float(top_p),
        'max_new_tokens': max_length,
        'max_input_tiles': max_input_tiles,
        'repetition_penalty': float(repetition_penalty),
    }
    worker_addr = get_selected_worker_ip()
    headers = {'User-Agent': 'InternVL-Chat Client'}
    placeholder, output = st.empty(), ''
    try:
        response = requests.post(worker_addr + '/worker_generate_stream',
                                 headers=headers, json=pload, stream=True, timeout=10)
        for chunk in response.iter_lines(decode_unicode=False, delimiter=b'\0'):
            if chunk:
                data = json.loads(chunk.decode())
                if data['error_code'] == 0:
                    output = data['text']
                    # Phi3-3.8B will produce abnormal `�` output
                    if '4B' in selected_model and '�' in output[-2:]:
                        output = output.replace('�', '')
                        break
                    placeholder.markdown(output + '▌')
                else:
                    output = data['text'] + f" (error_code: {data['error_code']})"
                    placeholder.markdown(output)
        placeholder.markdown(output)
    except requests.exceptions.RequestException as e:
        placeholder.markdown(server_error_msg)
    return output


def pil_image_to_base64(image):
    buffered = BytesIO()
    image.save(buffered, format='PNG')
    return base64.b64encode(buffered.getvalue()).decode('utf-8')


def clear_chat_history():
    st.session_state.messages = []
    st.session_state['image_select'] = -1


def clear_file_uploader():
    st.session_state.uploader_key += 1
    st.rerun()


def combined_func(func_list):
    for func in func_list:
        func()


def show_one_or_multiple_images(message, total_image_num, is_input=True):
    if 'image' in message:
        if is_input:
            total_image_num = total_image_num + len(message['image'])
            if lan == 'English':
                if len(message['image']) == 1 and total_image_num == 1:
                    label = f"(In this conversation, {len(message['image'])} image was uploaded, {total_image_num} image in total)"
                elif len(message['image']) == 1 and total_image_num > 1:
                    label = f"(In this conversation, {len(message['image'])} image was uploaded, {total_image_num} images in total)"
                else:
                    label = f"(In this conversation, {len(message['image'])} images were uploaded, {total_image_num} images in total)"
            else:
                label = f"(在本次对话中,上传了{len(message['image'])}张图片,总共上传了{total_image_num}张图片)"
        upload_image_preview = st.empty()
        with upload_image_preview.container():
            Library(message['image'])
        if is_input and len(message['image']) > 0:
            st.markdown(label)


def find_bounding_boxes(response):
    pattern = re.compile(r'<ref>\s*(.*?)\s*</ref>\s*<box>\s*(\[\[.*?\]\])\s*</box>')
    matches = pattern.findall(response)
    results = []
    for match in matches:
        results.append((match[0], eval(match[1])))
    returned_image = None
    for message in st.session_state.messages:
        if message['role'] == 'user' and 'image' in message and len(message['image']) > 0:
            last_image = message['image'][-1]
            width, height = last_image.size
            returned_image = last_image.copy()
            draw = ImageDraw.Draw(returned_image)
    for result in results:
        line_width = max(1, int(min(width, height) / 200))
        random_color = (random.randint(0, 128), random.randint(0, 128), random.randint(0, 128))
        category_name, coordinates = result
        coordinates = [(float(x[0]) / 1000, float(x[1]) / 1000, float(x[2]) / 1000, float(x[3]) / 1000) for x in coordinates]
        coordinates = [(int(x[0] * width), int(x[1] * height), int(x[2] * width), int(x[3] * height)) for x in coordinates]
        for box in coordinates:
            draw.rectangle(box, outline=random_color, width=line_width)
            font = ImageFont.truetype('static/SimHei.ttf', int(20 * line_width / 2))
            text_size = font.getbbox(category_name)
            text_width, text_height = text_size[2] - text_size[0], text_size[3] - text_size[1]
            text_position = (box[0], max(0, box[1] - text_height))
            draw.rectangle(
                [text_position, (text_position[0] + text_width, text_position[1] + text_height)],
                fill=random_color
            )
            draw.text(text_position, category_name, fill='white', font=font)
    return returned_image if len(matches) > 0 else None


