Spaces:
Running
Running
File size: 28,366 Bytes
3fdcc70 daf67f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 |
import copy
import logging
import os
import os.path as osp
from functools import partial
from pydoc import locate
import shutil
import json
from traceback import print_exc
import uuid
from pathlib import Path
from collections import OrderedDict
import numpy as np
from PIL import Image
import whisper
import fire
import gradio as gr
import gradio.themes.base as ThemeBase
from gradio.themes.utils import colors, fonts, sizes
import os
import sys
sys.path.append(os.getcwd())
from cllm.agents.builtin import plans
from cllm.services.general.api import remote_logging
from cllm.agents import container, FILE_EXT
from cllm.utils import get_real_path, plain2md, md2plain
import openai
openai.api_base = os.environ.get("OPENAI_API_BASE", None)
openai.api_key = os.environ.get("OPENAI_API_KEY", None)
logging.basicConfig(
filename="cllm.log",
level=logging.INFO,
format="%(asctime)s %(levelname)-8s %(message)s",
)
logger = logging.getLogger(__name__)
RESOURCE_ROOT = os.environ.get("CLIENT_ROOT", "./client_resources")
def is_image(file_path):
ext = FILE_EXT["image"]
_, extension = os.path.splitext(file_path)
return extension[1:] in ext
def is_video(file_path):
ext = FILE_EXT["video"]
_, extension = os.path.splitext(file_path)
return extension[1:] in ext
def is_audio(file_path):
ext = FILE_EXT["audio"]
_, extension = os.path.splitext(file_path)
return extension[1:] in ext
def get_file_type(file_path):
if is_image(file_path):
if "mask" in file_path:
return "mask"
return "image"
elif is_video(file_path):
return "video"
elif is_audio(file_path):
return "audio"
raise ValueError("Invalid file type")
def convert_dict_to_frame(data):
import pandas
outputs = []
for k, v in data.items():
output = {"Resource": k}
if not isinstance(v, str):
output["Type"] = str(v.__class__)
else:
output["Type"] = v
outputs.append(output)
if len(outputs) == 0:
return None
return pandas.DataFrame(outputs)
class Seafoam(ThemeBase.Base):
def __init__(
self,
*,
primary_hue=colors.emerald,
secondary_hue=colors.blue,
neutral_hue=colors.gray,
spacing_size=sizes.spacing_md,
radius_size=sizes.radius_md,
text_size=sizes.text_sm,
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
spacing_size=spacing_size,
radius_size=radius_size,
text_size=text_size,
)
super().set(
body_background_fill_dark="#111111",
button_primary_background_fill="*primary_300",
button_primary_background_fill_hover="*primary_200",
button_primary_text_color="black",
button_secondary_background_fill="*secondary_300",
button_secondary_background_fill_hover="*secondary_200",
border_color_primary="#0BB9BF",
slider_color="*secondary_300",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_shadow="*shadow_drop_lg",
button_large_padding="10px",
)
class InteractionLoop:
def __init__(
self,
controller="cllm.agents.code.Controller",
):
self.stream = True
Controller = locate(controller)
self.controller = Controller(stream=self.stream, interpretor_kwargs=dict())
self.whisper = whisper.load_model("base")
def _gen_new_name(self, r_type, ext="png"):
this_new_uuid = str(uuid.uuid4())[:6]
new_file_name = f"{this_new_uuid}_{r_type}.{ext}"
return new_file_name
def init_state(self):
user_state = OrderedDict()
user_state["resources"] = OrderedDict()
user_state["history_msgs"] = []
resources = OrderedDict()
for item in sorted(os.listdir("./assets/resources")):
if item.startswith("."):
continue
shutil.copy(
osp.join("./assets/resources", item),
osp.join(RESOURCE_ROOT, item),
)
resources[item] = get_file_type(item)
# return user_state, user_state["resources"]
return user_state, resources
def add_file(self, user_state, history, file):
if user_state.get("resources", None) is None:
user_state["resources"] = OrderedDict()
if file is None:
return user_state, None, history, None
# filename = os.path.basename(file.name)
file = Path(file)
ext = file.suffix[1:]
if ext in FILE_EXT["image"]:
ext = "png"
r_type = get_file_type(file.name)
new_filename = self._gen_new_name(r_type, ext)
saved_path = get_real_path(new_filename)
if ext in FILE_EXT["image"]:
Image.open(file).convert("RGB").save(saved_path, "png")
user_state["input_image"] = new_filename
