Spaces:
Runtime error
Runtime error
JustinLin610
commited on
Commit
·
8437114
1
Parent(s):
6c83714
update
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +1 -1
- fairseq/.github/ISSUE_TEMPLATE.md +3 -0
- fairseq/.github/ISSUE_TEMPLATE/bug_report.md +43 -0
- fairseq/.github/ISSUE_TEMPLATE/documentation.md +15 -0
- fairseq/.github/ISSUE_TEMPLATE/feature_request.md +24 -0
- fairseq/.github/ISSUE_TEMPLATE/how-to-question.md +33 -0
- fairseq/.github/PULL_REQUEST_TEMPLATE.md +16 -0
- fairseq/.github/stale.yml +30 -0
- fairseq/.github/workflows/build.yml +55 -0
- fairseq/.github/workflows/build_wheels.yml +41 -0
- fairseq/.gitmodules +4 -0
- fairseq/CODE_OF_CONDUCT.md +77 -0
- fairseq/CONTRIBUTING.md +28 -0
- fairseq/LICENSE +21 -0
- fairseq/README.md +229 -0
- fairseq/examples/__init__.py +9 -0
- fairseq/examples/adaptive_span/README.md +90 -0
- fairseq/examples/adaptive_span/__init__.py +19 -0
- fairseq/examples/adaptive_span/adagrad_with_grad_clip.py +128 -0
- fairseq/examples/adaptive_span/adaptive_span_attention.py +160 -0
- fairseq/examples/adaptive_span/adaptive_span_loss.py +106 -0
- fairseq/examples/adaptive_span/adaptive_span_model.py +263 -0
- fairseq/examples/adaptive_span/adaptive_span_model_wrapper.py +145 -0
- fairseq/examples/adaptive_span/truncated_bptt_lm_task.py +281 -0
- fairseq/examples/backtranslation/README.md +297 -0
- fairseq/examples/backtranslation/deduplicate_lines.py +41 -0
- fairseq/examples/backtranslation/extract_bt_data.py +72 -0
- fairseq/examples/backtranslation/prepare-de-monolingual.sh +98 -0
- fairseq/examples/backtranslation/prepare-wmt18en2de.sh +135 -0
- fairseq/examples/backtranslation/sacrebleu.sh +37 -0
- fairseq/examples/backtranslation/tokenized_bleu.sh +46 -0
- fairseq/examples/bart/README.glue.md +99 -0
- fairseq/examples/bart/README.md +228 -0
- fairseq/examples/bart/README.summarization.md +102 -0
- fairseq/examples/bart/summarize.py +100 -0
- fairseq/examples/byte_level_bpe/README.md +88 -0
- fairseq/examples/byte_level_bpe/get_bitext.py +254 -0
- fairseq/examples/byte_level_bpe/get_data.sh +47 -0
- fairseq/examples/byte_level_bpe/gru_transformer.py +107 -0
- fairseq/examples/camembert/README.md +75 -0
- fairseq/examples/constrained_decoding/README.md +123 -0
- fairseq/examples/constrained_decoding/normalize.py +27 -0
- fairseq/examples/constrained_decoding/tok.py +34 -0
- fairseq/examples/conv_seq2seq/README.md +25 -0
- fairseq/examples/criss/README.md +61 -0
- fairseq/examples/criss/download_and_preprocess_flores_test.sh +64 -0
- fairseq/examples/criss/download_and_preprocess_tatoeba.sh +46 -0
- fairseq/examples/criss/mining/mine.py +240 -0
- fairseq/examples/criss/mining/mine_example.sh +103 -0
- fairseq/examples/criss/save_encoder.py +214 -0
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import os
|
2 |
|
3 |
-
os.system('
|
4 |
'pip install --use-feature=in-tree-build ./; cd ..')
|
5 |
os.system('ls -l')
|
6 |
|
|
|
1 |
import os
|
2 |
|
3 |
+
os.system('cd fairseq;'
|
4 |
'pip install --use-feature=in-tree-build ./; cd ..')
|
5 |
os.system('ls -l')
|
6 |
|
fairseq/.github/ISSUE_TEMPLATE.md
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
## 👉 [Please follow one of these issue templates](https://github.com/pytorch/fairseq/issues/new/choose) 👈
|
2 |
+
|
3 |
+
Note: to keep the backlog clean and actionable, issues may be immediately closed if they do not follow one of the above issue templates.
|
fairseq/.github/ISSUE_TEMPLATE/bug_report.md
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
name: 🐛 Bug Report
|
3 |
+
about: Submit a bug report to help us improve
|
4 |
+
labels: 'bug, needs triage'
|
5 |
+
---
|
6 |
+
|
7 |
+
## 🐛 Bug
|
8 |
+
|
9 |
+
<!-- A clear and concise description of what the bug is. -->
|
10 |
+
|
11 |
+
### To Reproduce
|
12 |
+
|
13 |
+
Steps to reproduce the behavior (**always include the command you ran**):
|
14 |
+
|
15 |
+
1. Run cmd '....'
|
16 |
+
2. See error
|
17 |
+
|
18 |
+
<!-- If you have a code sample, error messages, stack traces, please provide it here as well -->
|
19 |
+
|
20 |
+
|
21 |
+
#### Code sample
|
22 |
+
<!-- Ideally attach a minimal code sample to reproduce the decried issue.
|
23 |
+
Minimal means having the shortest code but still preserving the bug. -->
|
24 |
+
|
25 |
+
### Expected behavior
|
26 |
+
|
27 |
+
<!-- A clear and concise description of what you expected to happen. -->
|
28 |
+
|
29 |
+
### Environment
|
30 |
+
|
31 |
+
- fairseq Version (e.g., 1.0 or main):
|
32 |
+
- PyTorch Version (e.g., 1.0)
|
33 |
+
- OS (e.g., Linux):
|
34 |
+
- How you installed fairseq (`pip`, source):
|
35 |
+
- Build command you used (if compiling from source):
|
36 |
+
- Python version:
|
37 |
+
- CUDA/cuDNN version:
|
38 |
+
- GPU models and configuration:
|
39 |
+
- Any other relevant information:
|
40 |
+
|
41 |
+
### Additional context
|
42 |
+
|
43 |
+
<!-- Add any other context about the problem here. -->
|
fairseq/.github/ISSUE_TEMPLATE/documentation.md
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
name: 📚 Documentation/Typos
|
3 |
+
about: Report an issue related to documentation or a typo
|
4 |
+
labels: 'documentation, needs triage'
|
5 |
+
---
|
6 |
+
|
7 |
+
## 📚 Documentation
|
8 |
+
|
9 |
+
For typos and doc fixes, please go ahead and:
|
10 |
+
|
11 |
+
1. Create an issue.
|
12 |
+
2. Fix the typo.
|
13 |
+
3. Submit a PR.
|
14 |
+
|
15 |
+
Thanks!
|
fairseq/.github/ISSUE_TEMPLATE/feature_request.md
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
name: 🚀 Feature Request
|
3 |
+
about: Submit a proposal/request for a new feature
|
4 |
+
labels: 'enhancement, help wanted, needs triage'
|
5 |
+
---
|
6 |
+
|
7 |
+
## 🚀 Feature Request
|
8 |
+
<!-- A clear and concise description of the feature proposal -->
|
9 |
+
|
10 |
+
### Motivation
|
11 |
+
|
12 |
+
<!-- Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too -->
|
13 |
+
|
14 |
+
### Pitch
|
15 |
+
|
16 |
+
<!-- A clear and concise description of what you want to happen. -->
|
17 |
+
|
18 |
+
### Alternatives
|
19 |
+
|
20 |
+
<!-- A clear and concise description of any alternative solutions or features you've considered, if any. -->
|
21 |
+
|
22 |
+
### Additional context
|
23 |
+
|
24 |
+
<!-- Add any other context or screenshots about the feature request here. -->
|
fairseq/.github/ISSUE_TEMPLATE/how-to-question.md
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
name: ❓ Questions/Help
|
3 |
+
about: If you have questions, please first search existing issues and docs
|
4 |
+
labels: 'question, needs triage'
|
5 |
+
---
|
6 |
+
|
7 |
+
## ❓ Questions and Help
|
8 |
+
|
9 |
+
### Before asking:
|
10 |
+
1. search the issues.
|
11 |
+
2. search the docs.
|
12 |
+
|
13 |
+
<!-- If you still can't find what you need: -->
|
14 |
+
|
15 |
+
#### What is your question?
|
16 |
+
|
17 |
+
#### Code
|
18 |
+
|
19 |
+
<!-- Please paste a code snippet if your question requires it! -->
|
20 |
+
|
21 |
+
#### What have you tried?
|
22 |
+
|
23 |
+
#### What's your environment?
|
24 |
+
|
25 |
+
- fairseq Version (e.g., 1.0 or main):
|
26 |
+
- PyTorch Version (e.g., 1.0)
|
27 |
+
- OS (e.g., Linux):
|
28 |
+
- How you installed fairseq (`pip`, source):
|
29 |
+
- Build command you used (if compiling from source):
|
30 |
+
- Python version:
|
31 |
+
- CUDA/cuDNN version:
|
32 |
+
- GPU models and configuration:
|
33 |
+
- Any other relevant information:
|
fairseq/.github/PULL_REQUEST_TEMPLATE.md
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Before submitting
|
2 |
+
|
3 |
+
- [ ] Was this discussed/approved via a Github issue? (no need for typos, doc improvements)
|
4 |
+
- [ ] Did you read the [contributor guideline](https://github.com/pytorch/fairseq/blob/main/CONTRIBUTING.md)?
|
5 |
+
- [ ] Did you make sure to update the docs?
|
6 |
+
- [ ] Did you write any new necessary tests?
|
7 |
+
|
8 |
+
## What does this PR do?
|
9 |
+
Fixes # (issue).
|
10 |
+
|
11 |
+
## PR review
|
12 |
+
Anyone in the community is free to review the PR once the tests have passed.
|
13 |
+
If we didn't discuss your PR in Github issues there's a high chance it will not be merged.
|
14 |
+
|
15 |
+
## Did you have fun?
|
16 |
+
Make sure you had fun coding 🙃
|
fairseq/.github/stale.yml
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Configuration for probot-stale - https://github.com/probot/stale
|
2 |
+
# Mostly copied from github.com/facebook/react/blob/master/.github/stale.yml
|
3 |
+
# Number of days of inactivity before an issue becomes stale
|
4 |
+
daysUntilStale: 90
|
5 |
+
# Number of days of inactivity before a stale issue is closed
|
6 |
+
daysUntilClose: 7
|
7 |
+
# Issues with these labels will never be considered stale
|
8 |
+
exemptLabels:
|
9 |
+
- bug
|
10 |
+
# Label to use when marking an issue as stale
|
11 |
+
staleLabel: stale
|
12 |
+
issues:
|
13 |
+
# Comment to post when marking an issue as stale.
|
14 |
+
markComment: >
|
15 |
+
This issue has been automatically marked as stale.
|
16 |
+
**If this issue is still affecting you, please leave any comment** (for example, "bump"), and we'll keep it open.
|
17 |
+
We are sorry that we haven't been able to prioritize it yet. If you have any new additional information, please include it with your comment!
|
18 |
+
# Comment to post when closing a stale issue.
|
19 |
+
closeComment: >
|
20 |
+
Closing this issue after a prolonged period of inactivity. If this issue is still present in the latest release, please create a new issue with up-to-date information. Thank you!
|
21 |
+
pulls:
|
22 |
+
# Comment to post when marking a pull request as stale.
|
23 |
+
markComment: >
|
24 |
+
This pull request has been automatically marked as stale.
|
25 |
+
**If this pull request is still relevant, please leave any comment** (for example, "bump"), and we'll keep it open.
|
26 |
+
We are sorry that we haven't been able to prioritize reviewing it yet. Your contribution is very much appreciated.
|
27 |
+
# Comment to post when closing a stale pull request.
|
28 |
+
closeComment: >
|
29 |
+
Closing this pull request after a prolonged period of inactivity. If this issue is still present in the latest release, please ask for this pull request to be reopened. Thank you!
|
30 |
+
|
fairseq/.github/workflows/build.yml
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: build
|
2 |
+
|
3 |
+
on:
|
4 |
+
# Trigger the workflow on push to main or any pull request
|
5 |
+
push:
|
6 |
+
branches:
|
7 |
+
- main
|
8 |
+
pull_request:
|
9 |
+
|
10 |
+
jobs:
|
11 |
+
build:
|
12 |
+
|
13 |
+
strategy:
|
14 |
+
max-parallel: 4
|
15 |
+
matrix:
|
16 |
+
platform: [ubuntu-latest, macos-latest]
|
17 |
+
python-version: [3.6, 3.7]
|
18 |
+
|
19 |
+
runs-on: ${{ matrix.platform }}
|
20 |
+
|
21 |
+
steps:
|
22 |
+
- uses: actions/checkout@v2
|
23 |
+
|
24 |
+
- name: Set up Python ${{ matrix.python-version }}
|
25 |
+
uses: actions/setup-python@v2
|
26 |
+
with:
|
27 |
+
python-version: ${{ matrix.python-version }}
|
28 |
+
|
29 |
+
- name: Conditionally install pytorch
|
30 |
+
if: matrix.platform == 'windows-latest'
|
31 |
+
run: pip3 install torch -f https://download.pytorch.org/whl/torch_stable.html
|
32 |
+
|
33 |
+
- name: Install locally
|
34 |
+
run: |
|
35 |
+
python -m pip install --upgrade pip
|
36 |
+
git submodule update --init --recursive
|
37 |
+
python setup.py build_ext --inplace
|
38 |
+
python -m pip install --editable .
|
39 |
+
|
40 |
+
- name: Install optional test requirements
|
41 |
+
run: |
|
42 |
+
python -m pip install iopath transformers pyarrow
|
43 |
+
python -m pip install git+https://github.com/facebookresearch/fairscale.git@main
|
44 |
+
|
45 |
+
- name: Lint with flake8
|
46 |
+
run: |
|
47 |
+
pip install flake8
|
48 |
+
# stop the build if there are Python syntax errors or undefined names
|
49 |
+
flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics --extend-exclude fairseq/model_parallel/megatron
|
50 |
+
# exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
|
51 |
+
flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics --extend-exclude fairseq/model_parallel/megatron
|
52 |
+
|
53 |
+
- name: Run tests
|
54 |
+
run: |
|
55 |
+
python setup.py test
|
fairseq/.github/workflows/build_wheels.yml
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: build_wheels
|
2 |
+
|
3 |
+
on:
|
4 |
+
push:
|
5 |
+
branches:
|
6 |
+
- v[0-9]+.[0-9]+.[x0-9]+
|
7 |
+
tags:
|
8 |
+
- v*
|
9 |
+
|
10 |
+
jobs:
|
11 |
+
build_wheels:
|
12 |
+
name: Build wheels on ${{ matrix.os }}
|
13 |
+
runs-on: ${{ matrix.os }}
|
14 |
+
strategy:
|
15 |
+
matrix:
|
16 |
+
os: [ubuntu-latest, macos-latest]
|
17 |
+
|
18 |
+
steps:
|
19 |
+
- uses: actions/checkout@v2
|
20 |
+
|
21 |
+
- name: Install Python
|
22 |
+
uses: actions/setup-python@v2
|
23 |
+
with:
|
24 |
+
python-version: '3.7'
|
25 |
+
|
26 |
+
- name: Install cibuildwheel
|
27 |
+
run: |
|
28 |
+
python -m pip install cibuildwheel
|
29 |
+
|
30 |
+
- name: Build wheels for CPython
|
31 |
+
run: |
|
32 |
+
python -m cibuildwheel --output-dir dist
|
33 |
+
env:
|
34 |
+
CIBW_BUILD: "cp36-*64 cp37-*64 cp38-*64"
|
35 |
+
CIBW_MANYLINUX_X86_64_IMAGE: manylinux1
|
36 |
+
CIBW_BEFORE_BUILD: git submodule update --init --recursive && pip install .