def query_image_generation(response, sd_worker_url, timeout=15):
    sd_worker_url = f'{sd_worker_url}/generate_image/'
    pattern = r'```drawing-instruction\n(.*?)\n```'
    match = re.search(pattern, response, re.DOTALL)
    if match:
        payload = {'caption': match.group(1)}
        print('drawing-instruction:', payload)
        response = requests.post(sd_worker_url, json=payload, timeout=timeout)
        response.raise_for_status()  # 检查HTTP请求是否成功
        image = Image.open(BytesIO(response.content))
        return image
    else:
        return None


def regenerate():
    st.session_state.messages = st.session_state.messages[:-1]
    st.rerun()


logo_code = """
<svg width="1700" height="200" xmlns="http://www.w3.org/2000/svg">
  <defs>
    <linearGradient id="gradient1" x1="0%" y1="0%" x2="100%" y2="0%">
      <stop offset="0%" style="stop-color: red; stop-opacity: 1" />
      <stop offset="100%" style="stop-color: orange; stop-opacity: 1" />
    </linearGradient>
  </defs>
  <text x="000" y="160" font-size="180" font-weight="bold" fill="url(#gradient1)" style="font-family: Arial, sans-serif;">
    InternVL2 Demo
  </text>
</svg>
"""

# App title
st.set_page_config(page_title='InternVL2')

if 'uploader_key' not in st.session_state:
    st.session_state.uploader_key = 0

# 如果用户要求绘图,请以生成符合Stable Diffusion要求的、满足```drawing-instruction\n{instruction}\n```格式的绘图指令。
system_message = """我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。人工智能实验室致力于原始技术创新,开源开放,共享共创,推动科技进步和产业发展。

对于目标检测任务,请按照以下格式输出坐标框:<ref>某类物体</ref><box>[[x1, y1, x2, y2], ...]</box>

对于画画任务,请按照以下格式输出绘图指令,注意指令需要英文:```drawing-instruction\n{instruction}\n```

在处理输入包含多张图像的情况下,请严格按照以下规则区分和处理每一张图像,并小心区分用户的提问针对的是哪一张图片:

1. 图像编号和标记:每张图像都将使用明确的编号标记,例如 "Image-1: <img></img>","Image-2: <img></img>","Image-3: <img></img>" 等等。

2. 用户提问关联:用户的提问可能会具体指向某一张编号的图像,请仔细辨别用户问题中提到的图像编号。

请尽可能详细地回答用户的问题。"""

