Spaces:
Running
Running
File size: 21,296 Bytes
3f1b7f0 b56725a 3f1b7f0 373eef5 3f1b7f0 373eef5 3f1b7f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
# --------------------------------------------------------
# InternVL
# Copyright (c) 2024 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import os
os.system('pip install opencv-python')
os.system('pip install streamlit_image_select')
import argparse
import base64
import datetime
import hashlib
import json
import os
import random
import re
import sys
# from streamlit_js_eval import streamlit_js_eval
from functools import partial
from io import BytesIO
import cv2
import numpy as np
import requests
import streamlit as st
from constants import LOGDIR, server_error_msg
from library import Library
from PIL import Image, ImageDraw, ImageFont
from streamlit_image_select import image_select
custom_args = sys.argv[1:]
parser = argparse.ArgumentParser()
parser.add_argument('--controller_url', type=str, default='http://10.140.60.209:10075', help='url of the controller')
parser.add_argument('--sd_worker_url', type=str, default='http://0.0.0.0:40006', help='url of the stable diffusion worker')
parser.add_argument('--max_image_limit', type=int, default=4, help='maximum number of images')
args = parser.parse_args(custom_args)
controller_url = args.controller_url
sd_worker_url = args.sd_worker_url
max_image_limit = args.max_image_limit
print('args:', args)
def get_model_list():
ret = requests.post(controller_url + '/refresh_all_workers')
assert ret.status_code == 200
ret = requests.post(controller_url + '/list_models')
models = ret.json()['models']
return models
def load_upload_file_and_show():
if uploaded_files is not None:
images = []
for file in uploaded_files:
file_bytes = np.asarray(bytearray(file.read()), dtype=np.uint8)
img = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = Image.fromarray(img)
images.append(img)
with upload_image_preview.container():
Library(images)
image_hashes = [hashlib.md5(image.tobytes()).hexdigest() for image in images]
for image, hash in zip(images, image_hashes):
t = datetime.datetime.now()
filename = os.path.join(LOGDIR, 'serve_images', f'{t.year}-{t.month:02d}-{t.day:02d}', f'{hash}.jpg')
if not os.path.isfile(filename):
os.makedirs(os.path.dirname(filename), exist_ok=True)
image.save(filename)
return images
def get_selected_worker_ip():
ret = requests.post(controller_url + '/get_worker_address',
json={'model': selected_model})
worker_addr = ret.json()['address']
return worker_addr
def generate_response(messages):
send_messages = [{'role': 'system', 'content': persona_rec}]
for message in messages:
if message['role'] == 'user':
user_message = {'role': 'user', 'content': message['content']}
if 'image' in message and len('image') > 0:
user_message['image'] = []
for image in message['image']:
user_message['image'].append(pil_image_to_base64(image))
send_messages.append(user_message)
else:
send_messages.append({'role': 'assistant', 'content': message['content']})
pload = {
'model': selected_model,
'prompt': send_messages,
'temperature': float(temperature),
'top_p': float(top_p),
'max_new_tokens': max_length,
'max_input_tiles': max_input_tiles,
'repetition_penalty': float(repetition_penalty),
}
worker_addr = get_selected_worker_ip()
headers = {'User-Agent': 'InternVL-Chat Client'}
placeholder, output = st.empty(), ''
try:
response = requests.post(worker_addr + '/worker_generate_stream',
headers=headers, json=pload, stream=True, timeout=10)
for chunk in response.iter_lines(decode_unicode=False, delimiter=b'\0'):
if chunk:
data = json.loads(chunk.decode())
if data['error_code'] == 0:
output = data['text']
# Phi3-3.8B will produce abnormal `�` output
if '4B' in selected_model and '�' in output[-2:]:
output = output.replace('�', '')
break
placeholder.markdown(output + '▌')
else:
output = data['text'] + f" (error_code: {data['error_code']})"
placeholder.markdown(output)
placeholder.markdown(output)
except requests.exceptions.RequestException as e:
placeholder.markdown(server_error_msg)
return output
def pil_image_to_base64(image):
buffered = BytesIO()
image.save(buffered, format='PNG')
return base64.b64encode(buffered.getvalue()).decode('utf-8')
def clear_chat_history():