|
37 |
+
|
38 |
+
- uses: actions/upload-artifact@v2
|
39 |
+
with:
|
40 |
+
name: wheels
|
41 |
+
path: ./dist/*.whl
|
fairseq/.gitmodules
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[submodule "fairseq/model_parallel/megatron"]
|
2 |
+
path = fairseq/model_parallel/megatron
|
3 |
+
url = https://github.com/ngoyal2707/Megatron-LM
|
4 |
+
branch = fairseq
|
fairseq/CODE_OF_CONDUCT.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Code of Conduct
|
2 |
+
|
3 |
+
## Our Pledge
|
4 |
+
|
5 |
+
In the interest of fostering an open and welcoming environment, we as
|
6 |
+
contributors and maintainers pledge to make participation in our project and
|
7 |
+
our community a harassment-free experience for everyone, regardless of age, body
|
8 |
+
size, disability, ethnicity, sex characteristics, gender identity and expression,
|
9 |
+
level of experience, education, socio-economic status, nationality, personal
|
10 |
+
appearance, race, religion, or sexual identity and orientation.
|
11 |
+
|
12 |
+
## Our Standards
|
13 |
+
|
14 |
+
Examples of behavior that contributes to creating a positive environment
|
15 |
+
include:
|
16 |
+
|
17 |
+
* Using welcoming and inclusive language
|
18 |
+
* Being respectful of differing viewpoints and experiences
|
19 |
+
* Gracefully accepting constructive criticism
|
20 |
+
* Focusing on what is best for the community
|
21 |
+
* Showing empathy towards other community members
|
22 |
+
|
23 |
+
Examples of unacceptable behavior by participants include:
|
24 |
+
|
25 |
+
* The use of sexualized language or imagery and unwelcome sexual attention or
|
26 |
+
advances
|
27 |
+
* Trolling, insulting/derogatory comments, and personal or political attacks
|
28 |
+
* Public or private harassment
|
29 |
+
* Publishing others' private information, such as a physical or electronic
|
30 |
+
address, without explicit permission
|
31 |
+
* Other conduct which could reasonably be considered inappropriate in a
|
32 |
+
professional setting
|
33 |
+
|
34 |
+
## Our Responsibilities
|
35 |
+
|
36 |
+
Project maintainers are responsible for clarifying the standards of acceptable
|
37 |
+
behavior and are expected to take appropriate and fair corrective action in
|
38 |
+
response to any instances of unacceptable behavior.
|
39 |
+
|
40 |
+
Project maintainers have the right and responsibility to remove, edit, or
|
41 |
+
reject comments, commits, code, wiki edits, issues, and other contributions
|
42 |
+
that are not aligned to this Code of Conduct, or to ban temporarily or
|
43 |
+
permanently any contributor for other behaviors that they deem inappropriate,
|
44 |
+
threatening, offensive, or harmful.
|
45 |
+
|
46 |
+
## Scope
|
47 |
+
|
48 |
+
This Code of Conduct applies within all project spaces, and it also applies when
|
49 |
+
an individual is representing the project or its community in public spaces.
|
50 |
+
Examples of representing a project or community include using an official
|
51 |
+
project e-mail address, posting via an official social media account, or acting
|
52 |
+
as an appointed representative at an online or offline event. Representation of
|
53 |
+
a project may be further defined and clarified by project maintainers.
|
54 |
+
|
55 |
+
## Enforcement
|
56 |
+
|
57 |
+
Instances of abusive, harassing, or otherwise unacceptable behavior may be
|
58 |
+
reported by contacting the project team at <conduct@pytorch.org>. All
|
59 |
+
complaints will be reviewed and investigated and will result in a response that
|
60 |
+
is deemed necessary and appropriate to the circumstances. The project team is
|
61 |
+
obligated to maintain confidentiality with regard to the reporter of an incident.
|
62 |
+
Further details of specific enforcement policies may be posted separately.
|
63 |
+
|
64 |
+
Project maintainers who do not follow or enforce the Code of Conduct in good
|
65 |
+
faith may face temporary or permanent repercussions as determined by other
|
66 |
+
members of the project's leadership.
|
67 |
+
|
68 |
+
## Attribution
|
69 |
+
|
70 |
+
This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
|
71 |
+
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
|
72 |
+
|
73 |
+
[homepage]: https://www.contributor-covenant.org
|
74 |
+
|
75 |
+
For answers to common questions about this code of conduct, see
|
76 |
+
https://www.contributor-covenant.org/faq
|
77 |
+
|
fairseq/CONTRIBUTING.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Contributing to Facebook AI Research Sequence-to-Sequence Toolkit (fairseq)
|
2 |
+
We want to make contributing to this project as easy and transparent as
|
3 |
+
possible.
|
4 |
+
|
5 |
+
## Pull Requests
|
6 |
+
We actively welcome your pull requests.
|
7 |
+
|
8 |
+
1. Fork the repo and create your branch from `main`.
|
9 |
+
2. If you've added code that should be tested, add tests.
|
10 |
+
3. If you've changed APIs, update the documentation.
|
11 |
+
4. Ensure the test suite passes.
|
12 |
+
5. Make sure your code lints.
|
13 |
+
6. If you haven't already, complete the Contributor License Agreement ("CLA").
|
14 |
+
|
15 |
+
## Contributor License Agreement ("CLA")
|
16 |
+
In order to accept your pull request, we need you to submit a CLA. You only need
|
17 |
+
to do this once to work on any of Facebook's open source projects.
|
18 |
+
|
19 |
+
Complete your CLA here: <https://code.facebook.com/cla>
|
20 |
+
|
21 |
+
## Issues
|
22 |
+
We use GitHub issues to track public bugs. Please ensure your description is
|
23 |
+
clear and has sufficient instructions to be able to reproduce the issue.
|
24 |
+
|
25 |
+
## License
|
26 |
+
By contributing to Facebook AI Research Sequence-to-Sequence Toolkit (fairseq),
|
27 |
+
you agree that your contributions will be licensed under the LICENSE file in
|
28 |
+
the root directory of this source tree.
|
fairseq/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) Facebook, Inc. and its affiliates.
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
fairseq/README.md
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p align="center">
|
2 |
+
<img src="docs/fairseq_logo.png" width="150">
|
3 |
+
<br />
|
4 |
+
<br />
|
5 |
+
<a href="https://github.com/pytorch/fairseq/blob/main/LICENSE"><img alt="MIT License" src="https://img.shields.io/badge/license-MIT-blue.svg" /></a>
|
6 |
+
<a href="https://github.com/pytorch/fairseq/releases"><img alt="Latest Release" src="https://img.shields.io/github/release/pytorch/fairseq.svg" /></a>
|
7 |
+
<a href="https://github.com/pytorch/fairseq/actions?query=workflow:build"><img alt="Build Status" src="https://github.com/pytorch/fairseq/workflows/build/badge.svg" /></a>
|
8 |
+
<a href="https://fairseq.readthedocs.io/en/latest/?badge=latest"><img alt="Documentation Status" src="https://readthedocs.org/projects/fairseq/badge/?version=latest" /></a>
|
9 |
+
</p>
|
10 |
+
|
11 |
+
--------------------------------------------------------------------------------
|
12 |
+
|
13 |
+
Fairseq(-py) is a sequence modeling toolkit that allows researchers and
|
14 |
+
developers to train custom models for translation, summarization, language
|
15 |
+
modeling and other text generation tasks.
|
16 |
+
|
17 |
+
We provide reference implementations of various sequence modeling papers:
|
18 |
+
|
19 |
+
<details><summary>List of implemented papers</summary><p>
|
20 |
+
|
21 |
+
* **Convolutional Neural Networks (CNN)**
|
22 |
+
+ [Language Modeling with Gated Convolutional Networks (Dauphin et al., 2017)](examples/language_model/conv_lm/README.md)
|
23 |
+
+ [Convolutional Sequence to Sequence Learning (Gehring et al., 2017)](examples/conv_seq2seq/README.md)
|
24 |
+
+ [Classical Structured Prediction Losses for Sequence to Sequence Learning (Edunov et al., 2018)](https://github.com/pytorch/fairseq/tree/classic_seqlevel)
|
25 |
+
+ [Hierarchical Neural Story Generation (Fan et al., 2018)](examples/stories/README.md)
|
26 |
+
+ [wav2vec: Unsupervised Pre-training for Speech Recognition (Schneider et al., 2019)](examples/wav2vec/README.md)
|
27 |
+
* **LightConv and DynamicConv models**
|
28 |
+
+ [Pay Less Attention with Lightweight and Dynamic Convolutions (Wu et al., 2019)](examples/pay_less_attention_paper/README.md)
|
29 |
+
* **Long Short-Term Memory (LSTM) networks**
|
30 |
+
+ Effective Approaches to Attention-based Neural Machine Translation (Luong et al., 2015)
|
31 |
+
* **Transformer (self-attention) networks**
|
32 |
+
+ Attention Is All You Need (Vaswani et al., 2017)
|
33 |
+
+ [Scaling Neural Machine Translation (Ott et al., 2018)](examples/scaling_nmt/README.md)
|
34 |
+
+ [Understanding Back-Translation at Scale (Edunov et al., 2018)](examples/backtranslation/README.md)
|
35 |
+
+ [Adaptive Input Representations for Neural Language Modeling (Baevski and Auli, 2018)](examples/language_model/README.adaptive_inputs.md)
|
36 |
+
+ [Lexically constrained decoding with dynamic beam allocation (Post & Vilar, 2018)](examples/constrained_decoding/README.md)
|
37 |
+
+ [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context (Dai et al., 2019)](examples/truncated_bptt/README.md)
|
38 |
+
+ [Adaptive Attention Span in Transformers (Sukhbaatar et al., 2019)](examples/adaptive_span/README.md)
|
39 |
+
+ [Mixture Models for Diverse Machine Translation: Tricks of the Trade (Shen et al., 2019)](examples/translation_moe/README.md)
|
40 |
+
+ [RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al., 2019)](examples/roberta/README.md)
|
41 |
+
+ [Facebook FAIR's WMT19 News Translation Task Submission (Ng et al., 2019)](examples/wmt19/README.md)
|
42 |
+
+ [Jointly Learning to Align and Translate with Transformer Models (Garg et al., 2019)](examples/joint_alignment_translation/README.md )
|
43 |
+
+ [Multilingual Denoising Pre-training for Neural Machine Translation (Liu et at., 2020)](examples/mbart/README.md)
|
44 |
+
+ [Neural Machine Translation with Byte-Level Subwords (Wang et al., 2020)](examples/byte_level_bpe/README.md)
|
45 |
+
+ [Unsupervised Quality Estimation for Neural Machine Translation (Fomicheva et al., 2020)](examples/unsupervised_quality_estimation/README.md)
|
46 |
+
+ [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations (Baevski et al., 2020)](examples/wav2vec/README.md)
|
47 |
+
+ [Generating Medical Reports from Patient-Doctor Conversations Using Sequence-to-Sequence Models (Enarvi et al., 2020)](examples/pointer_generator/README.md)
|
48 |
+
+ [Linformer: Self-Attention with Linear Complexity (Wang et al., 2020)](examples/linformer/README.md)
|
49 |
+
+ [Cross-lingual Retrieval for Iterative Self-Supervised Training (Tran et al., 2020)](examples/criss/README.md)
|
50 |
+
+ [Deep Transformers with Latent Depth (Li et al., 2020)](examples/latent_depth/README.md)
|
51 |
+
+ [Unsupervised Cross-lingual Representation Learning for Speech Recognition (Conneau et al., 2020)](https://arxiv.org/abs/2006.13979)
|
52 |
+
+ [Robust wav2vec 2.0: Analyzing Domain Shift in Self-Supervised Pre-Training (Hsu, et al., 2021)](https://arxiv.org/abs/2104.01027)
|
53 |
+
+ [Unsupervised Speech Recognition (Baevski, et al., 2021)](https://arxiv.org/abs/2105.11084)
|
54 |
+
* **Non-autoregressive Transformers**
|
55 |
+
+ Non-Autoregressive Neural Machine Translation (Gu et al., 2017)
|
56 |
+
+ Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Refinement (Lee et al. 2018)
|
57 |
+
+ Insertion Transformer: Flexible Sequence Generation via Insertion Operations (Stern et al. 2019)
|
58 |
+
+ Mask-Predict: Parallel Decoding of Conditional Masked Language Models (Ghazvininejad et al., 2019)
|
59 |
+
+ [Levenshtein Transformer (Gu et al., 2019)](examples/nonautoregressive_translation/README.md)
|
60 |
+
* **Finetuning**
|
61 |
+
+ [Better Fine-Tuning by Reducing Representational Collapse (Aghajanyan et al. 2020)](examples/rxf/README.md)
|
62 |
+
|
63 |
+
</p></details>
|
64 |
+
|
65 |
+
### What's New:
|
66 |
+
|
67 |
+
* September 2021 [`master` branch renamed to `main`](https://github.com/github/renaming).
