File size: 6,826 Bytes
8437114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import numpy as np
import os.path as op
import re
from tabulate import tabulate
from collections import Counter


def comp_purity(p_xy, axis):
    max_p = p_xy.max(axis=axis)
    marg_p = p_xy.sum(axis=axis)
    indv_pur = max_p / marg_p
    aggr_pur = max_p.sum()
    return indv_pur, aggr_pur


def comp_entropy(p):
    return (-p * np.log(p + 1e-8)).sum()


def comp_norm_mutual_info(p_xy):
    p_x = p_xy.sum(axis=1, keepdims=True)
    p_y = p_xy.sum(axis=0, keepdims=True)
    pmi = np.log(p_xy / np.matmul(p_x, p_y) + 1e-8)
    mi = (p_xy * pmi).sum()
    h_x = comp_entropy(p_x)
    h_y = comp_entropy(p_y)
    return mi, mi / h_x, mi / h_y, h_x, h_y


def pad(labs, n):
    if n == 0:
        return np.array(labs)
    return np.concatenate([[labs[0]] * n, labs, [labs[-1]] * n])


def comp_avg_seg_dur(labs_list):
    n_frms = 0
    n_segs = 0
    for labs in labs_list:
        labs = np.array(labs)
        edges = np.zeros(len(labs)).astype(bool)
        edges[0] = True
        edges[1:] = labs[1:] != labs[:-1]
        n_frms += len(edges)
        n_segs += edges.astype(int).sum()
    return n_frms / n_segs


def comp_joint_prob(uid2refs, uid2hyps):
    """
    Args:
        pad: padding for spliced-feature derived labels
    """
    cnts = Counter()
    skipped = []
    abs_frmdiff = 0
    for uid in uid2refs:
        if uid not in uid2hyps:
            skipped.append(uid)
            continue
        refs = uid2refs[uid]
        hyps = uid2hyps[uid]
        abs_frmdiff += abs(len(refs) - len(hyps))
        min_len = min(len(refs), len(hyps))
        refs = refs[:min_len]
        hyps = hyps[:min_len]
        cnts.update(zip(refs, hyps))
    tot = sum(cnts.values())

    ref_set = sorted({ref for ref, _ in cnts.keys()})
    hyp_set = sorted({hyp for _, hyp in cnts.keys()})
    ref2pid = dict(zip(ref_set, range(len(ref_set))))
    hyp2lid = dict(zip(hyp_set, range(len(hyp_set))))
    # print(hyp_set)
    p_xy = np.zeros((len(ref2pid), len(hyp2lid)), dtype=float)
    for (ref, hyp), cnt in cnts.items():
        p_xy[ref2pid[ref], hyp2lid[hyp]] = cnt
    p_xy /= p_xy.sum()
    return p_xy, ref2pid, hyp2lid, tot, abs_frmdiff, skipped


def read_phn(tsv_path, rm_stress=True):
    uid2phns = {}
    with open(tsv_path) as f:
        for line in f:
            uid, phns = line.rstrip().split("\t")
            phns = phns.split(",")
            if rm_stress:
                phns = [re.sub("[0-9]", "", phn) for phn in phns]
            uid2phns[uid] = phns
    return uid2phns


def read_lab(tsv_path, lab_path, pad_len=0, upsample=1):
    """
    tsv is needed to retrieve the uids for the labels
    """
    with open(tsv_path) as f:
        f.readline()
        uids = [op.splitext(op.basename(line.rstrip().split()[0]))[0] for line in f]
    with open(lab_path) as f:
        labs_list = [pad(line.rstrip().split(), pad_len).repeat(upsample) for line in f]
    assert len(uids) == len(labs_list)
    return dict(zip(uids, labs_list))


def main_lab_lab(
    tsv_dir,
    lab_dir,
    lab_name,
    lab_sets,
    ref_dir,
    ref_name,
    pad_len=0,
    upsample=1,
    verbose=False,
):
    # assume tsv_dir is the same for both the reference and the hypotheses
    tsv_dir = lab_dir if tsv_dir is None else tsv_dir