else:
shutil.copy(file, saved_path)
logger.info(f"add file: {saved_path}")
user_state["resources"][new_filename] = r_type
for key, val in user_state["resources"].items():
if key == "prompt_points":
user_state["resources"].pop(key)
break
history, _ = self.add_text(history, (saved_path,), role="human", append=False)
history, _ = self.add_text(
history, f"Recieved file {new_filename}", role="assistant", append=False
)
memory = convert_dict_to_frame(user_state["resources"])
image_name = None
if Path(saved_path).suffix[1:] in FILE_EXT["image"]:
image_name = saved_path
return user_state, image_name, history, memory
def add_msg(self, history, text, audio, role="assistant", append=False):
if text is not None and text.strip() != "":
return self.add_text(history, text, role=role, append=append)
elif audio is not None:
return self.add_audio(history, audio, role=role, append=append)
return history, ""
def add_text(self, history, text, role="assistant", append=False):
if history is None:
return history, ""
assert role in ["human", "assistant"]
idx = 0
if len(history) == 0 or role == "human":
history.append([None, None])
if role == "assistant":
idx = 1
if not append and history[-1][1] is not None:
history.append([None, None])
if append:
history[-1][idx] = (
text if history[-1][idx] is None else history[-1][idx] + text
)
else:
history[-1][idx] = text
if isinstance(text, str):
logger.info(f"add text: {md2plain(text)}")
return history, ""
def add_audio(self, history, audio, role="assistant", append=False):
assert role in ["human", "assistant"]
result = self.whisper.transcribe(audio)
text = result["text"]
logger.info(f"add audio: {text}")
return self.add_text(history, text, role=role, append=append)
def plan(self, user_state, input_image, history, history_plan):
logger.info(f"Task plan...")
if user_state.get("resources", None) is None:
user_state["resources"] = OrderedDict()
request = history[-1][0]
user_state["request"] = request
if isinstance(request, str) and request.startswith("$"):
solution = f'show$("{request[1:]}")'
else:
solution = self.controller.plan(request, state=user_state)
print(f"request: {request}")
if solution == self.controller.SHORTCUT:
# md_text = "**Using builtin shortcut solution.**"
history, _ = self.add_text(
history, solution, role="assistant", append=False
)
user_state["solution"] = solution
user_state["history_msgs"] = history
yield user_state, input_image, history, [solution]
elif isinstance(solution, str) and solution.startswith("show$"):
user_state["solution"] = solution
yield user_state, input_image, history, solution
else:
output_text = (
"The whole process will take some time, please be patient.<br><br>"
)
history, _ = self.add_text(
history, output_text, role="assistant", append=True
)
yield user_state, input_image, history, history_plan
task_decomposition = next(solution)
if task_decomposition in [None, [], ""]:
output = "Error: unrecognized resource(s) in task decomposition."
task_decomposition = "[]"
else:
output = task_decomposition
output = f"**Task Decomposition:**\n{output}"
output = plain2md(output)
history, _ = self.add_text(history, output, role="assistant", append=True)
user_state["task_decomposition"] = json.loads(task_decomposition)
yield user_state, input_image, history, history_plan
history, _ = self.add_text(
history,
plain2md("\n\n**Thoughs-on-Graph:**\n"),
role="assistant",
append=True,
)
yield user_state, input_image, history, history_plan
solution_str = next(solution)
logger.info(f"Thoughs-on-Graph: \n{solution_str}")
if solution_str in [None, [], ""]:
output = "Empty solution possibly due to some internal errors."
solution_str = "[]"
else:
output = solution_str
output_md = plain2md(output)
history, _ = self.add_text(
history, output_md, role="assistant", append=True
)
solution = json.loads(solution_str)
user_state["solution"] = solution
user_state["history_msgs"] = history
yield user_state, input_image, history, solution
def execute(self, user_state, input_image, history, history_plan):
resources_state = user_state.get("resources", OrderedDict())
solution = user_state.get("solution", None)
if not solution:
yield user_state, input_image, history, history_plan
return
logger.info(f"Tool execution...")