|
68 |
+
* July 2021 [Released DrNMT code](examples/discriminative_reranking_nmt/README.md)
|
69 |
+
* July 2021 [Released Robust wav2vec 2.0 model](examples/wav2vec/README.md)
|
70 |
+
* June 2021 [Released XLMR-XL and XLMR-XXL models](examples/xlmr/README.md)
|
71 |
+
* May 2021 [Released Unsupervised Speech Recognition code](examples/wav2vec/unsupervised/README.md)
|
72 |
+
* March 2021 [Added full parameter and optimizer state sharding + CPU offloading](examples/fully_sharded_data_parallel/README.md)
|
73 |
+
* February 2021 [Added LASER training code](examples/laser/README.md)
|
74 |
+
* December 2020: [Added Adaptive Attention Span code](examples/adaptive_span/README.md)
|
75 |
+
* December 2020: [GottBERT model and code released](examples/gottbert/README.md)
|
76 |
+
* November 2020: Adopted the [Hydra](https://github.com/facebookresearch/hydra) configuration framework
|
77 |
+
* [see documentation explaining how to use it for new and existing projects](docs/hydra_integration.md)
|
78 |
+
* November 2020: [fairseq 0.10.0 released](https://github.com/pytorch/fairseq/releases/tag/v0.10.0)
|
79 |
+
* October 2020: [Added R3F/R4F (Better Fine-Tuning) code](examples/rxf/README.md)
|
80 |
+
* October 2020: [Deep Transformer with Latent Depth code released](examples/latent_depth/README.md)
|
81 |
+
* October 2020: [Added CRISS models and code](examples/criss/README.md)
|
82 |
+
|
83 |
+
<details><summary>Previous updates</summary><p>
|
84 |
+
|
85 |
+
* September 2020: [Added Linformer code](examples/linformer/README.md)
|
86 |
+
* September 2020: [Added pointer-generator networks](examples/pointer_generator/README.md)
|
87 |
+
* August 2020: [Added lexically constrained decoding](examples/constrained_decoding/README.md)
|
88 |
+
* August 2020: [wav2vec2 models and code released](examples/wav2vec/README.md)
|
89 |
+
* July 2020: [Unsupervised Quality Estimation code released](examples/unsupervised_quality_estimation/README.md)
|
90 |
+
* May 2020: [Follow fairseq on Twitter](https://twitter.com/fairseq)
|
91 |
+
* April 2020: [Monotonic Multihead Attention code released](examples/simultaneous_translation/README.md)
|
92 |
+
* April 2020: [Quant-Noise code released](examples/quant_noise/README.md)
|
93 |
+
* April 2020: [Initial model parallel support and 11B parameters unidirectional LM released](examples/megatron_11b/README.md)
|
94 |
+
* March 2020: [Byte-level BPE code released](examples/byte_level_bpe/README.md)
|
95 |
+
* February 2020: [mBART model and code released](examples/mbart/README.md)
|
96 |
+
* February 2020: [Added tutorial for back-translation](https://github.com/pytorch/fairseq/tree/main/examples/backtranslation#training-your-own-model-wmt18-english-german)
|
97 |
+
* December 2019: [fairseq 0.9.0 released](https://github.com/pytorch/fairseq/releases/tag/v0.9.0)
|
98 |
+
* November 2019: [VizSeq released (a visual analysis toolkit for evaluating fairseq models)](https://facebookresearch.github.io/vizseq/docs/getting_started/fairseq_example)
|
99 |
+
* November 2019: [CamemBERT model and code released](examples/camembert/README.md)
|
100 |
+
* November 2019: [BART model and code released](examples/bart/README.md)
|
101 |
+
* November 2019: [XLM-R models and code released](examples/xlmr/README.md)
|
102 |
+
* September 2019: [Nonautoregressive translation code released](examples/nonautoregressive_translation/README.md)
|
103 |
+
* August 2019: [WMT'19 models released](examples/wmt19/README.md)
|
104 |
+
* July 2019: fairseq relicensed under MIT license
|
105 |
+
* July 2019: [RoBERTa models and code released](examples/roberta/README.md)
|
106 |
+
* June 2019: [wav2vec models and code released](examples/wav2vec/README.md)
|
107 |
+
|
108 |
+
</p></details>
|
109 |
+
|
110 |
+
### Features:
|
111 |
+
|
112 |
+
* multi-GPU training on one machine or across multiple machines (data and model parallel)
|
113 |
+
* fast generation on both CPU and GPU with multiple search algorithms implemented:
|
114 |
+
+ beam search
|
115 |
+
+ Diverse Beam Search ([Vijayakumar et al., 2016](https://arxiv.org/abs/1610.02424))
|
116 |
+
+ sampling (unconstrained, top-k and top-p/nucleus)
|
117 |
+
+ [lexically constrained decoding](examples/constrained_decoding/README.md) (Post & Vilar, 2018)
|
118 |
+
* [gradient accumulation](https://fairseq.readthedocs.io/en/latest/getting_started.html#large-mini-batch-training-with-delayed-updates) enables training with large mini-batches even on a single GPU
|
119 |
+
* [mixed precision training](https://fairseq.readthedocs.io/en/latest/getting_started.html#training-with-half-precision-floating-point-fp16) (trains faster with less GPU memory on [NVIDIA tensor cores](https://developer.nvidia.com/tensor-cores))
|
120 |
+
* [extensible](https://fairseq.readthedocs.io/en/latest/overview.html): easily register new models, criterions, tasks, optimizers and learning rate schedulers
|
121 |
+
* [flexible configuration](docs/hydra_integration.md) based on [Hydra](https://github.com/facebookresearch/hydra) allowing a combination of code, command-line and file based configuration
|
122 |
+
* [full parameter and optimizer state sharding](examples/fully_sharded_data_parallel/README.md)
|
123 |
+
* [offloading parameters to CPU](examples/fully_sharded_data_parallel/README.md)
|
124 |
+
|
125 |
+
We also provide [pre-trained models for translation and language modeling](#pre-trained-models-and-examples)
|
126 |
+
with a convenient `torch.hub` interface:
|
127 |
+
|
128 |
+
``` python
|
129 |
+
en2de = torch.hub.load('pytorch/fairseq', 'transformer.wmt19.en-de.single_model')
|
130 |
+
en2de.translate('Hello world', beam=5)
|
131 |
+
# 'Hallo Welt'
|
132 |
+
```
|
133 |
+
|
134 |
+
See the PyTorch Hub tutorials for [translation](https://pytorch.org/hub/pytorch_fairseq_translation/)
|
135 |
+
and [RoBERTa](https://pytorch.org/hub/pytorch_fairseq_roberta/) for more examples.
|
136 |
+
|
137 |
+
# Requirements and Installation
|
138 |
+
|
139 |
+
* [PyTorch](http://pytorch.org/) version >= 1.5.0
|
140 |
+
* Python version >= 3.6
|
141 |
+
* For training new models, you'll also need an NVIDIA GPU and [NCCL](https://github.com/NVIDIA/nccl)
|
142 |
+
* **To install fairseq** and develop locally:
|
143 |
+
|
144 |
+
``` bash
|
145 |
+
git clone https://github.com/pytorch/fairseq
|
146 |
+
cd fairseq
|
147 |
+
pip install --editable ./
|
148 |
+
|
149 |
+
# on MacOS:
|
150 |
+
# CFLAGS="-stdlib=libc++" pip install --editable ./
|
151 |
+
|
152 |
+
# to install the latest stable release (0.10.x)
|
153 |
+
# pip install fairseq
|
154 |
+
```
|
155 |
+
|
156 |
+
* **For faster training** install NVIDIA's [apex](https://github.com/NVIDIA/apex) library:
|
157 |
+
|
158 |
+
``` bash
|
159 |
+
git clone https://github.com/NVIDIA/apex
|
160 |
+
cd apex
|
161 |
+
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" \
|
162 |
+
--global-option="--deprecated_fused_adam" --global-option="--xentropy" \
|
163 |
+
--global-option="--fast_multihead_attn" ./
|
164 |
+
```
|
165 |
+
|
166 |
+
* **For large datasets** install [PyArrow](https://arrow.apache.org/docs/python/install.html#using-pip): `pip install pyarrow`
|
167 |
+
* If you use Docker make sure to increase the shared memory size either with `--ipc=host` or `--shm-size`
|
168 |
+
as command line options to `nvidia-docker run` .
|
169 |
+
|
170 |
+
# Getting Started
|
171 |
+
|
172 |
+
The [full documentation](https://fairseq.readthedocs.io/) contains instructions
|
173 |
+
for getting started, training new models and extending fairseq with new model
|
174 |
+
types and tasks.
|
175 |
+
|
176 |
+
# Pre-trained models and examples
|
177 |
+
|
178 |
+
We provide pre-trained models and pre-processed, binarized test sets for several tasks listed below,
|
179 |
+
as well as example training and evaluation commands.
|
180 |
+
|
181 |
+
* [Translation](examples/translation/README.md): convolutional and transformer models are available
|
182 |
+
* [Language Modeling](examples/language_model/README.md): convolutional and transformer models are available
|
183 |
+
|
184 |
+
We also have more detailed READMEs to reproduce results from specific papers:
|
185 |
+
|
186 |
+
* [Cross-lingual Retrieval for Iterative Self-Supervised Training (Tran et al., 2020)](examples/criss/README.md)
|
187 |
+
* [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations (Baevski et al., 2020)](examples/wav2vec/README.md)
|
188 |
+
* [Unsupervised Quality Estimation for Neural Machine Translation (Fomicheva et al., 2020)](examples/unsupervised_quality_estimation/README.md)
|
189 |
+
* [Training with Quantization Noise for Extreme Model Compression ({Fan*, Stock*} et al., 2020)](examples/quant_noise/README.md)
|
190 |
+
* [Neural Machine Translation with Byte-Level Subwords (Wang et al., 2020)](examples/byte_level_bpe/README.md)
|
191 |
+
* [Multilingual Denoising Pre-training for Neural Machine Translation (Liu et at., 2020)](examples/mbart/README.md)
|
192 |
+
* [Reducing Transformer Depth on Demand with Structured Dropout (Fan et al., 2019)](examples/layerdrop/README.md)
|
193 |
+
* [Jointly Learning to Align and Translate with Transformer Models (Garg et al., 2019)](examples/joint_alignment_translation/README.md)
|
194 |
+
* [Levenshtein Transformer (Gu et al., 2019)](examples/nonautoregressive_translation/README.md)
|
195 |
+
* [Facebook FAIR's WMT19 News Translation Task Submission (Ng et al., 2019)](examples/wmt19/README.md)
|
196 |
+
* [RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al., 2019)](examples/roberta/README.md)
|
197 |
+
* [wav2vec: Unsupervised Pre-training for Speech Recognition (Schneider et al., 2019)](examples/wav2vec/README.md)
|
198 |
+
* [Mixture Models for Diverse Machine Translation: Tricks of the Trade (Shen et al., 2019)](examples/translation_moe/README.md)
|
199 |
+
* [Pay Less Attention with Lightweight and Dynamic Convolutions (Wu et al., 2019)](examples/pay_less_attention_paper/README.md)
|
200 |
+
* [Understanding Back-Translation at Scale (Edunov et al., 2018)](examples/backtranslation/README.md)
|
201 |
+
* [Classical Structured Prediction Losses for Sequence to Sequence Learning (Edunov et al., 2018)](https://github.com/pytorch/fairseq/tree/classic_seqlevel)
|
202 |
+
* [Hierarchical Neural Story Generation (Fan et al., 2018)](examples/stories/README.md)
|
203 |
+
* [Scaling Neural Machine Translation (Ott et al., 2018)](examples/scaling_nmt/README.md)
|
204 |
+
* [Convolutional Sequence to Sequence Learning (Gehring et al., 2017)](examples/conv_seq2seq/README.md)
|
205 |
+
* [Language Modeling with Gated Convolutional Networks (Dauphin et al., 2017)](examples/language_model/README.conv.md)
|
206 |
+
|
207 |
+
# Join the fairseq community
|
208 |
+
|
209 |
+
* Twitter: https://twitter.com/fairseq
|
210 |
+
* Facebook page: https://www.facebook.com/groups/fairseq.users
|
211 |
+
* Google group: https://groups.google.com/forum/#!forum/fairseq-users
|
212 |
+
|
213 |
+
# License
|
214 |
+
|
215 |
+
fairseq(-py) is MIT-licensed.
|
216 |
+
The license applies to the pre-trained models as well.
|
217 |
+
|
218 |
+
# Citation
|
219 |
+
|
220 |
+
Please cite as:
|
221 |
+
|
222 |
+
``` bibtex
|
223 |
+
@inproceedings{ott2019fairseq,
|
224 |
+
title = {fairseq: A Fast, Extensible Toolkit for Sequence Modeling},
|
225 |
+
author = {Myle Ott and Sergey Edunov and Alexei Baevski and Angela Fan and Sam Gross and Nathan Ng and David Grangier and Michael Auli},
|
226 |
+
booktitle = {Proceedings of NAACL-HLT 2019: Demonstrations},
|
227 |
+
year = {2019},
|
228 |
+
}
|
229 |
+
```
|
fairseq/examples/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
try:
|
7 |
+
from fairseq.version import __version__ # noqa
|
8 |
+
except ImportError:
|
9 |
+
pass
|
fairseq/examples/adaptive_span/README.md
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adaptive Span
|
2 |
+
|
3 |
+
Adaptive Span is a novel self-attention mechanism that can learn its optimal
|
4 |
+
attention span. This allows us to extend significantly the maximum context size
|
5 |
+
used in Transformer, while maintaining control over their memory footprint
|
6 |
+
and computational time. It uses the Truncated BPTT technique for training,
|
7 |
+
as in [transformerXL](https://github.com/pytorch/fairseq/blob/main/examples/truncated_bptt/README.md).
|
8 |
+
|
9 |
+
Adaptive Span was introduced by paper:
|
10 |
+
[Adaptive Attention Span in Transformers](https://arxiv.org/abs/1905.07799),
|
11 |
+
which achieved state-of-the-art language modeling results at the time of publication.
|
12 |
+
|
13 |
+
We manage to reproduce their result in fairseq and keep most of the
|
14 |
+
[original implementation](https://github.com/facebookresearch/adaptive-span) untouched.
|
15 |
+
You can refer to the their sweep file as well if any combination of hyperparameter is not clear.
|
16 |
+
|
17 |
+
##### 0. Setup
|
18 |
+
|
19 |
+
First you need to process the Enwik8 dataset, we use the pre-tokenized dataset
|
20 |
+
from [adaptive span paper](https://github.com/facebookresearch/adaptive-span/blob/master/get_data.sh).
|
21 |
+
You can download the dataset, and then run:
|
22 |
+
```bash
|
23 |
+
fairseq-preprocess --only-source --trainpref ~/data/enwik8/train.txt \
|
24 |
+
--validpref ~/data/enwik8/valid.txt --testpref ~/data/enwik8/test.txt \
|
25 |
+
--destdir ~/data/enwik8/data-bin/ --joined-dictionary --workers 20
|
26 |
+
```
|
27 |
+
|
28 |
+
##### 1. Train a Adaptive Span model on Enwik8
|
29 |
+
|
30 |
+
We will train a 12-layer Adaptive Span model following the [hyperparameters
|
31 |
+
used in the original
|
32 |
+
paper](https://github.com/facebookresearch/adaptive-span/blob/master/experiments/enwik8.sh).
|
33 |
+
|
34 |
+
The following command assumes 4 GPUs, so that the total batch size is 64
|
35 |
+
sequences (4 x 16). Training should take 2-3 days on 4 V100 GPUs:
|
36 |
+
```bash
|
37 |
+
CUDA_VISIBLE_DEVICES=0,1,2,3 fairseq-train \
|
38 |
+
--user-dir examples/adaptive_span \
|
39 |
+
--data ~/data/enwik8/data-bin/ \
|
40 |
+
--fp16 --fp16-no-flatten-grads --max-update 600000 \
|
41 |
+
--task truncated_bptt_lm --tokens-per-sample 512 --arch adaptive_span \
|
42 |
+
--n-layer 12 --d-model 512 --n-head 8 --d-inner 2048 --dropout 0.3 \
|
43 |
+
--attn-span 8192 --optimizer adagrad_with_grad_clip --adagrad-clip 0.03 \
|
44 |
+
--validate-interval-updates 1000 \
|
45 |
+
--lr-scheduler fixed --warmup-updates 32000 --batch-size-valid 32 \
|
46 |
+
--lr 0.07 --criterion adaptive_span_loss --batch-size 16 --update-freq 1 \
|
47 |
+
--seed 2 --log-format json --log-interval 25 --aux-loss-scaler 5e-07
|
48 |
+
```
|
49 |
+
This should land around 1.05 on validation, 1.03 on test. You can lower the
|
50 |
+
--aux-loss-scaler for better performance (longer span). It gives ~0.03 bpc
|
51 |
+
improvement to the transformerXL baseline here.
|
52 |
+
If training on a single GPU, set `--update-freq=4` to accumulate 4x gradients
|
53 |
+
and simulate training on 4 GPUs.
|
54 |
+
You can also reproduce the transformerXL result on enwik8 using this code base.
|
55 |
+
It should land around 1.06 on test,matching the [original paper](https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/run_enwik8_base.sh).
|
56 |
+
You can try by
|
57 |
+
```bash
|
58 |
+
CUDA_VISIBLE_DEVICES=0,1,2,3 fairseq-train \
|
59 |
+
--user-dir examples/truncated_bptt \
|
60 |
+
~/data/enwik8/data-bin/ \
|
61 |
+
--task truncated_bptt_lm --fp16 --max-update 400000 \
|
62 |
+
--tokens-per-sample 512 --arch transformer_xl --n-layer 12 \
|
63 |
+
--d-model 512 --n-head 8 --d-head 64 --d-inner 2048 --dropout 0.1 \
|
64 |
+
--dropatt 0.0 --mem-len 512 --optimizer adam --clip-norm 0.25 \
|
65 |
+
--lr-scheduler cosine --warmup-updates 0 \
|
66 |
+
--lr 0.0 --lr 0.00025 --batch-size 15 \
|
67 |
+
--update-freq 1 --seed 2 --log-format json --log-interval 25 \
|
68 |
+
--fp16
|
69 |
+
```
|
70 |
+
|
71 |
+
##### 2. Evaluate
|
72 |
+
For Adaptive Span:
|
73 |
+
```bash
|
74 |
+
fairseq-eval-lm ~/data/enwik8/data-bin/ --path model/checkpoint_best.pt \
|
75 |
+
--user-dir examples/adaptive_span \
|
76 |
+
--task truncated_bptt_lm --batch-size 8 --tokens-per-sample 512 --gen-subset test
|
77 |
+
```
|
78 |
+
For Transformer-XL evaluation:
|
79 |
+
```bash
|
80 |
+
fairseq-eval-lm ~/data/enwik8/data-bin/ --path model/checkpoint_best.pt \
|
81 |
+
--user-dir examples/truncated_bptt/ --task truncated_bptt_lm --batch-size 8 \
|
82 |
+
--tokens-per-sample 80 \
|
83 |
+
--model-overrides '{"mem_len":2100,"clamp_len":820,"same_length":True}' \
|
84 |
+
--gen-subset valid
|
85 |
+
```
|
86 |
+
|
87 |
+
*Note:* During training the model saw 512 tokens of context
|
88 |
+
(``--tokens-per-sample=512``), with batch size 8. These settings match the evaluation
|
89 |
+
settings from [the original
|
90 |
+
paper](https://github.com/facebookresearch/adaptive-span/blob/master/experiments/enwik8.sh).
