File size: 4,991 Bytes
6de3e11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9712f34
6de3e11
 
 
 
 
 
 
 
 
 
28ebae2
6de3e11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28ebae2
6de3e11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28ebae2
6de3e11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import argparse
import asyncio
import functools
import json
import os
from io import BytesIO

import uvicorn
from fastapi import FastAPI, BackgroundTasks, File, Body, UploadFile, Request
from fastapi.responses import StreamingResponse
from faster_whisper import WhisperModel
from starlette.staticfiles import StaticFiles
from starlette.templating import Jinja2Templates
from zhconv import convert

from utils.data_utils import remove_punctuation
from utils.utils import add_arguments, print_arguments

os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)

add_arg("host",        type=str,  default="0.0.0.0", help="")
add_arg("port",        type=int,  default=5000,        help="")
add_arg("model_path",  type=str,  default="models/sam2ai/whisper-odia-small-finetune-int8-ct2", help="")
add_arg("use_gpu",     type=bool, default=False,   help="")
add_arg("use_int8",    type=bool, default=True,  help="")
add_arg("beam_size",   type=int,  default=10,     help="")
add_arg("num_workers", type=int,  default=2,      help="")
add_arg("vad_filter",  type=bool, default=True,  help="")
add_arg("local_files_only", type=bool, default=True, help="")
args = parser.parse_args()
print_arguments(args)

# 
assert os.path.exists(args.model_path), f"{args.model_path}"
# 
if args.use_gpu:
    if not args.use_int8:
        model = WhisperModel(args.model_path, device="cuda", compute_type="float16",
                            num_workers=args.num_workers, local_files_only=args.local_files_only)
    else:
        model = WhisperModel(args.model_path, device="cuda",
                            compute_type="int8_float16", num_workers=args.num_workers,
                            local_files_only=args.local_files_only)
else:
    model = WhisperModel(args.model_path, device="cpu",
                        compute_type="int8", num_workers=args.num_workers,
                        local_files_only=args.local_files_only)

# 
# _, _ = model.transcribe("dataset/test.wav", beam_size=5)

app = FastAPI(title="OdiaGenAI Whisper ASR")
app.mount('/static', StaticFiles(directory='static'), name='static')
templates = Jinja2Templates(directory="templates")
model_semaphore = None


def release_model_semaphore():
    model_semaphore.release()


def recognition(file: File, to_simple: int,
                remove_pun: int, language: str = "bn",
                task: str = "transcribe"
    ):

    segments, info = model.transcribe(file, beam_size=10, task=task, language=language, vad_filter=args.vad_filter)
    for segment in segments:
        text = segment.text
        if to_simple == 1:
            # text = convert(text, '')
            pass
        if remove_pun == 1:
            # text = remove_punctuation(text)
            pass
        ret = {"result": text, "start": round(segment.start, 2), "end": round(segment.end, 2)}
        # 
        yield json.dumps(ret).encode() + b"\0"


@app.post("/recognition_stream")
async def api_recognition_stream(
        to_simple: int = Body(1, description="", embed=True),
        remove_pun: int = Body(0, description="", embed=True),
        language: str = Body("bn", description="", embed=True),
        task: str = Body("transcribe", description="", embed=True),
        audio: UploadFile = File(..., description="")
        ):

    global model_semaphore
    if language == "None": language = None
    if model_semaphore is None:
        model_semaphore = asyncio.Semaphore(5)
    await model_semaphore.acquire()
    contents = await audio.read()
    data = BytesIO(contents)
    generator = recognition(
        file=data, to_simple=to_simple,
        remove_pun=remove_pun, language=language,
        task=task
        )
    background_tasks = BackgroundTasks()
    background_tasks.add_task(release_model_semaphore)
    return StreamingResponse(generator, background=background_tasks)


@app.post("/recognition")
async def api_recognition(
        to_simple: int = Body(1, description="", embed=True),
        remove_pun: int = Body(0, description="", embed=True),
        language: str = Body("bn", description="", embed=True),
        task: str = Body("transcribe", description="", embed=True),
        audio: UploadFile = File(..., description="")
        ):

    if language == "None":language=None
    contents = await audio.read()
    data = BytesIO(contents)
    generator = recognition(
        file=data, to_simple=to_simple,
        remove_pun=remove_pun, language=language,
        task=task
        )
    results = []
    for output in generator:
        output = json.loads(output[:-1].decode("utf-8"))
        results.append(output)
    ret = {"results": results, "code": 0}
    return ret


@app.get("/")
async def index(request: Request):
    return templates.TemplateResponse(
        "index.html", {"request": request, "id": id}
        )


if __name__ == '__main__':
    uvicorn.run(app, host=args.host, port=args.port)