    uid2refs = {}
    for s in lab_sets:
        uid2refs.update(read_lab(f"{tsv_dir}/{s}.tsv", f"{ref_dir}/{s}.{ref_name}"))

    uid2hyps = {}
    for s in lab_sets:
        uid2hyps.update(
            read_lab(
                f"{tsv_dir}/{s}.tsv", f"{lab_dir}/{s}.{lab_name}", pad_len, upsample
            )
        )
    _main(uid2refs, uid2hyps, verbose)


def main_phn_lab(
    tsv_dir,
    lab_dir,
    lab_name,
    lab_sets,
    phn_dir,
    phn_sets,
    pad_len=0,
    upsample=1,
    verbose=False,
):
    uid2refs = {}
    for s in phn_sets:
        uid2refs.update(read_phn(f"{phn_dir}/{s}.tsv"))

    uid2hyps = {}
    tsv_dir = lab_dir if tsv_dir is None else tsv_dir
    for s in lab_sets:
        uid2hyps.update(
            read_lab(
                f"{tsv_dir}/{s}.tsv", f"{lab_dir}/{s}.{lab_name}", pad_len, upsample
            )
        )
    _main(uid2refs, uid2hyps, verbose)


def _main(uid2refs, uid2hyps, verbose):
    (p_xy, ref2pid, hyp2lid, tot, frmdiff, skipped) = comp_joint_prob(
        uid2refs, uid2hyps
    )
    ref_pur_by_hyp, ref_pur = comp_purity(p_xy, axis=0)
    hyp_pur_by_ref, hyp_pur = comp_purity(p_xy, axis=1)
    (mi, mi_norm_by_ref, mi_norm_by_hyp, h_ref, h_hyp) = comp_norm_mutual_info(p_xy)
    outputs = {
        "ref pur": ref_pur,
        "hyp pur": hyp_pur,
        "H(ref)": h_ref,
        "H(hyp)": h_hyp,
        "MI": mi,
        "MI/H(ref)": mi_norm_by_ref,
        "ref segL": comp_avg_seg_dur(uid2refs.values()),
        "hyp segL": comp_avg_seg_dur(uid2hyps.values()),
        "p_xy shape": p_xy.shape,
        "frm tot": tot,
        "frm diff": frmdiff,
        "utt tot": len(uid2refs),
        "utt miss": len(skipped),
    }
    print(tabulate([outputs.values()], outputs.keys(), floatfmt=".4f"))


if __name__ == "__main__":
    """
    compute quality of labels with respect to phone or another labels if set
    """
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument("tsv_dir")
    parser.add_argument("lab_dir")
    parser.add_argument("lab_name")
    parser.add_argument("--lab_sets", default=["valid"], type=str, nargs="+")
    parser.add_argument(
        "--phn_dir",
        default="/checkpoint/wnhsu/data/librispeech/960h/fa/raw_phn/phone_frame_align_v1",
    )
    parser.add_argument(
        "--phn_sets", default=["dev-clean", "dev-other"], type=str, nargs="+"
    )
    parser.add_argument("--pad_len", default=0, type=int, help="padding for hypotheses")
    parser.add_argument(
        "--upsample", default=1, type=int, help="upsample factor for hypotheses"
    )
    parser.add_argument("--ref_lab_dir", default="")
    parser.add_argument("--ref_lab_name", default="")
    parser.add_argument("--verbose", action="store_true")
    args = parser.parse_args()

    if args.ref_lab_dir and args.ref_lab_name:
        main_lab_lab(
            args.tsv_dir,
            args.lab_dir,
            args.lab_name,
            args.lab_sets,
            args.ref_lab_dir,
            args.ref_lab_name,
            args.pad_len,
            args.upsample,
            args.verbose,
        )
    else:
        main_phn_lab(
            args.tsv_dir,
            args.lab_dir,
            args.lab_name,
            args.lab_sets,
            args.phn_dir,
            args.phn_sets,
            args.pad_len,
            args.upsample,
            args.verbose,
        )