|
fairseq/examples/adaptive_span/__init__.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
import importlib
|
7 |
+
import os
|
8 |
+
|
9 |
+
# automatically import any Python files in the current directory
|
10 |
+
cur_dir = os.path.dirname(__file__)
|
11 |
+
for file in os.listdir(cur_dir):
|
12 |
+
path = os.path.join(cur_dir, file)
|
13 |
+
if (
|
14 |
+
not file.startswith("_")
|
15 |
+
and not file.startswith(".")
|
16 |
+
and (file.endswith(".py") or os.path.isdir(path))
|
17 |
+
):
|
18 |
+
mod_name = file[: file.find(".py")] if file.endswith(".py") else file
|
19 |
+
module = importlib.import_module(__name__ + "." + mod_name)
|
fairseq/examples/adaptive_span/adagrad_with_grad_clip.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
from torch.optim import Adagrad
|
7 |
+
|
8 |
+
from fairseq.optim import LegacyFairseqOptimizer, register_optimizer
|
9 |
+
|
10 |
+
|
11 |
+
@register_optimizer("adagrad_with_grad_clip")
|
12 |
+
class FairseqAdagradWithGradClip(LegacyFairseqOptimizer):
|
13 |
+
def __init__(self, args, params):
|
14 |
+
super().__init__(args)
|
15 |
+
self._optimizer = AdagradWithGradClip(params, **self.optimizer_config)
|
16 |
+
|
17 |
+
@staticmethod
|
18 |
+
def add_args(parser):
|
19 |
+
"""Add optimizer-specific arguments to the parser."""
|
20 |
+
# fmt: off
|
21 |
+
parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD',
|
22 |
+
help='weight decay')
|
23 |
+
parser.add_argument('--adagrad-clip', default=0.0, type=float, metavar='D',
|
24 |
+
help='internal grad clip')
|
25 |
+
# fmt: on
|
26 |
+
|
27 |
+
@property
|
28 |
+
def optimizer_config(self):
|
29 |
+
"""
|
30 |
+
Return a kwarg dictionary that will be used to override optimizer
|
31 |
+
args stored in checkpoints. This allows us to load a checkpoint and
|
32 |
+
resume training using a different set of optimizer args, e.g., with a
|
33 |
+
different learning rate.
|
34 |
+
"""
|
35 |
+
return {
|
36 |
+
"lr": self.args.lr[0],
|
37 |
+
"weight_decay": self.args.weight_decay,
|
38 |
+
"grad_clip": self.args.adagrad_clip,
|
39 |
+
}
|
40 |
+
|
41 |
+
@property
|
42 |
+
def supports_flat_params(self):
|
43 |
+
return False
|
44 |
+
|
45 |
+
|
46 |
+
def _clip_grad(clr, grad, group_grad_clip):
|
47 |
+
if group_grad_clip > 0:
|
48 |
+
norm = grad.norm(2).item()
|
49 |
+
if norm > group_grad_clip:
|
50 |
+
clr *= group_grad_clip / (norm + 1e-10)
|
51 |
+
return clr
|
52 |
+
|
53 |
+
|
54 |
+
class AdagradWithGradClip(Adagrad):
|
55 |
+
"""Adagrad algorithm with custom gradient clipping"""
|
56 |
+
|
57 |
+
def __init__(
|
58 |
+
self,
|
59 |
+
params,
|
60 |
+
lr=1e-2,
|
61 |
+
lr_decay=0,
|
62 |
+
weight_decay=0,
|
63 |
+
initial_accumulator_value=0,
|
64 |
+
grad_clip=0,
|
65 |
+
):
|
66 |
+
Adagrad.__init__(
|
67 |
+
self,
|
68 |
+
params,
|
69 |
+
lr=lr,
|
70 |
+
lr_decay=lr_decay,
|
71 |
+
weight_decay=weight_decay,
|
72 |
+
initial_accumulator_value=initial_accumulator_value,
|
73 |
+
)
|
74 |
+
self.defaults["grad_clip"] = grad_clip
|
75 |
+
self.param_groups[0].setdefault("grad_clip", grad_clip)
|
76 |
+
|
77 |
+
def step(self, closure=None):
|
78 |
+
loss = None
|
79 |
+
if closure is not None:
|
80 |
+
loss = closure()
|
81 |
+
|
82 |
+
for group in self.param_groups:
|
83 |
+
for p in group["params"]:
|
84 |
+
if p.grad is None:
|
85 |
+
continue
|
86 |
+
|
87 |
+
grad = p.grad.data
|
88 |
+
state = self.state[p]
|
89 |
+
|
90 |
+
state["step"] += 1
|
91 |
+
|
92 |
+
if group["weight_decay"] != 0:
|
93 |
+
if p.grad.data.is_sparse:
|
94 |
+
raise RuntimeError(
|
95 |
+
"weight_decay option is "
|
96 |
+
"not compatible with sparse "
|
97 |
+
"gradients"
|
98 |
+
)
|
99 |
+
grad = grad.add(group["weight_decay"], p.data)
|
100 |
+
|
101 |
+
clr = group["lr"] / (1 + (state["step"] - 1) * group["lr_decay"])
|
102 |
+
|
103 |
+
# clip
|
104 |
+
clr = _clip_grad(clr=clr, grad=grad, group_grad_clip=group["grad_clip"])
|
105 |
+
|
106 |
+
if grad.is_sparse:
|
107 |
+
# the update is non-linear so indices must be unique
|
108 |
+
grad = grad.coalesce()
|
109 |
+
grad_indices = grad._indices()
|
110 |
+
grad_values = grad._values()
|
111 |
+
size = grad.size()
|
112 |
+
|
113 |
+
def make_sparse(values):
|
114 |
+
constructor = grad.new
|
115 |
+
if grad_indices.dim() == 0 or values.dim() == 0:
|
116 |
+
return constructor().resize_as_(grad)
|
117 |
+
return constructor(grad_indices, values, size)
|
118 |
+
|
119 |
+
state["sum"].add_(make_sparse(grad_values.pow(2)))
|
120 |
+
std = state["sum"]._sparse_mask(grad)
|
121 |
+
std_values = std._values().sqrt_().add_(1e-10)
|
122 |
+
p.data.add_(-clr, make_sparse(grad_values / std_values))
|
123 |
+
else:
|
124 |
+
state["sum"].addcmul_(1, grad, grad)
|
125 |
+
std = state["sum"].sqrt().add_(1e-10)
|
126 |
+
p.data.addcdiv_(-clr, grad, std)
|
127 |
+
|
128 |
+
return loss
|
fairseq/examples/adaptive_span/adaptive_span_attention.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
import math
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
|
12 |
+
class AdaptiveMask(nn.Module):
|
13 |
+
"""Soft masking function for adaptive size.
|
14 |
+
It masks out the last K values of an input. The masking value
|
15 |
+
goes from 1 to 0 gradually, so K can be learned with
|
16 |
+
back-propagation.
|
17 |
+
Args:
|
18 |
+
max_size: maximum size (i.e. input dimension)
|
19 |
+
ramp_size: size of the ramp going from 0 to 1
|
20 |
+
init_val: initial size proportion not to be masked out
|
21 |
+
shape: learn multiple sizes independent of each other
|
22 |
+
"""
|
23 |
+
|
24 |
+
def __init__(self, max_size, ramp_size, init_val=0, shape=(1,)):
|
25 |
+
nn.Module.__init__(self)
|
26 |
+
self._max_size = max_size
|
27 |
+
self._ramp_size = ramp_size
|
28 |
+
self.current_val = nn.Parameter(torch.zeros(*shape) + init_val)
|
29 |
+
mask_template = torch.linspace(1 - max_size, 0, steps=max_size)
|
30 |
+
self.register_buffer("mask_template", mask_template)
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
mask = self.mask_template.float() + self.current_val.float() * self._max_size
|
34 |
+
mask = mask / self._ramp_size + 1
|
35 |
+
mask = mask.clamp(0, 1)
|
36 |
+
if x.size(-1) < self._max_size:
|
37 |
+
# the input could have been trimmed beforehand to save computation
|
38 |
+
mask = mask.narrow(-1, self._max_size - x.size(-1), x.size(-1))
|
39 |
+
x = (x * mask).type_as(x)
|
40 |
+
return x
|
41 |
+
|
42 |
+
def get_current_max_size(self, include_ramp=True):
|
43 |
+
current_size = math.ceil(self.current_val.max().item() * self._max_size)
|
44 |
+
if include_ramp:
|
45 |
+
current_size += self._ramp_size
|
46 |
+
current_size = max(0, min(self._max_size, current_size))
|
47 |
+
return current_size
|
48 |
+
|
49 |
+
def get_current_avg_size(self, include_ramp=True):
|
50 |
+
current_size = math.ceil(
|
51 |
+
self.current_val.float().mean().item() * self._max_size
|
52 |
+
)
|
53 |
+
if include_ramp:
|
54 |
+
current_size += self._ramp_size
|
55 |
+
current_size = max(0, min(self._max_size, current_size))
|
56 |
+
return current_size
|
57 |
+
|
58 |
+
def clamp_param(self):
|
59 |
+
"""this need to be called after each update"""
|
60 |
+
self.current_val.data.clamp_(0, 1)
|
61 |
+
|
62 |
+
|
63 |
+
class AdaptiveSpan(nn.Module):
|
64 |
+
"""Adaptive attention span for Transformerself.
|
65 |
+
This module learns an attention span length from data for each
|
66 |
+
self-attention head.
|
67 |
+
Args:
|
68 |
+
attn_span: maximum attention span
|
69 |
+
adapt_span_loss: loss coefficient for the span length
|
70 |
+
adapt_span_ramp: length of the masking ramp
|
71 |
+
adapt_span_init: initial size ratio
|
72 |
+
adapt_span_cache: adapt cache size to reduce memory usage
|
73 |
+
"""
|
74 |
+
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
attn_span,
|
78 |
+
adapt_span_ramp,
|
79 |
+
adapt_span_init,
|
80 |
+
n_head,
|
81 |
+
adapt_span_layer,
|
82 |
+
**kargs
|
83 |
+
):
|
84 |
+
nn.Module.__init__(self)
|
85 |
+
self._max_span = attn_span
|
86 |
+
self._n_head = n_head
|
87 |
+
self._adapt_span_layer = adapt_span_layer
|
88 |
+
if self._adapt_span_layer:
|
89 |
+
self._mask = AdaptiveMask(
|
90 |
+
max_size=self._max_span,
|
91 |
+
ramp_size=adapt_span_ramp,
|
92 |
+
init_val=adapt_span_init,
|
93 |
+
)
|
94 |
+
else:
|
95 |
+
self._mask = AdaptiveMask(
|
96 |
+
max_size=self._max_span,
|
97 |
+
ramp_size=adapt_span_ramp,
|
98 |
+
init_val=adapt_span_init,
|
99 |
+
shape=(n_head, 1, 1),
|
100 |
+
)
|
101 |
+
|
102 |
+
def forward(self, attn, normalize=True):
|
103 |
+
"""mask attention with the right span"""
|
104 |
+
# batch and head dimensions are merged together, so separate them first
|
105 |
+
self.clamp_param()
|
106 |
+
if self._adapt_span_layer:
|
107 |
+
attn = self._mask(attn)
|
108 |
+
else:
|
109 |
+
B = attn.size(0) # batch size
|
110 |
+
M = attn.size(1) # block size
|
111 |
+
attn = attn.reshape(B // self._n_head, self._n_head, M, -1)
|
112 |
+
attn = self._mask(attn)
|
113 |
+
attn = attn.view(B, M, -1)
|
114 |
+
return attn
|
115 |
+
|
116 |
+
def get_trim_len(self):
|
117 |
+
"""how much of memory can be trimmed to reduce computation"""
|
118 |
+
L = self._max_span
|
119 |
+
trim_len = min(L - 1, L - self._mask.get_current_max_size())
|
120 |
+
# too fine granularity might be bad for the memory management
|
121 |
+
trim_len = math.floor(trim_len / 64) * 64
|
122 |
+
return trim_len
|
123 |
+
|
124 |
+
def trim_memory(self, query, key, value, key_pe):
|
125 |
+
"""trim out unnecessary memory beforehand to reduce computation"""
|
126 |
+
trim_len = self.get_trim_len()
|
127 |
+
cache_size = key.size(1) - query.size(1)
|
128 |
+
trim_len_cache = trim_len - (self._max_span - cache_size)
|
129 |
+
if trim_len_cache > 0:
|
130 |
+
key = key[:, trim_len_cache:, :]
|
131 |
+
value = value[:, trim_len_cache:, :]
|
132 |
+
elif trim_len_cache < 0:
|
133 |
+
# cache is too short! this happens when validation resumes
|
134 |
+
# after a lot of updates.
|
135 |
+
key = F.pad(key, [0, 0, -trim_len_cache, 0])
|
136 |
+
value = F.pad(value, [0, 0, -trim_len_cache, 0])
|
137 |
+
if trim_len > 0:
|
138 |
+
if key_pe is not None:
|
139 |
+
key_pe = key_pe[:, :, trim_len:]
|
140 |
+
return key, value, key_pe
|
141 |
+
|
142 |
+
def get_cache_size(self):
|
143 |
+
"""determine how long the cache should be"""
|
144 |
+
trim_len = self.get_trim_len()
|
145 |
+
# give a buffer of 64 steps since a span might increase
|
146 |
+
# in future updates
|
147 |
+
return min(self._max_span, self._max_span - trim_len + 64)
|
148 |
+
|
149 |
+
def get_loss(self):
|
150 |
+
"""a loss term for regularizing the span length"""
|
151 |
+
return self._max_span * self._mask.current_val.float().mean()
|
152 |
+
|
153 |
+
def get_current_max_span(self):
|
154 |
+
return self._mask.get_current_max_size()
|
155 |
+
|
156 |
+
def get_current_avg_span(self):
|
157 |
+
return self._mask.get_current_avg_size()
|
158 |
+
|
159 |
+
def clamp_param(self):
|
160 |
+
self._mask.clamp_param()
|
fairseq/examples/adaptive_span/adaptive_span_loss.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
import math
|
7 |
+
from dataclasses import dataclass
|
8 |
+
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from fairseq import metrics, utils
|
11 |
+
from fairseq.criterions import register_criterion
|
12 |
+
from fairseq.criterions.cross_entropy import CrossEntropyCriterion
|
13 |
+
from fairseq.dataclass import FairseqDataclass
|
14 |
+
from omegaconf import II
|
15 |
+
|
16 |
+
|
17 |
+
@dataclass
|
18 |
+
class AdaptiveSpanCriterionConfig(FairseqDataclass):
|
19 |
+
sentence_avg: bool = II("optimization.sentence_avg")
|
20 |
+
|
21 |
+
|
22 |
+
@register_criterion("adaptive_span_loss", dataclass=AdaptiveSpanCriterionConfig)
|
23 |
+
class AdaptiveSpanCriterion(CrossEntropyCriterion):
|
24 |
+
def __init__(self, task, sentence_avg):
|
25 |
+
super().__init__(task, sentence_avg)
|
26 |
+
|
27 |
+
def forward(self, model, sample, reduce=True):
|
28 |
+
"""Compute the loss for the given sample.