if isinstance(solution, str) and solution.startswith("show$"):
key = solution[7:-2]
r_type = resources_state.get(key)
if r_type is None:
resource = f"{key} not found"
resource = container.auto_type("None", r_type, key)
history, _ = self.add_text(
history, (resource.to_chatbot(),), role="assistant"
)
user_state["history_msgs"] = history
yield user_state, input_image, history, history_plan
return
elif solution:
results = self.controller.execute(solution, state=user_state)
if not results:
yield user_state, input_image, history, history_plan
return
user_state["outputs"] = []
for result_per_step, executed_solutions, wrapped_outputs in results:
tool_name = json.dumps(result_per_step[0], ensure_ascii=False)
args = json.dumps(result_per_step[1], ensure_ascii=False)
if isinstance(result_per_step[2], Exception):
ret = f"Internal error: {result_per_step[2]}"
else:
ret = json.dumps(result_per_step[2], ensure_ascii=False)
history, _ = self.add_text(
history,
f"Call **{tool_name}:**<br> **Args**: {plain2md(args)}<br> **Ret**: {plain2md(ret)}",
role="assistant",
)
user_state["history_msgs"] = history
user_state["executed_solutions"] = executed_solutions
yield user_state, input_image, history, history_plan
for _, output in enumerate(wrapped_outputs):
if output is None or output.value is None:
continue
if isinstance(output, container.File):
history, _ = self.add_text(
history,
f"Here is {output.filename}:",
role="assistant",
)
history, _ = self.add_text(
history, (output.to_chatbot(),), role="assistant"
)
user_state["outputs"].extend(wrapped_outputs)
user_state["history_msgs"] = history
yield user_state, input_image, history, history_plan
else:
yield user_state, input_image, history, history_plan
def reply(self, user_state, history):
logger.info(f"Make response...")
executed_solution = user_state.get("executed_solutions", None)
resources_state = user_state.get("resources", OrderedDict())
solution = user_state.get("solution", None)
memory = convert_dict_to_frame(resources_state)
if isinstance(solution, str) and solution.startswith("show$"):
return user_state, history, memory
outputs = user_state.get("outputs", None)
response, user_state = self.controller.reply(
executed_solution, outputs, user_state
)
# prompt_mask_out = None
for i, output in enumerate(response):
if isinstance(output, container.File):
history, _ = self.add_text(history, f"Here is [{output.filename}]: ")
history, _ = self.add_text(history, (output.to_chatbot(),))
elif i == 0:
history, _ = self.add_text(history, output.to_chatbot())
user_state["history_msgs"] = history
return user_state, history, memory
def vote(self, user_state, history, data: gr.LikeData):
data_value = data.value
if isinstance(data_value, dict):
data_value = json.dumps(data_value)
if data.liked:
print("You upvoted this response: ", data_value)
logger.info("You upvoted this response: " + data_value)
else:
print("You downvoted this response: ", data_value)
logger.info("You downvoted this response: " + data_value)
remote_logging(
user_state.get("history_msgs", []),
user_state.get("task_decomposition", ""),
user_state.get("solution", []),
data_value,
data.liked,
)
msg = f"Thanks for your feedback! You feedback will contribute a lot to improving our ControlLLM."
history, _ = self.add_text(history, msg)
user_state["history_msgs"] = history
return user_state, history
def save_point(self, user_state, history, data: gr.SelectData):
if isinstance(data, gr.LikeData):
return self.vote(user_state, history, data)
if not isinstance(data, gr.SelectData):
return user_state, history
resource_state = user_state.get("resources")
input_image = user_state.get("input_image", None)
if input_image is None:
history, _ = self.add_text(history, "Please upload an image at first.")