st.session_state.messages = []
st.session_state['image_select'] = -1
def clear_file_uploader():
st.session_state.uploader_key += 1
st.rerun()
def combined_func(func_list):
for func in func_list:
func()
def show_one_or_multiple_images(message, total_image_num, is_input=True):
if 'image' in message:
if is_input:
total_image_num = total_image_num + len(message['image'])
if lan == 'English':
if len(message['image']) == 1 and total_image_num == 1:
label = f"(In this conversation, {len(message['image'])} image was uploaded, {total_image_num} image in total)"
elif len(message['image']) == 1 and total_image_num > 1:
label = f"(In this conversation, {len(message['image'])} image was uploaded, {total_image_num} images in total)"
else:
label = f"(In this conversation, {len(message['image'])} images were uploaded, {total_image_num} images in total)"
else:
label = f"(在本次对话中,上传了{len(message['image'])}张图片,总共上传了{total_image_num}张图片)"
upload_image_preview = st.empty()
with upload_image_preview.container():
Library(message['image'])
if is_input and len(message['image']) > 0:
st.markdown(label)
def find_bounding_boxes(response):
pattern = re.compile(r'<ref>\s*(.*?)\s*</ref>\s*<box>\s*(\[\[.*?\]\])\s*</box>')
matches = pattern.findall(response)
results = []
for match in matches:
results.append((match[0], eval(match[1])))
returned_image = None
for message in st.session_state.messages:
if message['role'] == 'user' and 'image' in message and len(message['image']) > 0:
last_image = message['image'][-1]
width, height = last_image.size
returned_image = last_image.copy()
draw = ImageDraw.Draw(returned_image)
for result in results:
line_width = max(1, int(min(width, height) / 200))
random_color = (random.randint(0, 128), random.randint(0, 128), random.randint(0, 128))
category_name, coordinates = result
coordinates = [(float(x[0]) / 1000, float(x[1]) / 1000, float(x[2]) / 1000, float(x[3]) / 1000) for x in coordinates]
coordinates = [(int(x[0] * width), int(x[1] * height), int(x[2] * width), int(x[3] * height)) for x in coordinates]
for box in coordinates:
draw.rectangle(box, outline=random_color, width=line_width)
font = ImageFont.truetype('static/SimHei.ttf', int(20 * line_width / 2))
text_size = font.getbbox(category_name)
text_width, text_height = text_size[2] - text_size[0], text_size[3] - text_size[1]
text_position = (box[0], max(0, box[1] - text_height))
draw.rectangle(
[text_position, (text_position[0] + text_width, text_position[1] + text_height)],
fill=random_color
)
draw.text(text_position, category_name, fill='white', font=font)
return returned_image if len(matches) > 0 else None
def query_image_generation(response, sd_worker_url, timeout=15):
sd_worker_url = f'{sd_worker_url}/generate_image/'
pattern = r'```drawing-instruction\n(.*?)\n```'
match = re.search(pattern, response, re.DOTALL)
if match:
payload = {'caption': match.group(1)}
print('drawing-instruction:', payload)
response = requests.post(sd_worker_url, json=payload, timeout=timeout)
response.raise_for_status() # 检查HTTP请求是否成功
image = Image.open(BytesIO(response.content))
return image
else:
return None
def regenerate():
st.session_state.messages = st.session_state.messages[:-1]
st.rerun()
logo_code = """
<svg width="1700" height="200" xmlns="http://www.w3.org/2000/svg">
<defs>
<linearGradient id="gradient1" x1="0%" y1="0%" x2="100%" y2="0%">
<stop offset="0%" style="stop-color: red; stop-opacity: 1" />
<stop offset="100%" style="stop-color: orange; stop-opacity: 1" />
</linearGradient>
</defs>
<text x="000" y="160" font-size="180" font-weight="bold" fill="url(#gradient1)" style="font-family: Arial, sans-serif;">
InternVL2 Demo
</text>
</svg>
"""
# App title
st.set_page_config(page_title='InternVL2')
if 'uploader_key' not in st.session_state:
st.session_state.uploader_key = 0
# 如果用户要求绘图,请以生成符合Stable Diffusion要求的、满足```drawing-instruction\n{instruction}\n```格式的绘图指令。
system_message = """我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。人工智能实验室致力于原始技术创新,开源开放,共享共创,推动科技进步和产业发展。
对于目标检测任务,请按照以下格式输出坐标框:<ref>某类物体</ref><box>[[x1, y1, x2, y2], ...]</box>
对于画画任务,请按照以下格式输出绘图指令,注意指令需要英文:```drawing-instruction\n{instruction}\n```
在处理输入包含多张图像的情况下,请严格按照以下规则区分和处理每一张图像,并小心区分用户的提问针对的是哪一张图片:
1. 图像编号和标记:每张图像都将使用明确的编号标记,例如 "Image-1: <img></img>","Image-2: <img></img>","Image-3: <img></img>" 等等。
2. 用户提问关联:用户的提问可能会具体指向某一张编号的图像,请仔细辨别用户问题中提到的图像编号。
请尽可能详细地回答用户的问题。"""
# Replicate Credentials
with st.sidebar:
model_list = get_model_list()
# "[![Open in GitHub](https://github.com/codespaces/badge.svg)](https://github.com/OpenGVLab/InternVL)"
lan = st.selectbox('#### Language / 语言', ['English', '中文'], on_change=st.rerun)
if lan == 'English':
st.logo(logo_code, link='https://github.com/OpenGVLab/InternVL', icon_image=logo_code)
st.subheader('Models and parameters')
selected_model = st.sidebar.selectbox('Choose a InternVL2 chat model', model_list, key='selected_model', on_change=clear_chat_history)
with st.expander('🤖 System Prompt'):
persona_rec = st.text_area('System Prompt', value=system_message,
help='System prompt is a pre-defined message used to instruct the assistant at the beginning of a conversation.',
height=200)
with st.expander('🔥 Advanced Options'):
temperature = st.slider('temperature', min_value=0.0, max_value=1.0, value=0.8, step=0.1)
top_p = st.slider('top_p', min_value=0.0, max_value=1.0, value=0.7, step=0.1)
repetition_penalty = st.slider('repetition_penalty', min_value=1.0, max_value=1.5, value=1.1, step=0.02)
max_length = st.slider('max_length', min_value=0, max_value=4096, value=2048, step=128)
max_input_tiles = st.slider('max_input_tiles (control image resolution)', min_value=1, max_value=24, value=12, step=1)
upload_image_preview = st.empty()
uploaded_files = st.file_uploader('Upload files', accept_multiple_files=True,
type=['png', 'jpg', 'jpeg', 'webp'],
help='You can upload multiple images (max to 4) or a single video.',
key=f'uploader_{st.session_state.uploader_key}',
on_change=st.rerun)
uploaded_pil_images = load_upload_file_and_show()
else:
st.subheader('模型和参数')
selected_model = st.sidebar.selectbox('选择一个 InternVL2 对话模型', model_list, key='selected_model', on_change=clear_chat_history)
with st.expander('🤖 系统提示'):
persona_rec = st.text_area('系统提示', value=system_message,
help='系统提示是在对话开始时用于指示助手的预定义消息。',
height=200)
with st.expander('🔥 高级选项'):
temperature = st.slider('temperature', min_value=0.0, max_value=1.0, value=0.8, step=0.1)
top_p = st.slider('top_p', min_value=0.0, max_value=1.0, value=0.7, step=0.1)
repetition_penalty = st.slider('重复惩罚', min_value=1.0, max_value=1.5, value=1.1, step=0.02)
max_length = st.slider('最大输出长度', min_value=0, max_value=4096, value=2048, step=128)
max_input_tiles = st.slider('最大图像块数 (控制图像分辨率)', min_value=1, max_value=24, value=12, step=1)
upload_image_preview = st.empty()
uploaded_files = st.file_uploader('上传文件', accept_multiple_files=True,
type=['png', 'jpg', 'jpeg', 'webp'],
help='你可以上传多张图像(最多4张)或者一个视频。',
key=f'uploader_{st.session_state.uploader_key}',
on_change=st.rerun)
uploaded_pil_images = load_upload_file_and_show()
gradient_text_html = """
<style>
.gradient-text {
font-weight: bold;
background: -webkit-linear-gradient(left, red, orange);
background: linear-gradient(to right, red, orange);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
display: inline;
font-size: 3em;
}
</style>
<div class="gradient-text">InternVL2</div>
"""
if lan == 'English':
st.markdown(gradient_text_html, unsafe_allow_html=True)
st.caption('Expanding Performance Boundaries of Open-Source Multimodal Large Language Models')
else:
st.markdown(gradient_text_html.replace('InternVL2', '书生·万象'), unsafe_allow_html=True)
st.caption('扩展开源多模态大语言模型的性能边界')
# Store LLM generated responses
if 'messages' not in st.session_state.keys():
clear_chat_history()
gallery_placeholder = st.empty()
with gallery_placeholder.container():
images = ['gallery/prod_en_17.png', 'gallery/astro_on_unicorn.png',
'gallery/prod_12.png', 'gallery/prod_9.jpg',
'gallery/prod_4.png', 'gallery/cheetah.png', 'gallery/prod_1.jpeg']
images = [Image.open(image) for image in images]
if lan == 'English':
captions = ["I'm on a diet, but I really want to eat them.",
'Could you help me draw a picture like this one?',
'What are the consequences of the easy decisions shown in this image?',
"What's at the far end of the image?",
'Is this a real plant? Analyze the reasons.',
'Detect the <ref>the middle leopard</ref> in the image with its bounding box.',
'What is the atmosphere of this image?']