|
29 |
+
|
30 |
+
Returns a tuple with three elements:
|
31 |
+
1) the loss here is summed, different from the adaptive span code
|
32 |
+
2) the sample size, which is used as the denominator for the gradient
|
33 |
+
3) logging outputs to display while training
|
34 |
+
"""
|
35 |
+
net_output = model(**sample["net_input"])
|
36 |
+
loss, aux_loss, avg_span, max_span = self.compute_loss(
|
37 |
+
model, net_output, sample, reduce=reduce
|
38 |
+
)
|
39 |
+
sample_size = (
|
40 |
+
sample["target"].size(0) if self.sentence_avg else sample["ntokens"]
|
41 |
+
)
|
42 |
+
loss /= sample_size
|
43 |
+
total_loss = loss + aux_loss
|
44 |
+
sample_size = 1
|
45 |
+
|
46 |
+
logging_output = {
|
47 |
+
"loss": loss.data,
|
48 |
+
"ntokens": sample["ntokens"],
|
49 |
+
"nsentences": sample["target"].size(0),
|
50 |
+
"sample_size": sample_size,
|
51 |
+
"total_loss": total_loss.data,
|
52 |
+
"avg_span": avg_span * sample_size,
|
53 |
+
"max_span": max_span * sample_size,
|
54 |
+
}
|
55 |
+
return total_loss, sample_size, logging_output
|
56 |
+
|
57 |
+
def compute_loss(self, model, net_output, sample, reduce=True):
|
58 |
+
loss, _ = super().compute_loss(model, net_output, sample, reduce)
|
59 |
+
aux_loss = model.get_aux_loss()
|
60 |
+
avg_span = model.get_current_avg_span()
|
61 |
+
max_span = model.get_current_max_span()
|
62 |
+
return loss, aux_loss, avg_span, max_span
|
63 |
+
|
64 |
+
@staticmethod
|
65 |
+
def reduce_metrics(logging_outputs) -> None:
|
66 |
+
"""Aggregate logging outputs from data parallel training."""
|
67 |
+
loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
|
68 |
+
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
|
69 |
+
sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
|
70 |
+
total_loss_sum = sum(log.get("total_loss", 0) for log in logging_outputs)
|
71 |
+
avg_span_sum = sum(log.get("avg_span", 0) for log in logging_outputs)
|
72 |
+
max_span_sum = sum(log.get("max_span", 0) for log in logging_outputs)
|
73 |
+
|
74 |
+
# we divide by log(2) to convert the loss from base e to base 2
|
75 |
+
metrics.log_scalar(
|
76 |
+
"loss", loss_sum / sample_size / math.log(2), sample_size, round=3
|
77 |
+
)
|
78 |
+
metrics.log_scalar("avg_span", avg_span_sum / sample_size, sample_size, round=3)
|
79 |
+
metrics.log_scalar("max_span", max_span_sum / sample_size, sample_size, round=3)
|
80 |
+
# total loss contains the L1 norm on adaptive-span
|
81 |
+
metrics.log_scalar(
|
82 |
+
"total_loss",
|
83 |
+
total_loss_sum / sample_size / math.log(2),
|
84 |
+
sample_size,
|
85 |
+
round=3,
|
86 |
+
)
|
87 |
+
if sample_size != ntokens:
|
88 |
+
metrics.log_scalar(
|
89 |
+
"nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3
|
90 |
+
)
|
91 |
+
metrics.log_derived(
|
92 |
+
"ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)
|
93 |
+
)
|
94 |
+
else:
|
95 |
+
metrics.log_derived(
|
96 |
+
"ppl", lambda meters: utils.get_perplexity(meters["loss"].avg)
|
97 |
+
)
|
98 |
+
|
99 |
+
@staticmethod
|
100 |
+
def logging_outputs_can_be_summed() -> bool:
|
101 |
+
"""
|
102 |
+
Whether the logging outputs returned by `forward` can be summed
|
103 |
+
across workers prior to calling `reduce_metrics`. Setting this
|
104 |
+
to True will improves distributed training speed.
|
105 |
+
"""
|
106 |
+
return True
|
fairseq/examples/adaptive_span/adaptive_span_model.py
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import math
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
|
13 |
+
from fairseq.modules.layer_norm import LayerNorm
|
14 |
+
|
15 |
+
from .adaptive_span_attention import AdaptiveSpan
|
16 |
+
|
17 |
+
# Size notations:
|
18 |
+
# B = batch_size, H = d_model, M = block_size, L = attn_span
|
19 |
+
|
20 |
+
|
21 |
+
def _skew(X, pad_value):
|
22 |
+
"""shift every row 1 step to right"""
|
23 |
+
# X = B x M x L
|
24 |
+
B, M, L = X.size()
|
25 |
+
X = F.pad(X, (0, M + 1), value=pad_value) # B x M x (L+M+1)
|
26 |
+
X = X.view(B, -1) # B x ML+MM+M
|
27 |
+
X = X[:, :-M] # B x ML+MM
|
28 |
+
X = X.view(B, M, M + L) # B x M x L+M
|
29 |
+
return X
|
30 |
+
|
31 |
+
|
32 |
+
def _unskew(X):
|
33 |
+
"""reverse _skew operation"""
|
34 |
+
# X = B x M x L+M
|
35 |
+
B, M, L = X.size()
|
36 |
+
L -= M
|
37 |
+
X = X.view(B, -1) # B x ML+MM
|
38 |
+
X = F.pad(X, (0, M)) # B x ML+MM+M
|
39 |
+
X = X.view(B, M, M + L + 1) # B x M x L+M+1
|
40 |
+
X = X[:, :, :L] # B x M x L
|
41 |
+
return X
|
42 |
+
|
43 |
+
|
44 |
+
class SeqAttention(nn.Module):
|
45 |
+
"""Sequential self-attention layer.
|
46 |
+
Each token will attend to its previous fixed number of steps.
|
47 |
+
Note that attention doesn't include the current step itself.
|
48 |
+
"""
|
49 |
+
|
50 |
+
def __init__(self, d_model, n_head, attn_span, dropout, adapt_span_layer, **kargs):
|
51 |
+
nn.Module.__init__(self)
|
52 |
+
self.dropout = nn.Dropout(dropout)
|
53 |
+
self.d_model = d_model # size of a single head
|
54 |
+
self.attn_span = attn_span
|
55 |
+
self.adaptive_span = AdaptiveSpan(
|
56 |
+
attn_span=attn_span,
|
57 |
+
n_head=n_head,
|
58 |
+
adapt_span_layer=adapt_span_layer,
|
59 |
+
**kargs
|
60 |
+
)
|
61 |
+
|
62 |
+
def forward(self, query, key, value, key_pe):
|
63 |
+
# query size = B x M x H
|
64 |
+
# key, value sizes = B x (M+L) x H
|
65 |
+
|
66 |
+
key, value, key_pe = self.adaptive_span.trim_memory(query, key, value, key_pe)
|
67 |
+
|
68 |
+
# compute attention from context
|
69 |
+
# B x M (dest) x (M+L) (src)
|
70 |
+
attn_cont = torch.matmul(query, key.transpose(-1, -2))
|
71 |
+
attn_cont = _unskew(attn_cont) # B x M x L
|
72 |
+
|
73 |
+
# compute the effect of position embedding
|
74 |
+
attn_pos = torch.matmul(query, key_pe) # B x M x L_pos
|
75 |
+
attn = attn_cont + attn_pos
|
76 |
+
|
77 |
+
attn = attn / math.sqrt(self.d_model) # B x M X L_pos
|
78 |
+
|
79 |
+
attn = F.softmax(attn.float(), dim=-1).type_as(attn)
|
80 |
+
|
81 |
+
# trim attention lengths according to the learned span
|
82 |
+
attn = self.adaptive_span(attn)
|
83 |
+
|
84 |
+
attn = self.dropout(attn) # B x M X L_pos
|
85 |
+
|
86 |
+
attn_cont = _skew(attn, 0) # B x M X (L+M)
|
87 |
+
out = torch.matmul(attn_cont, value) # B x M x H
|
88 |
+
return out
|
89 |
+
|
90 |
+
def get_cache_size(self):
|
91 |
+
return self.adaptive_span.get_cache_size()
|
92 |
+
|
93 |
+
|
94 |
+
class MultiHeadSeqAttention(nn.Module):
|
95 |
+
def __init__(self, d_model, n_head, **kargs):
|
96 |
+
nn.Module.__init__(self)
|
97 |
+
assert d_model % n_head == 0
|
98 |
+
self.n_head = n_head
|
99 |
+
self.head_dim = d_model // n_head
|
100 |
+
self.attn = SeqAttention(d_model=self.head_dim, n_head=n_head, **kargs)
|
101 |
+
self.proj_query = nn.Linear(d_model, d_model, bias=False)
|
102 |
+
nn.init.xavier_normal_(self.proj_query.weight)
|
103 |
+
self.proj_out = nn.Linear(d_model, d_model, bias=False)
|
104 |
+
nn.init.xavier_normal_(self.proj_out.weight)
|
105 |
+
self.proj_val = nn.Linear(d_model, d_model, bias=False)
|
106 |
+
nn.init.xavier_normal_(self.proj_val.weight)
|
107 |
+
self.proj_key = nn.Linear(d_model, d_model, bias=False)
|
108 |
+
nn.init.xavier_normal_(self.proj_key.weight)
|
109 |
+
|
110 |
+
def head_reshape(self, x):
|
111 |
+
K = self.n_head
|
112 |
+
D = self.head_dim
|
113 |
+
x = x.view(x.size()[:-1] + (K, D)) # B x (M+L) x K x D
|
114 |
+
x = x.transpose(1, 2).contiguous() # B x K x (M+L) x D
|
115 |
+
x = x.view(-1, x.size(-2), x.size(-1)) # B_K x (M+L) x D
|
116 |
+
return x
|
117 |
+
|
118 |
+
def forward(self, query, key, value, key_pe):
|
119 |
+
B = query.size(0)
|
120 |
+
K = self.n_head
|
121 |
+
D = self.head_dim
|
122 |
+
M = query.size(1)
|
123 |
+
|
124 |
+
query = self.proj_query(query)
|
125 |
+
query = self.head_reshape(query)
|
126 |
+
value = self.proj_val(value)
|
127 |
+
value = self.head_reshape(value)
|
128 |
+
key = self.proj_key(key)
|
129 |
+
key = self.head_reshape(key)
|
130 |
+
|
131 |
+
out = self.attn(query, key, value, key_pe) # B_K x M x D
|
132 |
+
out = out.view(B, K, M, D) # B x K x M x D
|
133 |
+
out = out.transpose(1, 2).contiguous() # B x M x K x D
|
134 |
+
out = out.view(B, M, -1) # B x M x K_D
|
135 |
+
out = self.proj_out(out)
|
136 |
+
return out
|
137 |
+
|
138 |
+
|
139 |
+
class FeedForwardLayer(nn.Module):
|
140 |
+
def __init__(self, d_model, d_inner, dropout, **kargs):
|
141 |
+
nn.Module.__init__(self)
|
142 |
+
self.fc1 = nn.Linear(d_model, d_inner)
|
143 |
+
self.fc2 = nn.Linear(d_inner, d_model)
|
144 |
+
nn.init.xavier_uniform_(self.fc1.weight)
|
145 |
+
nn.init.xavier_uniform_(self.fc2.weight)
|
146 |
+
self.dropout = nn.Dropout(dropout)
|
147 |
+
|
148 |
+
def forward(self, h):
|
149 |
+
h1 = F.relu(self.fc1(h))
|
150 |
+
h1 = self.dropout(h1)
|
151 |
+
h2 = self.fc2(h1)
|
152 |
+
return h2
|
153 |
+
|
154 |
+
|
155 |
+
class TransformerSeqLayer(nn.Module):
|
156 |
+
def __init__(self, d_model, **kargs):
|
157 |
+
nn.Module.__init__(self)
|
158 |
+
self.attn = MultiHeadSeqAttention(d_model=d_model, **kargs)
|
159 |
+
self.norm1 = LayerNorm(d_model)
|
160 |
+
self.ff = FeedForwardLayer(d_model=d_model, **kargs)
|
161 |
+
self.norm2 = LayerNorm(d_model)
|
162 |
+
|
163 |
+
def forward(self, h, h_cache, key_pe):
|
164 |
+
# h = B x M x H
|
165 |
+
# h_cache = B x L x H
|
166 |
+
h_all = torch.cat([h_cache, h], dim=1) # B x (M+L) x H
|
167 |
+
attn_out = self.attn(h, h_all, h_all, key_pe)
|
168 |
+
h = self.norm1(h + attn_out) # B x M x H
|
169 |
+
if self.ff is not None:
|
170 |
+
ff_out = self.ff(h)
|
171 |
+
out = self.norm2(h + ff_out) # B x M x H
|
172 |
+
else:
|
173 |
+
out = h
|
174 |
+
return out
|
175 |
+
|
176 |
+
def get_cache_size(self):
|
177 |
+
return self.attn.attn.get_cache_size()
|
178 |
+
|
179 |
+
|
180 |
+
class TransformerSeq(nn.Module):
|
181 |
+
def __init__(
|
182 |
+
self,
|
183 |
+
vocab_size,
|
184 |
+
d_model,
|
185 |
+
n_head,
|
186 |
+
n_layer,
|
187 |
+
attn_span,
|
188 |
+
emb_dropout,
|
189 |
+
aux_loss_scaler,
|
190 |
+
adapt_span_layer,
|
191 |
+
**kargs
|
192 |
+
):
|
193 |
+
nn.Module.__init__(self)
|
194 |
+
# token embeddings
|
195 |
+
self.in_emb = nn.Embedding(vocab_size, d_model)
|
196 |
+
nn.init.normal_(self.in_emb.weight, mean=0, std=d_model ** -0.5)
|
197 |
+
self.out_emb = nn.Linear(d_model, vocab_size)
|
198 |
+
self.aux_loss_scaler = aux_loss_scaler
|
199 |
+
if emb_dropout > 0:
|
200 |
+
self.emb_dropout = nn.Dropout(emb_dropout)
|
201 |
+
else:
|
202 |
+
self.emb_dropout = None
|
203 |
+
# position embeddings
|
204 |
+
self.key_pe = nn.Parameter(torch.randn(1, d_model // n_head, attn_span))
|
205 |
+
|
206 |
+
self.layers = nn.ModuleList()
|
207 |
+
self.layers.extend(
|
208 |
+
TransformerSeqLayer(
|
209 |
+
d_model=d_model,
|
210 |
+
n_head=n_head,
|
211 |
+
attn_span=attn_span,
|
212 |
+
adapt_span_layer=adapt_span_layer,
|
213 |
+
**kargs
|
214 |
+
)
|
215 |
+
for _ in range(n_layer)
|
216 |
+
)
|
217 |
+
|
218 |
+
def forward(self, x, h_cache, target=None):
|
219 |
+
# x size = B x M
|
220 |
+
block_size = x.size(1)
|
221 |
+
h = self.in_emb(x) # B x M x H
|
222 |
+
if self.emb_dropout is not None:
|
223 |
+
h = self.emb_dropout(h)
|
224 |
+
|
225 |
+
h_cache_next = []
|
226 |
+
for l, layer in enumerate(self.layers):
|
227 |
+
cache_size = layer.attn.attn.get_cache_size()
|
228 |
+
if cache_size > block_size:
|
229 |
+
h_cache_next_l = torch.cat(
|
230 |
+
[h_cache[l][:, -cache_size + block_size :, :], h], dim=1
|
231 |
+
).detach()
|
232 |
+
else:
|
233 |
+
h_cache_next_l = h[:, -cache_size:, :].detach()
|
234 |
+
h_cache_next.append(h_cache_next_l)
|
235 |
+
h = layer(h, h_cache[l], self.key_pe) # B x M x H
|
236 |
+
|
237 |
+
if self.emb_dropout is not None:
|
238 |
+
h = self.emb_dropout(h)
|
239 |
+
|
240 |
+
out = F.log_softmax(self.out_emb(h).float(), dim=-1).type_as(h)
|
241 |
+
dummy_loss = None
|
242 |
+
|
243 |
+
return out, h_cache_next, dummy_loss
|
244 |
+
|
245 |
+
def get_aux_loss(self):
|
246 |
+
loss = 0.0
|
247 |
+
for layer in self.layers:
|
248 |
+
loss += layer.attn.attn.adaptive_span.get_loss()
|
249 |
+
return self.aux_loss_scaler * loss
|
250 |
+
|
251 |
+
def get_current_max_span(self):
|
252 |
+
max_span = 0.0
|