# Replicate Credentials
with st.sidebar:
    model_list = get_model_list()
    # "[![Open in GitHub](https://github.com/codespaces/badge.svg)](https://github.com/OpenGVLab/InternVL)"
    lan = st.selectbox('#### Language / 语言', ['English', '中文'], on_change=st.rerun)
    if lan == 'English':
        st.logo(logo_code, link='https://github.com/OpenGVLab/InternVL', icon_image=logo_code)
        st.subheader('Models and parameters')
        selected_model = st.sidebar.selectbox('Choose a InternVL2 chat model', model_list, key='selected_model', on_change=clear_chat_history)
        with st.expander('🤖 System Prompt'):
            persona_rec = st.text_area('System Prompt', value=system_message,
                                       help='System prompt is a pre-defined message used to instruct the assistant at the beginning of a conversation.',
                                       height=200)
        with st.expander('🔥 Advanced Options'):
            temperature = st.slider('temperature', min_value=0.0, max_value=1.0, value=0.8, step=0.1)
            top_p = st.slider('top_p', min_value=0.0, max_value=1.0, value=0.7, step=0.1)
            repetition_penalty = st.slider('repetition_penalty', min_value=1.0, max_value=1.5, value=1.1, step=0.02)
            max_length = st.slider('max_length', min_value=0, max_value=4096, value=2048, step=128)
            max_input_tiles = st.slider('max_input_tiles (control image resolution)', min_value=1, max_value=24, value=12, step=1)
        upload_image_preview = st.empty()
        uploaded_files = st.file_uploader('Upload files', accept_multiple_files=True,
                                         type=['png', 'jpg', 'jpeg', 'webp'],
                                         help='You can upload multiple images (max to 4) or a single video.',
                                         key=f'uploader_{st.session_state.uploader_key}',
                                         on_change=st.rerun)
        uploaded_pil_images = load_upload_file_and_show()
    else:
        st.subheader('模型和参数')
        selected_model = st.sidebar.selectbox('选择一个 InternVL2 对话模型', model_list, key='selected_model', on_change=clear_chat_history)
        with st.expander('🤖 系统提示'):
            persona_rec = st.text_area('系统提示', value=system_message,
                                       help='系统提示是在对话开始时用于指示助手的预定义消息。',
                                       height=200)
        with st.expander('🔥 高级选项'):
            temperature = st.slider('temperature', min_value=0.0, max_value=1.0, value=0.8, step=0.1)
            top_p = st.slider('top_p', min_value=0.0, max_value=1.0, value=0.7, step=0.1)
            repetition_penalty = st.slider('重复惩罚', min_value=1.0, max_value=1.5, value=1.1, step=0.02)
            max_length = st.slider('最大输出长度', min_value=0, max_value=4096, value=2048, step=128)
            max_input_tiles = st.slider('最大图像块数 (控制图像分辨率)', min_value=1, max_value=24, value=12, step=1)
        upload_image_preview = st.empty()
        uploaded_files = st.file_uploader('上传文件', accept_multiple_files=True,
                                         type=['png', 'jpg', 'jpeg', 'webp'],
                                         help='你可以上传多张图像(最多4张)或者一个视频。',
                                         key=f'uploader_{st.session_state.uploader_key}',
                                         on_change=st.rerun)
        uploaded_pil_images = load_upload_file_and_show()


gradient_text_html = """
<style>
.gradient-text {
    font-weight: bold;
    background: -webkit-linear-gradient(left, red, orange);
    background: linear-gradient(to right, red, orange);
    -webkit-background-clip: text;
    -webkit-text-fill-color: transparent;
    display: inline;
    font-size: 3em;
}
</style>
<div class="gradient-text">InternVL2</div>
"""
if lan == 'English':
    st.markdown(gradient_text_html, unsafe_allow_html=True)
    st.caption('Expanding Performance Boundaries of Open-Source Multimodal Large Language Models')
else:
    st.markdown(gradient_text_html.replace('InternVL2', '书生·万象'), unsafe_allow_html=True)
    st.caption('扩展开源多模态大语言模型的性能边界')

# Store LLM generated responses
if 'messages' not in st.session_state.keys():
    clear_chat_history()

gallery_placeholder = st.empty()
with gallery_placeholder.container():
    images = ['gallery/prod_en_17.png', 'gallery/astro_on_unicorn.png',
              'gallery/prod_12.png', 'gallery/prod_9.jpg',
              'gallery/prod_4.png', 'gallery/cheetah.png', 'gallery/prod_1.jpeg']
    images = [Image.open(image) for image in images]
    if lan == 'English':
        captions = ["I'm on a diet, but I really want to eat them.",
                    'Could you help me draw a picture like this one?',
                    'What are the consequences of the easy decisions shown in this image?',
                    "What's at the far end of the image?",
                    'Is this a real plant? Analyze the reasons.',
                    'Detect the <ref>the middle leopard</ref> in the image with its bounding box.',
                    'What is the atmosphere of this image?']
    else:
        captions = ['我在减肥,但我真的很想吃这个。',
                    '请画一张类似这样的画',
                    '这张图上 easy decisions 导致了什么后果?',
                    '画面最远处是什么?',
                    '这是真的植物吗?分析原因',
                    '在以下图像中进行目标检测,并标出所有物体。',
                    '这幅图的氛围如何?']
    img_idx = image_select(
        label='',
        images=images,
        captions=captions,
        use_container_width=True,
        index=-1,
        return_value='index',
        key='image_select'
    )
    if lan == 'English':
        st.caption('Note: For non-commercial research use only. AI responses may contain errors. Users should not spread or allow others to spread hate speech, violence, pornography, or fraud-related harmful information.')
    else:
        st.caption('注意:仅限非商业研究使用。用户应不传播或允许他人传播仇恨言论、暴力、色情内容或与欺诈相关的有害信息。')
    if img_idx != -1 and len(st.session_state.messages) == 0 and selected_model is not None:
        gallery_placeholder.empty()
        st.session_state.messages.append({'role': 'user', 'content': captions[img_idx], 'image': [images[img_idx]]})
        st.rerun() # Fixed an issue where examples were not emptied

if len(st.session_state.messages) > 0:
    gallery_placeholder.empty()