history, _ = self.add_text(history, plans.BUILTIN_SEG_BY_POINTS, "human")
user_state["history_msg"] = history
return user_state, history
resource_state.pop(input_image, None)
resource_state[input_image] = "image"
history = history + [[plans.BUILTIN_SEG_BY_POINTS, None]]
points = []
if isinstance(points, str):
points = json.loads(points)
points.append(data.index)
resource_state[json.dumps(points)] = "prompt_points"
user_state["resources"] = resource_state
return user_state, history
def on_switch_input(state_input, text, audio, disable=False):
if state_input == "audio" or disable:
return "text", gr.update(visible=True), gr.update(visible=False)
return "audio", gr.update(visible=False), gr.update(visible=True)
def on_mask_submit(history):
history = history + [(plans.BUILTIN_SEG_BY_MASK, None)]
return history
def app(controller="cllm.agents.tog.Controller", https=False, **kwargs):
loop = InteractionLoop(controller=controller)
init_state, builtin_resources = loop.init_state()
css = """
code {
font-size: var(--text-sm);
white-space: pre-wrap; /* Since CSS 2.1 */
white-space: -moz-pre-wrap; /* Mozilla, since 1999 */
white-space: -pre-wrap; /* Opera 4-6 */
white-space: -o-pre-wrap; /* Opera 7 */
word-wrap: break-word; /* Internet Explorer 5.5+ */
}
"""
with gr.Blocks(theme=Seafoam(), css=css) as demo:
gr.HTML(
"""
<div align='center'> <h1>ControlLLM </h1> </div>
<p align="center"> A framework for multi-modal interaction which is able to control LLMs over invoking tools more accurately. </p>
<p align="center"><a href="https://github.com/OpenGVLab/ControlLLM"><b>GitHub</b></a>
<a href="https://arxiv.org/abs/2311.11797"><b>ArXiv</b></a></p>
""",
)
state_input = gr.State("text")
user_state = gr.State(copy.deepcopy(init_state))
with gr.Row():
with gr.Column(scale=6):
with gr.Tabs():
with gr.Tab("Chat"):
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
avatar_images=[
"assets/human.png",
"assets/assistant.png",
],
show_copy_button=True,
height=550,
)
with gr.Row():
with gr.Column(scale=12):
text = gr.Textbox(
show_label=False,
placeholder="Enter text and press enter, or upload an image.",
container=False,
)
audio = gr.Audio(
sources="microphone", type="filepath", visible=False
)
with gr.Column(scale=2, min_width=80):
submit = gr.Button("Submit", variant="primary")
with gr.Column(scale=1, min_width=40):
record = gr.Button("🎙️")
with gr.Column(scale=1, min_width=40):
upload_btn = gr.UploadButton(
"📁",
file_types=[
"image",
"video",
"audio",
".pdf",
],
)
gr.Examples(
[
"Who are you?",
"How is about weather in Beijing",
"Describe the given image.",
"find the woman wearing the red skirt in the image",
"Generate a video that shows Pikachu surfing in waves.",
"How many horses are there in the image?",
"Can you erase the dog in the given image?",
"Remove the object based on the given mask.",
"Can you make a video of a serene lake with vibrant green grass and trees all around? And then create a webpage using HTML to showcase this video?",
"Generate an image that shows a beautiful landscape with a calm lake reflecting the blue sky and white clouds. Then generate a video to introduce this image.",
"replace the masked object with a cute yellow dog",
"replace the sheep with a cute dog in the image",
"Recognize the action in the video",
"Generate an image where a astronaut is riding a horse",
"Please generate a piece of music from the given image",
"Please give me an image that shows an astronaut riding a horse on mars.",
"What’s the weather situation in Berlin? Can you generate a new image that represents the weather in there?",
"Can you recognize the text from the image and tell me how much is Eggs Florentine?",
"Generate a piece of music for this video and dub this video with generated music",
"Generate a new image based on depth map from input image",
"Remove the cats from the image_1.png, image_2.png, image_3.png",
"I need the banana removed from the c4c40e_image.png, 9e867c_image.png, 9e13sc_image.png",