253 |
+
for layer in self.layers:
|
254 |
+
max_span = max(
|
255 |
+
max_span, layer.attn.attn.adaptive_span.get_current_max_span()
|
256 |
+
)
|
257 |
+
return max_span
|
258 |
+
|
259 |
+
def get_current_avg_span(self):
|
260 |
+
avg_span = 0.0
|
261 |
+
for layer in self.layers:
|
262 |
+
avg_span += layer.attn.attn.adaptive_span.get_current_avg_span()
|
263 |
+
return avg_span / len(self.layers)
|
fairseq/examples/adaptive_span/adaptive_span_model_wrapper.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
import logging
|
7 |
+
from dataclasses import dataclass
|
8 |
+
from typing import Dict, List, Optional
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from fairseq.dataclass import FairseqDataclass
|
12 |
+
from fairseq.models import (
|
13 |
+
FairseqIncrementalDecoder,
|
14 |
+
FairseqLanguageModel,
|
15 |
+
register_model,
|
16 |
+
)
|
17 |
+
from .adaptive_span_model import TransformerSeq as AdaptiveSpanTransformerModel
|
18 |
+
|
19 |
+
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
|
23 |
+
@dataclass
|
24 |
+
class AdaptiveSpanSmallConfig(FairseqDataclass):
|
25 |
+
# defaults come from https://github.com/facebookresearch/adaptive-span/blob/master/experiments/enwik8_small.sh
|
26 |
+
vocab_size: int = 50
|
27 |
+
d_model: int = 256
|
28 |
+
n_head: int = 4
|
29 |
+
d_inner: int = 1024
|
30 |
+
n_layer: int = 8
|
31 |
+
attn_span: int = 1024
|
32 |
+
dropout: float = 0.0
|
33 |
+
emb_dropout: float = 0.0
|
34 |
+
adapt_span_ramp: int = 32
|
35 |
+
adapt_span_init: float = 0.0
|
36 |
+
aux_loss_scaler: float = 0.000002
|
37 |
+
adapt_span_layer: bool = False
|
38 |
+
|
39 |
+
|
40 |
+
@register_model("adaptive_span", dataclass=AdaptiveSpanSmallConfig)
|
41 |
+
class AdaptiveSpanTransformer(FairseqLanguageModel):
|
42 |
+
@classmethod
|
43 |
+
def build_model(cls, cfg: AdaptiveSpanSmallConfig, task):
|
44 |
+
return cls(AdaptiveSpanDecoder(cfg, task))
|
45 |
+
|
46 |
+
def get_aux_loss(self):
|
47 |
+
return self.decoder.get_aux_loss()
|
48 |
+
|
49 |
+
def get_current_max_span(self):
|
50 |
+
return self.decoder.get_current_max_span()
|
51 |
+
|
52 |
+
def get_current_avg_span(self):
|
53 |
+
return self.decoder.get_current_avg_span()
|
54 |
+
|
55 |
+
|
56 |
+
class AdaptiveSpanDecoder(FairseqIncrementalDecoder):
|
57 |
+
def __init__(self, cfg, task):
|
58 |
+
|
59 |
+
super().__init__(task.target_dictionary)
|
60 |
+
|
61 |
+
self.config = cfg
|
62 |
+
config = AdaptiveSpanSmallConfig(
|
63 |
+
vocab_size=len(task.target_dictionary),
|
64 |
+
d_model=cfg.d_model,
|
65 |
+
n_head=cfg.n_head,
|
66 |
+
d_inner=cfg.d_inner,
|
67 |
+
n_layer=cfg.n_layer,
|
68 |
+
attn_span=cfg.attn_span,
|
69 |
+
dropout=cfg.dropout,
|
70 |
+
emb_dropout=cfg.emb_dropout,
|
71 |
+
adapt_span_ramp=cfg.adapt_span_ramp,
|
72 |
+
adapt_span_init=cfg.adapt_span_init,
|
73 |
+
aux_loss_scaler=cfg.aux_loss_scaler,
|
74 |
+
adapt_span_layer=cfg.adapt_span_layer,
|
75 |
+
)
|
76 |
+
logger.info(config)
|
77 |
+
self.model = AdaptiveSpanTransformerModel(**config.__dict__)
|
78 |
+
|
79 |
+
self._mems = None
|
80 |
+
|
81 |
+
def forward(
|
82 |
+
self,
|
83 |
+
src_tokens,
|
84 |
+
incremental_state: Optional[Dict[str, List[torch.Tensor]]] = None,
|
85 |
+
encoder_out=None,
|
86 |
+
):
|
87 |
+
bsz = src_tokens.size(0)
|
88 |
+
if incremental_state is not None: # used during inference
|
89 |
+
mems = self.get_incremental_state("mems")
|
90 |
+
src_tokens = src_tokens[:, -1:] # only keep the most recent token
|
91 |
+
else:
|
92 |
+
mems = self._mems
|
93 |
+
|
94 |
+
if mems is None:
|
95 |
+
# first time init
|
96 |
+
mems = self.init_hid_cache(bsz)
|
97 |
+
output = self.model(x=src_tokens, h_cache=mems,)
|
98 |
+
if incremental_state is not None:
|
99 |
+
self.set_incremental_state(incremental_state, "mems", output[1])
|
100 |
+
else:
|
101 |
+
self._mems = output[1]
|
102 |
+
return (output[0],)
|
103 |
+
|
104 |
+
def max_positions(self):
|
105 |
+
return self.config.attn_span
|
106 |
+
|
107 |
+
def init_hid_cache(self, batch_sz):
|
108 |
+
hid = []
|
109 |
+
for layer in self.model.layers:
|
110 |
+
param = next(self.model.parameters())
|
111 |
+
h = torch.zeros(
|
112 |
+
batch_sz,
|
113 |
+
layer.get_cache_size(),
|
114 |
+
self.config.d_model,
|
115 |
+
dtype=param.dtype,
|
116 |
+
device=param.device,
|
117 |
+
)
|
118 |
+
hid.append(h)
|
119 |
+
return hid
|
120 |
+
|
121 |
+
def get_aux_loss(self):
|
122 |
+
return self.model.get_aux_loss()
|
123 |
+
|
124 |
+
def get_current_max_span(self):
|
125 |
+
return self.model.get_current_max_span()
|
126 |
+
|
127 |
+
def get_current_avg_span(self):
|
128 |
+
return self.model.get_current_avg_span()
|
129 |
+
|
130 |
+
def reorder_incremental_state(
|
131 |
+
self,
|
132 |
+
incremental_state: Dict[str, Dict[str, Optional[torch.Tensor]]],
|
133 |
+
new_order: torch.Tensor,
|
134 |
+
):
|
135 |
+
"""Reorder incremental state.
|
136 |
+
|
137 |
+
This will be called when the order of the input has changed from the
|
138 |
+
previous time step. A typical use case is beam search, where the input
|
139 |
+
order changes between time steps based on the selection of beams.
|
140 |
+
"""
|
141 |
+
raise NotImplementedError("This is required for generation/beam search")
|
142 |
+
# mems = self.get_incremental_state(incremental_state, "mems")
|
143 |
+
# if mems is not None:
|
144 |
+
# new_mems = [mems_i.index_select(1, new_order) for mems_i in mems]
|
145 |
+
# self.set_incremental_state(incremental_state, "mems", new_mems)
|
fairseq/examples/adaptive_span/truncated_bptt_lm_task.py
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
import logging
|
7 |
+
import os
|
8 |
+
from dataclasses import dataclass, field
|
9 |
+
from typing import List, Optional, Tuple
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from fairseq import utils
|
13 |
+
from fairseq.data import (
|
14 |
+
Dictionary,
|
15 |
+
TokenBlockDataset,
|
16 |
+
data_utils,
|
17 |
+
iterators,
|
18 |
+
)
|
19 |
+
from fairseq.dataclass import FairseqDataclass
|
20 |
+
from fairseq.distributed import utils as dist_utils
|
21 |
+
from fairseq.tasks import FairseqTask, register_task
|
22 |
+
from omegaconf import II
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.getLogger(__name__)
|
26 |
+
|
27 |
+
|
28 |
+
@dataclass
|
29 |
+
class TruncatedBPTTLMConfig(FairseqDataclass):
|
30 |
+
data: str = field(default="???", metadata={"help": "path to data directory"})
|
31 |
+
tokens_per_sample: int = field(
|
32 |
+
default=1024,
|
33 |
+
metadata={"help": "max number of tokens per sequence"},
|
34 |
+
)
|
35 |
+
batch_size: int = II("dataset.batch_size")
|
36 |
+
# Some models use *max_target_positions* to know how many positional
|
37 |
+
# embeddings to learn. We use II(...) to make it default to
|
38 |
+
# *tokens_per_sample*, but in principle there could be more positional
|
39 |
+
# embeddings than tokens in a single batch. This may also be irrelevant for
|
40 |
+
# custom model implementations.
|
41 |
+
max_target_positions: int = II("task.tokens_per_sample")
|
42 |
+
# these will be populated automatically if not provided
|
43 |
+
data_parallel_rank: Optional[int] = None
|
44 |
+
data_parallel_size: Optional[int] = None
|
45 |
+
|
46 |
+
|
47 |
+
@register_task("truncated_bptt_lm", dataclass=TruncatedBPTTLMConfig)
|
48 |
+
class TruncatedBPTTLMTask(FairseqTask):
|
49 |
+
def __init__(self, cfg: TruncatedBPTTLMConfig):
|
50 |
+
super().__init__(cfg)
|
51 |
+
|
52 |
+
if cfg.data_parallel_rank is None or cfg.data_parallel_size is None:
|
53 |
+
if torch.distributed.is_initialized():
|
54 |
+
cfg.data_parallel_rank = dist_utils.get_data_parallel_rank()
|
55 |
+
cfg.data_parallel_size = dist_utils.get_data_parallel_world_size()
|
56 |
+
else:
|
57 |
+
cfg.data_parallel_rank = 0
|
58 |
+
cfg.data_parallel_size = 1
|
59 |
+
|
60 |
+
# load the dictionary
|
61 |
+
paths = utils.split_paths(cfg.data)
|
62 |
+
assert len(paths) > 0
|
63 |
+
self.dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt"))
|
64 |
+
logger.info("dictionary: {} types".format(len(self.dictionary)))
|
65 |
+
|
66 |
+
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
|
67 |
+
"""Load a given dataset split (e.g., train, valid, test)"""
|
68 |
+
|
69 |
+
# support sharded datasets
|
70 |
+
paths = utils.split_paths(self.cfg.data)
|
71 |
+
assert len(paths) > 0
|
72 |
+
data_path = paths[(epoch - 1) % len(paths)]
|
73 |
+
split_path = os.path.join(data_path, split)
|
74 |
+
|
75 |
+
# each element of *data* will be a tensorized line from the original
|
76 |
+
# text dataset, similar to ``open(split_path).readlines()``
|
77 |
+
data = data_utils.load_indexed_dataset(
|
78 |
+
split_path, self.dictionary, combine=combine
|
79 |
+
)
|
80 |
+
if data is None:
|
81 |
+
raise FileNotFoundError(
|
82 |
+
"Dataset not found: {} ({})".format(split, split_path)
|
83 |
+
)
|
84 |
+
|
85 |
+
# this is similar to ``data.view(-1).split(tokens_per_sample)``
|
86 |
+
data = TokenBlockDataset(
|
87 |
+
data,
|
88 |
+
data.sizes,
|
89 |
+
block_size=self.cfg.tokens_per_sample,
|
90 |
+
pad=None, # unused
|
91 |
+
eos=None, # unused
|
92 |
+
break_mode="none",
|
93 |
+
)
|
94 |
+
|
95 |
+
self.datasets[split] = TruncatedBPTTDataset(
|
96 |
+
data=data,
|
97 |
+
bsz_per_shard=self.cfg.batch_size,
|
98 |
+
shard_id=self.cfg.data_parallel_rank,
|
99 |
+
num_shards=self.cfg.data_parallel_size,
|
100 |
+
)
|
101 |
+
|
102 |
+
def dataset(self, split):
|
103 |
+
return self.datasets[split]
|
104 |
+
|
105 |
+
def get_batch_iterator(
|
106 |
+
self, dataset, num_workers=0, epoch=1, data_buffer_size=0, **kwargs
|
107 |
+
):
|
108 |
+
return iterators.EpochBatchIterator(
|
109 |
+
dataset=dataset,
|
110 |
+
collate_fn=self._collate_fn,
|
111 |
+
num_workers=num_workers,
|
112 |
+
epoch=epoch,
|
113 |
+
buffer_size=data_buffer_size,
|
114 |
+
# we don't use the batching functionality from EpochBatchIterator;
|
115 |
+
# instead every item in *dataset* is a whole batch
|
116 |
+
batch_sampler=[[i] for i in range(len(dataset))],
|
117 |
+
disable_shuffling=True,
|
118 |
+
)
|
119 |
+
|
120 |
+
def _collate_fn(self, items: List[List[torch.Tensor]]):
|
121 |
+
# we don't use fairseq's batching functionality, so we expect a single
|
122 |
+
# Tensor of type List[torch.Tensor]
|
123 |
+
assert len(items) == 1
|
124 |
+
|
125 |
+
# item will have shape B x T (the last batch may have length < T)
|
126 |
+
id, item = items[0]
|
127 |
+
item = data_utils.collate_tokens(item, pad_idx=self.source_dictionary.pad())
|
128 |
+
B, T = item.size()
|
129 |
+
|
130 |
+
# shift item one position over and append a padding token for the target
|
131 |
+
target = torch.nn.functional.pad(
|
132 |
+
item[:, 1:], (0, 1, 0, 0), value=self.target_dictionary.pad()
|
133 |
+
)
|
134 |
+
|
135 |
+
# fairseq expects batches to have the following structure
|
136 |
+
return {
|
137 |
+
"id": torch.tensor([id]*item.size(0)),
|
138 |
+
"net_input": {
|
139 |
+
"src_tokens": item,
|
140 |
+
},
|
141 |
+
"target": target,
|
142 |
+
"nsentences": item.size(0),
|
143 |
+
"ntokens": item.numel(),
|
144 |
+
}
|
145 |
+
|
146 |
+
def build_dataset_for_inference(
|
147 |
+
self, src_tokens: List[torch.Tensor], src_lengths: List[int], **kwargs
|
148 |
+
) -> torch.utils.data.Dataset:
|
149 |
+
eos = self.source_dictionary.eos()
|
150 |
+
dataset = TokenBlockDataset(
|
151 |
+
src_tokens,
|
152 |
+
src_lengths,
|
153 |
+
block_size=None, # ignored for "eos" break mode
|
154 |
+
pad=self.source_dictionary.pad(),
|
155 |
+
eos=eos,
|
156 |
+
break_mode="eos",
|
157 |
+
)
|
158 |
+
|
159 |
+
class Dataset(torch.utils.data.Dataset):
|
160 |
+
def __getitem__(self, i):
|
161 |
+
item = dataset[i]
|
162 |
+
if item[-1] == eos:
|
163 |
+
# remove eos to support generating with a prefix
|
164 |
+
item = item[:-1]
|
165 |
+
return (i, [item])
|
166 |
+
|
167 |
+
def __len__(self):
|
168 |
+
return len(dataset)
|
169 |
+
|
170 |
+
return Dataset()
|
171 |
+
|
172 |
+
def inference_step(
|
173 |
+
self, generator, models, sample, prefix_tokens=None, constraints=None
|
174 |
+
):
|
175 |
+
with torch.no_grad():
|
176 |
+
if constraints is not None:
|
177 |
+
raise NotImplementedError
|
178 |
+
|
179 |
+
# SequenceGenerator doesn't use *src_tokens* directly, we need to
|
180 |
+
# pass the *prefix_tokens* argument instead.
|
181 |
+
if prefix_tokens is None and sample["net_input"]["src_tokens"].nelement():
|
182 |
+
prefix_tokens = sample["net_input"]["src_tokens"]
|
183 |
+
|
184 |
+
# begin generation with the end-of-sentence token
|
185 |
+
bos_token = self.source_dictionary.eos()
|
186 |
+
|
187 |
+
return generator.generate(
|
188 |
+
models, sample, prefix_tokens=prefix_tokens, bos_token=bos_token
|
189 |
+
)
|
190 |
+
|
191 |
+
def eval_lm_dataloader(
|
192 |
+
self,
|
193 |
+
dataset,
|
194 |
+
max_tokens: Optional[int] = 36000,
|
195 |
+
batch_size: Optional[int] = None,
|
196 |
+
max_positions: Optional[int] = None,
|
197 |
+
num_shards: int = 1,
|
198 |
+
shard_id: int = 0,
|
199 |
+
num_workers: int = 1,
|
200 |
+
data_buffer_size: int = 10,
|
201 |
+
context_window: int = 0,
|
202 |
+
):
|
203 |
+
if context_window > 0:
|
204 |
+
raise NotImplementedError(
|
205 |
+
"Transformer-XL doesn't need --context-window, try "
|
206 |
+
"--model-overrides '{\"mem_len\":42}' instead "
|
207 |
+
)
|
208 |
+
return self.get_batch_iterator(
|
209 |
+
dataset=dataset,
|
210 |
+
max_tokens=max_tokens,
|
211 |
+
max_sentences=batch_size,
|
212 |
+
max_positions=max_positions,
|
213 |
+
ignore_invalid_inputs=True,
|
214 |
+
num_shards=num_shards,
|
215 |
+
shard_id=shard_id,
|
216 |
+
num_workers=num_workers,
|
217 |
+
data_buffer_size=data_buffer_size,
|
218 |
+
).next_epoch_itr(shuffle=False)
|
219 |
+
|
220 |
+
@property
|
221 |
+
def source_dictionary(self):
|
222 |
+
return self.dictionary
|
223 |
+
|
224 |
+
@property
|
225 |
+
def target_dictionary(self):
|
226 |
+
return self.dictionary
|
227 |
+
|
228 |
+
|
229 |
+
class TruncatedBPTTDataset(torch.utils.data.Dataset):
|
230 |
+
def __init__(
|
231 |
+
self,
|
232 |
+
data: List[torch.Tensor], # ordered list of items
|
233 |
+
bsz_per_shard, # number of items processed per GPUs per forward
|
234 |
+
shard_id, # current GPU ID
|
235 |
+
num_shards, # number of GPUs
|
236 |
+
):
|
237 |
+
super().__init__()
|
238 |
+
self.data = data
|
239 |
+
|
240 |
+
def batchify(data, bsz):
|
241 |
+
# Work out how cleanly we can divide the dataset into bsz parts.
|
242 |
+
nbatch = data.size(0) // bsz
|
243 |
+
# Trim off any extra elements that wouldn't cleanly fit (remainders).
|
244 |
+
data = data.narrow(0, 0, nbatch * bsz)
|
245 |
+
# Evenly divide the data across the bsz batches.
|
246 |
+
data = data.view(bsz, -1).contiguous()
|
247 |
+
return data
|
248 |
+
|
249 |
+
# total number of sequences processed by all GPUs in each forward pass
|
250 |
+
global_batch_size = bsz_per_shard * num_shards
|
251 |
+
|
252 |
+
"""
|
253 |
+
With a 16 item dataset, bsz_per_shard=2 and num_shards=3,
|
254 |
+
*indices* might look like:
|
255 |
+
|
256 |
+
indices = [[0, 1],
|
257 |
+
[2, 3],
|
258 |
+
[4, 5],
|
259 |
+
[6, 7],
|
260 |
+
[8, 9],
|
261 |
+
[10, 11]]
|
262 |
+
|
263 |
+
The size of the TruncatedBPTTDataset instance will be 2,
|
264 |
+
and shard 1 will see items:
|
265 |
+
|
266 |
+
[(0, [data[4], data[6]]),
|
267 |
+
(1, [data[5], data[7]])]
|
268 |
+
"""
|
269 |
+
indices = batchify(torch.arange(len(data)), global_batch_size)
|
270 |
+
assert indices.size(0) == global_batch_size
|
271 |
+
|
272 |
+
self.my_indices = indices[
|
273 |
+
shard_id * bsz_per_shard : (shard_id + 1) * bsz_per_shard
|
274 |
+
]
|
275 |
+
assert self.my_indices.size(0) == bsz_per_shard
|
276 |
+
|
277 |
+
def __len__(self):
|
278 |
+
return self.my_indices.size(1)
|
279 |
+
|
280 |
+
def __getitem__(self, i) -> Tuple[int, List[torch.Tensor]]:
|
281 |
+
return (i, [self.data[idx] for idx in self.my_indices[:, i]])
|
fairseq/examples/backtranslation/README.md
ADDED
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Understanding Back-Translation at Scale (Edunov et al., 2018)
|
2 |
+
|
3 |
+
This page includes pre-trained models from the paper [Understanding Back-Translation at Scale (Edunov et al., 2018)](https://arxiv.org/abs/1808.09381).
|
4 |
+
|
5 |
+
## Pre-trained models
|
6 |
+
|
7 |
+
Model | Description | Dataset | Download
|
8 |
+
---|---|---|---
|
9 |
+
`transformer.wmt18.en-de` | Transformer <br> ([Edunov et al., 2018](https://arxiv.org/abs/1808.09381)) <br> WMT'18 winner | [WMT'18 English-German](http://www.statmt.org/wmt18/translation-task.html) | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/wmt18.en-de.ensemble.tar.gz) <br> See NOTE in the archive
|
10 |
+
|
11 |
+
## Example usage (torch.hub)
|
12 |
+
|
13 |
+
We require a few additional Python dependencies for preprocessing:
|
14 |
+
```bash
|
15 |
+
pip install subword_nmt sacremoses
|
16 |
+
```
|
17 |
+
|
18 |
+
Then to generate translations from the full model ensemble:
|
19 |
+
```python
|
20 |
+
import torch
|
21 |
+
|
22 |
+
# List available models
|
23 |
+
torch.hub.list('pytorch/fairseq') # [..., 'transformer.wmt18.en-de', ... ]
|
24 |
+
|
25 |
+
# Load the WMT'18 En-De ensemble
|
26 |
+
en2de_ensemble = torch.hub.load(
|
27 |
+
'pytorch/fairseq', 'transformer.wmt18.en-de',
|
28 |
+
checkpoint_file='wmt18.model1.pt:wmt18.model2.pt:wmt18.model3.pt:wmt18.model4.pt:wmt18.model5.pt',
|
29 |
+
tokenizer='moses', bpe='subword_nmt')
|
30 |
+
|
31 |
+
# The ensemble contains 5 models
|
32 |
+
len(en2de_ensemble.models)
|
33 |
+
# 5
|
34 |
+
|
35 |
+
# Translate
|
36 |
+
en2de_ensemble.translate('Hello world!')
|
37 |
+
# 'Hallo Welt!'
|
38 |
+
```
|
39 |
+
|
40 |
+
## Training your own model (WMT'18 English-German)
|
41 |
+
|
42 |
+
The following instructions can be adapted to reproduce the models from the paper.
|
43 |
+
|
44 |
+
|
45 |
+
#### Step 1. Prepare parallel data and optionally train a baseline (English-German) model
|
46 |
+
|
47 |
+
First download and preprocess the data:
|
48 |
+
```bash
|
49 |
+
# Download and prepare the data
|
50 |
+
cd examples/backtranslation/
|
51 |
+
bash prepare-wmt18en2de.sh
|
52 |
+
cd ../..
|
53 |
+
|
54 |
+
# Binarize the data
|
55 |
+
TEXT=examples/backtranslation/wmt18_en_de
|
56 |
+
fairseq-preprocess \
|
57 |
+
--joined-dictionary \
|
58 |
+
--source-lang en --target-lang de \
|
59 |
+
--trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \
|
60 |
+
--destdir data-bin/wmt18_en_de --thresholdtgt 0 --thresholdsrc 0 \
|
61 |
+
--workers 20
|
62 |
+
|
63 |
+
# Copy the BPE code into the data-bin directory for future use
|
64 |
+
cp examples/backtranslation/wmt18_en_de/code data-bin/wmt18_en_de/code
|
65 |
+
```
|
66 |
+
|
67 |
+
(Optionally) Train a baseline model (English-German) using just the parallel data:
|
68 |
+
```bash
|
69 |
+
CHECKPOINT_DIR=checkpoints_en_de_parallel
|
70 |
+
fairseq-train --fp16 \
|
71 |
+
data-bin/wmt18_en_de \
|
72 |
+
--source-lang en --target-lang de \
|
73 |
+
--arch transformer_wmt_en_de_big --share-all-embeddings \
|
74 |
+
--dropout 0.3 --weight-decay 0.0 \
|
75 |
+
--criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
|
76 |
+
--optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \
|
77 |
+
--lr 0.001 --lr-scheduler inverse_sqrt --warmup-updates 4000 \
|
78 |
+
--max-tokens 3584 --update-freq 16 \
|
79 |
+
--max-update 30000 \
|
80 |
+
--save-dir $CHECKPOINT_DIR
|
81 |
+
# Note: the above command assumes 8 GPUs. Adjust `--update-freq` if you have a
|
82 |
+
# different number of GPUs.
|
83 |
+
```
|
84 |
+
|
85 |
+
Average the last 10 checkpoints:
|
86 |
+
```bash
|
87 |
+
python scripts/average_checkpoints.py \
|
88 |
+
--inputs $CHECKPOINT_DIR \
|
89 |
+
--num-epoch-checkpoints 10 \
|
90 |
+
--output $CHECKPOINT_DIR/checkpoint.avg10.pt
|
91 |
+
```
|
92 |
+
|
93 |
+
Evaluate BLEU:
|
94 |
+
```bash
|
95 |
+
# tokenized BLEU on newstest2017:
|
96 |
+
bash examples/backtranslation/tokenized_bleu.sh \
|
97 |
+
wmt17 \
|
98 |
+
en-de \
|
99 |
+
data-bin/wmt18_en_de \
|
100 |
+
data-bin/wmt18_en_de/code \
|
101 |
+
$CHECKPOINT_DIR/checkpoint.avg10.pt
|
102 |
+
# BLEU4 = 29.57, 60.9/35.4/22.9/15.5 (BP=1.000, ratio=1.014, syslen=63049, reflen=62152)
|
103 |
+
# compare to 29.46 in Table 1, which is also for tokenized BLEU
|
104 |
+
|
105 |
+
# generally it's better to report (detokenized) sacrebleu though:
|
106 |
+
bash examples/backtranslation/sacrebleu.sh \
|
107 |
+
wmt17 \
|
108 |
+
en-de \
|
109 |
+
data-bin/wmt18_en_de \
|
110 |
+
data-bin/wmt18_en_de/code \
|
111 |
+
$CHECKPOINT_DIR/checkpoint.avg10.pt
|
112 |
+
# BLEU+case.mixed+lang.en-de+numrefs.1+smooth.exp+test.wmt17+tok.13a+version.1.4.3 = 29.0 60.6/34.7/22.4/14.9 (BP = 1.000 ratio = 1.013 hyp_len = 62099 ref_len = 61287)
|
113 |
+
```
|
114 |
+
|
115 |
+
|
116 |
+
#### Step 2. Back-translate monolingual German data
|
117 |
+
|
118 |
+
Train a reverse model (German-English) to do the back-translation:
|
119 |
+
```bash
|
120 |
+
CHECKPOINT_DIR=checkpoints_de_en_parallel
|
121 |
+
fairseq-train --fp16 \
|
122 |
+
data-bin/wmt18_en_de \
|
123 |
+
--source-lang de --target-lang en \
|
124 |
+
--arch transformer_wmt_en_de_big --share-all-embeddings \
|
125 |
+
--dropout 0.3 --weight-decay 0.0 \
|
126 |
+
--criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
|
127 |
+
--optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \
|
128 |
+
--lr 0.001 --lr-scheduler inverse_sqrt --warmup-updates 4000 \
|
129 |
+
--max-tokens 3584 --update-freq 16 \
|
130 |
+
--max-update 30000 \
|
131 |
+
--save-dir $CHECKPOINT_DIR
|
132 |
+
# Note: the above command assumes 8 GPUs. Adjust `--update-freq` if you have a
|
133 |
+
# different number of GPUs.
|
134 |
+
```
|
135 |
+
|
136 |
+
Let's evaluate the back-translation (BT) model to make sure it is well trained:
|
137 |
+
```bash
|
138 |
+
bash examples/backtranslation/sacrebleu.sh \
|
139 |
+
wmt17 \
|
140 |
+
de-en \
|
141 |
+
data-bin/wmt18_en_de \
|
142 |
+
data-bin/wmt18_en_de/code \
|
143 |
+
$CHECKPOINT_DIR/checkpoint_best.py
|
144 |
+
# BLEU+case.mixed+lang.de-en+numrefs.1+smooth.exp+test.wmt17+tok.13a+version.1.4.3 = 34.9 66.9/41.8/28.5/19.9 (BP = 0.983 ratio = 0.984 hyp_len = 63342 ref_len = 64399)
|
145 |
+
# compare to the best system from WMT'17 which scored 35.1: http://matrix.statmt.org/matrix/systems_list/1868
|
146 |
+
```
|
147 |
+
|
148 |
+
Next prepare the monolingual data:
|
149 |
+
```bash
|
150 |
+
# Download and prepare the monolingual data
|
151 |
+
# By default the script samples 25M monolingual sentences, which after
|
152 |
+
# deduplication should be just over 24M sentences. These are split into 25
|
153 |
+
# shards, each with 1M sentences (except for the last shard).
|
154 |
+
cd examples/backtranslation/
|
155 |
+
bash prepare-de-monolingual.sh
|
156 |
+
cd ../..