# Display or clear chat messages
total_image_num = 0
for message in st.session_state.messages:
    with st.chat_message(message['role']):
        st.markdown(message['content'])
        show_one_or_multiple_images(message, total_image_num, is_input=message['role'] == 'user')
        if 'image' in message and message['role'] == 'user':
            total_image_num += len(message['image'])

input_disable_flag = (len(model_list) == 0) or total_image_num + len(uploaded_files) > max_image_limit
if lan == 'English':
    st.sidebar.button('Clear Chat History', on_click=partial(combined_func, func_list=[clear_chat_history, clear_file_uploader]))
    if input_disable_flag:
        prompt = st.chat_input('Too many images have been uploaded. Please clear the history.', disabled=input_disable_flag)
    else:
        prompt = st.chat_input('Send messages to InternVL', disabled=input_disable_flag)
else:
    st.sidebar.button('清空聊天记录', on_click=partial(combined_func, func_list=[clear_chat_history, clear_file_uploader]))
    if input_disable_flag:
        prompt = st.chat_input('输入的图片太多了,请清空历史记录。', disabled=input_disable_flag)
    else:
        prompt = st.chat_input('给 “InternVL” 发送消息', disabled=input_disable_flag)

alias_instructions = {
    '目标检测': '在以下图像中进行目标检测,并标出所有物体。',
    '检测': '在以下图像中进行目标检测,并标出所有物体。',
    'object detection': 'Please identify and label all objects in the following image.',
    'detection': 'Please identify and label all objects in the following image.'
}

if prompt:
    prompt = alias_instructions[prompt] if prompt in alias_instructions else prompt
    gallery_placeholder.empty()
    image_list = uploaded_pil_images
    st.session_state.messages.append({'role': 'user', 'content': prompt, 'image': image_list})
    with st.chat_message('user'):
        st.write(prompt)
        show_one_or_multiple_images(st.session_state.messages[-1], total_image_num, is_input=True)
    if image_list:
        clear_file_uploader()

# Generate a new response if last message is not from assistant
if len(st.session_state.messages) > 0 and st.session_state.messages[-1]['role'] != 'assistant':
    with st.chat_message('assistant'):
        with st.spinner('Thinking...'):
            if not prompt:
                prompt = st.session_state.messages[-1]['content']
            response = generate_response(st.session_state.messages)
            message = {'role': 'assistant', 'content': response}
        with st.spinner('Drawing...'):
            if '<ref>' in response:
                has_returned_image = find_bounding_boxes(response)
                message['image'] = [has_returned_image] if has_returned_image else []
            if '```drawing-instruction' in response:
                has_returned_image = query_image_generation(response, sd_worker_url=sd_worker_url)
                message['image'] = [has_returned_image] if has_returned_image else []
            st.session_state.messages.append(message)
            show_one_or_multiple_images(message, total_image_num, is_input=False)

if len(st.session_state.messages) > 0:
    col1, col2, col3, col4 = st.columns([1, 1, 1, 1.3])
    text1 = 'Clear Chat History' if lan == 'English' else '清空聊天记录'
    text2 = 'Regenerate' if lan == 'English' else '重新生成'
    text3 = 'Copy' if lan == 'English' else '复制回答'
    with col1:
        st.button(text1, on_click=partial(combined_func, func_list=[clear_chat_history, clear_file_uploader]),
                  key='clear_chat_history_button')
    with col2:
        st.button(text2, on_click=regenerate, key='regenerate_button')

print(st.session_state.messages)