else:
captions = ['我在减肥,但我真的很想吃这个。',
'请画一张类似这样的画',
'这张图上 easy decisions 导致了什么后果?',
'画面最远处是什么?',
'这是真的植物吗?分析原因',
'在以下图像中进行目标检测,并标出所有物体。',
'这幅图的氛围如何?']
img_idx = image_select(
label='',
images=images,
captions=captions,
use_container_width=True,
index=-1,
return_value='index',
key='image_select'
)
if lan == 'English':
st.caption('Note: For non-commercial research use only. AI responses may contain errors. Users should not spread or allow others to spread hate speech, violence, pornography, or fraud-related harmful information.')
else:
st.caption('注意:仅限非商业研究使用。用户应不传播或允许他人传播仇恨言论、暴力、色情内容或与欺诈相关的有害信息。')
if img_idx != -1 and len(st.session_state.messages) == 0 and selected_model is not None:
gallery_placeholder.empty()
st.session_state.messages.append({'role': 'user', 'content': captions[img_idx], 'image': [images[img_idx]]})
st.rerun() # Fixed an issue where examples were not emptied
if len(st.session_state.messages) > 0:
gallery_placeholder.empty()
# Display or clear chat messages
total_image_num = 0
for message in st.session_state.messages:
with st.chat_message(message['role']):
st.markdown(message['content'])
show_one_or_multiple_images(message, total_image_num, is_input=message['role'] == 'user')
if 'image' in message and message['role'] == 'user':
total_image_num += len(message['image'])
input_disable_flag = (len(model_list) == 0) or total_image_num + len(uploaded_files) > max_image_limit
if lan == 'English':
st.sidebar.button('Clear Chat History', on_click=partial(combined_func, func_list=[clear_chat_history, clear_file_uploader]))
if input_disable_flag:
prompt = st.chat_input('Too many images have been uploaded. Please clear the history.', disabled=input_disable_flag)
else:
prompt = st.chat_input('Send messages to InternVL', disabled=input_disable_flag)
else:
st.sidebar.button('清空聊天记录', on_click=partial(combined_func, func_list=[clear_chat_history, clear_file_uploader]))
if input_disable_flag:
prompt = st.chat_input('输入的图片太多了,请清空历史记录。', disabled=input_disable_flag)
else:
prompt = st.chat_input('给 “InternVL” 发送消息', disabled=input_disable_flag)
alias_instructions = {
'目标检测': '在以下图像中进行目标检测,并标出所有物体。',
'检测': '在以下图像中进行目标检测,并标出所有物体。',
'object detection': 'Please identify and label all objects in the following image.',
'detection': 'Please identify and label all objects in the following image.'
}
if prompt:
prompt = alias_instructions[prompt] if prompt in alias_instructions else prompt
gallery_placeholder.empty()
image_list = uploaded_pil_images
st.session_state.messages.append({'role': 'user', 'content': prompt, 'image': image_list})
with st.chat_message('user'):
st.write(prompt)
show_one_or_multiple_images(st.session_state.messages[-1], total_image_num, is_input=True)
if image_list:
clear_file_uploader()
# Generate a new response if last message is not from assistant
if len(st.session_state.messages) > 0 and st.session_state.messages[-1]['role'] != 'assistant':
with st.chat_message('assistant'):
with st.spinner('Thinking...'):
if not prompt:
prompt = st.session_state.messages[-1]['content']
response = generate_response(st.session_state.messages)
message = {'role': 'assistant', 'content': response}
with st.spinner('Drawing...'):
if '<ref>' in response:
has_returned_image = find_bounding_boxes(response)
message['image'] = [has_returned_image] if has_returned_image else []
if '```drawing-instruction' in response:
has_returned_image = query_image_generation(response, sd_worker_url=sd_worker_url)
message['image'] = [has_returned_image] if has_returned_image else []
st.session_state.messages.append(message)
show_one_or_multiple_images(message, total_image_num, is_input=False)
if len(st.session_state.messages) > 0:
col1, col2, col3, col4 = st.columns([1, 1, 1, 1.3])
text1 = 'Clear Chat History' if lan == 'English' else '清空聊天记录'
text2 = 'Regenerate' if lan == 'English' else '重新生成'
text3 = 'Copy' if lan == 'English' else '复制回答'
with col1:
st.button(text1, on_click=partial(combined_func, func_list=[clear_chat_history, clear_file_uploader]),
key='clear_chat_history_button')
with col2:
st.button(text2, on_click=regenerate, key='regenerate_button')
print(st.session_state.messages)
|