"I would be so happy if you could create a new image using the scribble from input image. The new image should be a tropical island with a dog. Write a detailed description of the given image. and highlight the dog in image",
"Please generate a piece of music and a new video from the input image",
"generate a new image conditioned on the segmentation from input image and the new image shows that a gorgeous lady is dancing",
"generate a new image with a different background but maintaining the same composition as input image",
"Generate a new image that shows an insect robot preparing a delicious meal. Then give me a video based on new image. Finally, dub the video with suitable background music.",
"Translate the text into speech: I have a dream that one day this nation will rise up and live out the true meaning of its creed: We hold these truths to be self-evident that all men are created equal.I have a dream that one day on the red hills of Georgia the sons of former slaves and the sons of former slave owners will be able to sit down together at the table of brotherhood. I have a dream that one day even the state of Mississippi, a state sweltering with the heat of injustice, sweltering with the heat of oppression, will be transformed into an oasis of freedom and justice.",
],
inputs=[text],
)
gr.Examples(
list(plans.BUILTIN_PLANS.keys()),
inputs=[text],
label="Builtin Examples",
)
with gr.Column(scale=5):
with gr.Tabs():
with gr.Tab("Mask Input"):
image_mask = gr.components.Image(
sources="upload",
interactive=True,
type="filepath",
)
# with gr.Row():
# mask_submit_btn = gr.Button("Segment", variant="primary")
with gr.Row():
image_submit_btn = gr.Button("Upload", variant="primary")
with gr.Tab("Plan"):
planbot = gr.JSON(elem_classes="json")
with gr.Tab("Memory"):
memory_table = gr.DataFrame(
# value=convert_dict_to_frame(builtin_resources),
label="Memory",
headers=["Resource", "Type"],
row_count=5,
wrap=True,
)
gr.Examples(
[
osp.join("./assets/resources", item)
for item in builtin_resources.keys()
if item.endswith(".png")
],
inputs=[image_mask],
label="File Examples",
)
chatbot.like(
loop.vote,
[
user_state,
chatbot,
],
[
user_state,
chatbot,
],
)
reply_inputs = [user_state, image_mask, chatbot, planbot]
reply_outputs = [
user_state,
# image_mask,
chatbot,
memory_table,
# planbot,
]
add_text = [
partial(loop.add_text, role="human"),
[chatbot, text],
[chatbot, text],
]
text.submit(*add_text).then(loop.plan, reply_inputs, reply_inputs).then(
loop.execute, reply_inputs, reply_inputs
).then(loop.reply, [user_state, chatbot], reply_outputs)
add_msg = [
partial(loop.add_msg, role="human"),
[chatbot, text, audio],
[chatbot, text],
]
submit.click(*add_msg).then(
partial(on_switch_input, disable=True),
[state_input, text, audio],
[state_input, text, audio],
).then(loop.plan, reply_inputs, reply_inputs).then(
loop.execute, reply_inputs, reply_inputs
).then(
loop.reply, [user_state, chatbot], reply_outputs
)
upload_btn.upload(
loop.add_file,
inputs=[user_state, chatbot, upload_btn],
outputs=[user_state, image_mask, chatbot, memory_table],
)
record.click(
on_switch_input,
[state_input, text, audio],
[state_input, text, audio],
)
image_mask.select(
loop.save_point, [user_state, chatbot], [user_state, chatbot]
).then(loop.plan, reply_inputs, reply_inputs).then(
loop.execute, reply_inputs, reply_inputs
).then(
loop.reply, [user_state, chatbot], reply_outputs
)
image_mask.upload(
loop.add_file,
inputs=[user_state, chatbot, image_mask],
outputs=[user_state, image_mask, chatbot, memory_table],
)
image_submit_btn.click(
loop.add_file,
inputs=[user_state, chatbot, image_mask],
outputs=[user_state, image_mask, chatbot, memory_table],
)
if https:
demo.queue().launch(
server_name="0.0.0.0",
# ssl_certfile="./certificate/cert.pem",
# ssl_keyfile="./certificate/key.pem",
ssl_verify=False,
show_api=False,
allowed_paths=[
"assets/human.png",
"assets/assistant.png",
],
**kwargs,
)
else:
demo.queue().launch(
server_name="0.0.0.0",
show_api=False,
allowed_paths=[
"assets/human.png",
"assets/assistant.png",
],
**kwargs,
)
if __name__ == "__main__":
os.makedirs(RESOURCE_ROOT, exist_ok=True)
app(controller="cllm.agents.tog.Controller")
|