|
157 |
+
|
158 |
+
# Binarize each shard of the monolingual data
|
159 |
+
TEXT=examples/backtranslation/wmt18_de_mono
|
160 |
+
for SHARD in $(seq -f "%02g" 0 24); do \
|
161 |
+
fairseq-preprocess \
|
162 |
+
--only-source \
|
163 |
+
--source-lang de --target-lang en \
|
164 |
+
--joined-dictionary \
|
165 |
+
--srcdict data-bin/wmt18_en_de/dict.de.txt \
|
166 |
+
--testpref $TEXT/bpe.monolingual.dedup.${SHARD} \
|
167 |
+
--destdir data-bin/wmt18_de_mono/shard${SHARD} \
|
168 |
+
--workers 20; \
|
169 |
+
cp data-bin/wmt18_en_de/dict.en.txt data-bin/wmt18_de_mono/shard${SHARD}/; \
|
170 |
+
done
|
171 |
+
```
|
172 |
+
|
173 |
+
Now we're ready to perform back-translation over the monolingual data. The
|
174 |
+
following command generates via sampling, but it's possible to use greedy
|
175 |
+
decoding (`--beam 1`), beam search (`--beam 5`),
|
176 |
+
top-k sampling (`--sampling --beam 1 --sampling-topk 10`), etc.:
|
177 |
+
```bash
|
178 |
+
mkdir backtranslation_output
|
179 |
+
for SHARD in $(seq -f "%02g" 0 24); do \
|
180 |
+
fairseq-generate --fp16 \
|
181 |
+
data-bin/wmt18_de_mono/shard${SHARD} \
|
182 |
+
--path $CHECKPOINT_DIR/checkpoint_best.pt \
|
183 |
+
--skip-invalid-size-inputs-valid-test \
|
184 |
+
--max-tokens 4096 \
|
185 |
+
--sampling --beam 1 \
|
186 |
+
> backtranslation_output/sampling.shard${SHARD}.out; \
|
187 |
+
done
|
188 |
+
```
|
189 |
+
|
190 |
+
After BT, use the `extract_bt_data.py` script to re-combine the shards, extract
|
191 |
+
the back-translations and apply length ratio filters:
|
192 |
+
```bash
|
193 |
+
python examples/backtranslation/extract_bt_data.py \
|
194 |
+
--minlen 1 --maxlen 250 --ratio 1.5 \
|
195 |
+
--output backtranslation_output/bt_data --srclang en --tgtlang de \
|
196 |
+
backtranslation_output/sampling.shard*.out
|
197 |
+
|
198 |
+
# Ensure lengths are the same:
|
199 |
+
# wc -l backtranslation_output/bt_data.{en,de}
|
200 |
+
# 21795614 backtranslation_output/bt_data.en
|
201 |
+
# 21795614 backtranslation_output/bt_data.de
|
202 |
+
# 43591228 total
|
203 |
+
```
|
204 |
+
|
205 |
+
Binarize the filtered BT data and combine it with the parallel data:
|
206 |
+
```bash
|
207 |
+
TEXT=backtranslation_output
|
208 |
+
fairseq-preprocess \
|
209 |
+
--source-lang en --target-lang de \
|
210 |
+
--joined-dictionary \
|
211 |
+
--srcdict data-bin/wmt18_en_de/dict.en.txt \
|
212 |
+
--trainpref $TEXT/bt_data \
|
213 |
+
--destdir data-bin/wmt18_en_de_bt \
|
214 |
+
--workers 20
|
215 |
+
|
216 |
+
# We want to train on the combined data, so we'll symlink the parallel + BT data
|
217 |
+
# in the wmt18_en_de_para_plus_bt directory. We link the parallel data as "train"
|
218 |
+
# and the BT data as "train1", so that fairseq will combine them automatically
|
219 |
+
# and so that we can use the `--upsample-primary` option to upsample the
|
220 |
+
# parallel data (if desired).
|
221 |
+
PARA_DATA=$(readlink -f data-bin/wmt18_en_de)
|
222 |
+
BT_DATA=$(readlink -f data-bin/wmt18_en_de_bt)
|
223 |
+
COMB_DATA=data-bin/wmt18_en_de_para_plus_bt
|
224 |
+
mkdir -p $COMB_DATA
|
225 |
+
for LANG in en de; do \
|
226 |
+
ln -s ${PARA_DATA}/dict.$LANG.txt ${COMB_DATA}/dict.$LANG.txt; \
|
227 |
+
for EXT in bin idx; do \
|
228 |
+
ln -s ${PARA_DATA}/train.en-de.$LANG.$EXT ${COMB_DATA}/train.en-de.$LANG.$EXT; \
|
229 |
+
ln -s ${BT_DATA}/train.en-de.$LANG.$EXT ${COMB_DATA}/train1.en-de.$LANG.$EXT; \
|
230 |
+
ln -s ${PARA_DATA}/valid.en-de.$LANG.$EXT ${COMB_DATA}/valid.en-de.$LANG.$EXT; \
|
231 |
+
ln -s ${PARA_DATA}/test.en-de.$LANG.$EXT ${COMB_DATA}/test.en-de.$LANG.$EXT; \
|
232 |
+
done; \
|
233 |
+
done
|
234 |
+
```
|
235 |
+
|
236 |
+
|
237 |
+
#### 3. Train an English-German model over the combined parallel + BT data
|
238 |
+
|
239 |
+
Finally we can train a model over the parallel + BT data:
|
240 |
+
```bash
|
241 |
+
CHECKPOINT_DIR=checkpoints_en_de_parallel_plus_bt
|
242 |
+
fairseq-train --fp16 \
|
243 |
+
data-bin/wmt18_en_de_para_plus_bt \
|
244 |
+
--upsample-primary 16 \
|
245 |
+
--source-lang en --target-lang de \
|
246 |
+
--arch transformer_wmt_en_de_big --share-all-embeddings \
|
247 |
+
--dropout 0.3 --weight-decay 0.0 \
|
248 |
+
--criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
|
249 |
+
--optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \
|
250 |
+
--lr 0.0007 --lr-scheduler inverse_sqrt --warmup-updates 4000 \
|
251 |
+
--max-tokens 3584 --update-freq 16 \
|
252 |
+
--max-update 100000 \
|
253 |
+
--save-dir $CHECKPOINT_DIR
|
254 |
+
# Note: the above command assumes 8 GPUs. Adjust `--update-freq` if you have a
|
255 |
+
# different number of GPUs.
|
256 |
+
```
|
257 |
+
|
258 |
+
Average the last 10 checkpoints:
|
259 |
+
```bash
|
260 |
+
python scripts/average_checkpoints.py \
|
261 |
+
--inputs $CHECKPOINT_DIR \
|
262 |
+
--num-epoch-checkpoints 10 \
|
263 |
+
--output $CHECKPOINT_DIR/checkpoint.avg10.pt
|
264 |
+
```
|
265 |
+
|
266 |
+
Evaluate BLEU:
|
267 |
+
```bash
|
268 |
+
# tokenized BLEU on newstest2017:
|
269 |
+
bash examples/backtranslation/tokenized_bleu.sh \
|
270 |
+
wmt17 \
|
271 |
+
en-de \
|
272 |
+
data-bin/wmt18_en_de \
|
273 |
+
data-bin/wmt18_en_de/code \
|
274 |
+
$CHECKPOINT_DIR/checkpoint.avg10.pt
|
275 |
+
# BLEU4 = 32.35, 64.4/38.9/26.2/18.3 (BP=0.977, ratio=0.977, syslen=60729, reflen=62152)
|
276 |
+
# compare to 32.35 in Table 1, which is also for tokenized BLEU
|
277 |
+
|
278 |
+
# generally it's better to report (detokenized) sacrebleu:
|
279 |
+
bash examples/backtranslation/sacrebleu.sh \
|
280 |
+
wmt17 \
|
281 |
+
en-de \
|
282 |
+
data-bin/wmt18_en_de \
|
283 |
+
data-bin/wmt18_en_de/code \
|
284 |
+
$CHECKPOINT_DIR/checkpoint.avg10.pt
|
285 |
+
# BLEU+case.mixed+lang.en-de+numrefs.1+smooth.exp+test.wmt17+tok.13a+version.1.4.3 = 31.5 64.3/38.2/25.6/17.6 (BP = 0.971 ratio = 0.971 hyp_len = 59515 ref_len = 61287)
|
286 |
+
```
|
287 |
+
|
288 |
+
|
289 |
+
## Citation
|
290 |
+
```bibtex
|
291 |
+
@inproceedings{edunov2018backtranslation,
|
292 |
+
title = {Understanding Back-Translation at Scale},
|
293 |
+
author = {Edunov, Sergey and Ott, Myle and Auli, Michael and Grangier, David},
|
294 |
+
booktitle = {Conference of the Association for Computational Linguistics (ACL)},
|
295 |
+
year = 2018,
|
296 |
+
}
|
297 |
+
```
|
fairseq/examples/backtranslation/deduplicate_lines.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the MIT license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import argparse
|
8 |
+
import fileinput
|
9 |
+
import hashlib
|
10 |
+
import sys
|
11 |
+
from multiprocessing import Pool
|
12 |
+
|
13 |
+
|
14 |
+
def get_hashes_and_lines(raw_line):
|
15 |
+
hash = hashlib.md5(raw_line).hexdigest()
|
16 |
+
return hash, raw_line
|
17 |
+
|
18 |
+
|
19 |
+
def main():
|
20 |
+
parser = argparse.ArgumentParser()
|
21 |
+
parser.add_argument("--workers", type=int, default=10)
|
22 |
+
parser.add_argument("files", nargs="*", help="input files")
|
23 |
+
args = parser.parse_args()
|
24 |
+
|
25 |
+
seen = set()
|
26 |
+
with fileinput.input(args.files, mode="rb") as h:
|
27 |
+
pool = Pool(args.workers)
|
28 |
+
results = pool.imap_unordered(get_hashes_and_lines, h, 1000)
|
29 |
+
for i, (hash, raw_line) in enumerate(results):
|
30 |
+
if hash not in seen:
|
31 |
+
seen.add(hash)
|
32 |
+
sys.stdout.buffer.write(raw_line)
|
33 |
+
if i % 1000000 == 0:
|
34 |
+
print(i, file=sys.stderr, end="", flush=True)
|
35 |
+
elif i % 100000 == 0:
|
36 |
+
print(".", file=sys.stderr, end="", flush=True)
|
37 |
+
print(file=sys.stderr, flush=True)
|
38 |
+
|
39 |
+
|
40 |
+
if __name__ == "__main__":
|
41 |
+
main()
|
fairseq/examples/backtranslation/extract_bt_data.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the MIT license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import argparse
|
8 |
+
import fileinput
|
9 |
+
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
|
13 |
+
def main():
|
14 |
+
parser = argparse.ArgumentParser(
|
15 |
+
description=(
|
16 |
+
"Extract back-translations from the stdout of fairseq-generate. "
|
17 |
+
"If there are multiply hypotheses for a source, we only keep the first one. "
|
18 |
+
)
|
19 |
+
)
|
20 |
+
parser.add_argument("--output", required=True, help="output prefix")
|
21 |
+
parser.add_argument(
|
22 |
+
"--srclang", required=True, help="source language (extracted from H-* lines)"
|
23 |
+
)
|
24 |
+
parser.add_argument(
|
25 |
+
"--tgtlang", required=True, help="target language (extracted from S-* lines)"
|
26 |
+
)
|
27 |
+
parser.add_argument("--minlen", type=int, help="min length filter")
|
28 |
+
parser.add_argument("--maxlen", type=int, help="max length filter")
|
29 |
+
parser.add_argument("--ratio", type=float, help="ratio filter")
|
30 |
+
parser.add_argument("files", nargs="*", help="input files")
|
31 |
+
args = parser.parse_args()
|
32 |
+
|
33 |
+
def validate(src, tgt):
|
34 |
+
srclen = len(src.split(" ")) if src != "" else 0
|
35 |
+
tgtlen = len(tgt.split(" ")) if tgt != "" else 0
|
36 |
+
if (
|
37 |
+
(args.minlen is not None and (srclen < args.minlen or tgtlen < args.minlen))
|
38 |
+
or (
|
39 |
+
args.maxlen is not None
|
40 |
+
and (srclen > args.maxlen or tgtlen > args.maxlen)
|
41 |
+
)
|
42 |
+
or (
|
43 |
+
args.ratio is not None
|
44 |
+
and (max(srclen, tgtlen) / float(min(srclen, tgtlen)) > args.ratio)
|
45 |
+
)
|
46 |
+
):
|
47 |
+
return False
|
48 |
+
return True
|
49 |
+
|
50 |
+
def safe_index(toks, index, default):
|
51 |
+
try:
|
52 |
+
return toks[index]
|
53 |
+
except IndexError:
|
54 |
+
return default
|
55 |
+
|
56 |
+
with open(args.output + "." + args.srclang, "w") as src_h, open(
|
57 |
+
args.output + "." + args.tgtlang, "w"
|
58 |
+
) as tgt_h:
|
59 |
+
for line in tqdm(fileinput.input(args.files)):
|
60 |
+
if line.startswith("S-"):
|
61 |
+
tgt = safe_index(line.rstrip().split("\t"), 1, "")
|
62 |
+
elif line.startswith("H-"):
|
63 |
+
if tgt is not None:
|
64 |
+
src = safe_index(line.rstrip().split("\t"), 2, "")
|
65 |
+
if validate(src, tgt):
|
66 |
+
print(src, file=src_h)
|
67 |
+
print(tgt, file=tgt_h)
|
68 |
+
tgt = None
|
69 |
+
|
70 |
+
|
71 |
+
if __name__ == "__main__":
|
72 |
+
main()
|
fairseq/examples/backtranslation/prepare-de-monolingual.sh
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
SCRIPTS=mosesdecoder/scripts
|
4 |
+
TOKENIZER=$SCRIPTS/tokenizer/tokenizer.perl
|
5 |
+
NORM_PUNC=$SCRIPTS/tokenizer/normalize-punctuation.perl
|
6 |
+
REM_NON_PRINT_CHAR=$SCRIPTS/tokenizer/remove-non-printing-char.perl
|
7 |
+
BPEROOT=subword-nmt/subword_nmt
|
8 |
+
|
9 |
+
|
10 |
+
BPE_CODE=wmt18_en_de/code
|
11 |
+
SUBSAMPLE_SIZE=25000000
|
12 |
+
LANG=de
|
13 |
+
|
14 |
+
|
15 |
+
OUTDIR=wmt18_${LANG}_mono
|
16 |
+
orig=orig
|
17 |
+
tmp=$OUTDIR/tmp
|
18 |
+
mkdir -p $OUTDIR $tmp
|
19 |
+
|
20 |
+
|
21 |
+
URLS=(
|
22 |
+
"http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2007.de.shuffled.gz"
|
23 |
+
"http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2008.de.shuffled.gz"
|
24 |
+
"http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2009.de.shuffled.gz"
|
25 |
+
"http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2010.de.shuffled.gz"
|
26 |
+
"http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2011.de.shuffled.gz"
|
27 |
+
"http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2012.de.shuffled.gz"
|
28 |
+
"http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2013.de.shuffled.gz"
|
29 |
+
"http://www.statmt.org/wmt15/training-monolingual-news-crawl-v2/news.2014.de.shuffled.v2.gz"
|
30 |
+
"http://data.statmt.org/wmt16/translation-task/news.2015.de.shuffled.gz"
|
31 |
+
"http://data.statmt.org/wmt17/translation-task/news.2016.de.shuffled.gz"
|
32 |
+
"http://data.statmt.org/wmt18/translation-task/news.2017.de.shuffled.deduped.gz"
|
33 |
+
)
|
34 |
+
FILES=(
|
35 |
+
"news.2007.de.shuffled.gz"
|
36 |
+
"news.2008.de.shuffled.gz"
|
37 |
+
"news.2009.de.shuffled.gz"
|
38 |
+
"news.2010.de.shuffled.gz"
|
39 |
+
"news.2011.de.shuffled.gz"
|
40 |
+
"news.2012.de.shuffled.gz"
|
41 |
+
"news.2013.de.shuffled.gz"
|
42 |
+
"news.2014.de.shuffled.v2.gz"
|
43 |
+
"news.2015.de.shuffled.gz"
|
44 |
+
"news.2016.de.shuffled.gz"
|
45 |
+
"news.2017.de.shuffled.deduped.gz"
|
46 |
+
)
|
47 |
+
|
48 |
+
|
49 |
+
cd $orig
|
50 |
+
for ((i=0;i<${#URLS[@]};++i)); do
|
51 |
+
file=${FILES[i]}
|
52 |
+
if [ -f $file ]; then
|
53 |
+
echo "$file already exists, skipping download"
|
54 |
+
else
|
55 |
+
url=${URLS[i]}
|
56 |
+
wget "$url"
|
57 |
+
fi
|
58 |
+
done
|
59 |
+
cd ..
|
60 |
+
|
61 |
+
|
62 |
+
if [ -f $tmp/monolingual.${SUBSAMPLE_SIZE}.${LANG} ]; then
|
63 |
+
echo "found monolingual sample, skipping shuffle/sample/tokenize"
|
64 |
+
else
|
65 |
+
gzip -c -d -k $(for FILE in "${FILES[@]}"; do echo $orig/$FILE; done) \
|
66 |
+
| shuf -n $SUBSAMPLE_SIZE \
|
67 |
+
| perl $NORM_PUNC $LANG \
|
68 |
+
| perl $REM_NON_PRINT_CHAR \
|
69 |
+
| perl $TOKENIZER -threads 8 -a -l $LANG \
|
70 |
+
> $tmp/monolingual.${SUBSAMPLE_SIZE}.${LANG}
|
71 |
+
fi
|
72 |
+
|
73 |
+
|
74 |
+
if [ -f $tmp/bpe.monolingual.${SUBSAMPLE_SIZE}.${LANG} ]; then
|
75 |
+
echo "found BPE monolingual sample, skipping BPE step"
|
76 |
+
else
|
77 |
+
python $BPEROOT/apply_bpe.py -c $BPE_CODE \
|
78 |
+
< $tmp/monolingual.${SUBSAMPLE_SIZE}.${LANG} \
|
79 |
+
> $tmp/bpe.monolingual.${SUBSAMPLE_SIZE}.${LANG}
|
80 |
+
fi
|
81 |
+
|
82 |
+
|
83 |
+
if [ -f $tmp/bpe.monolingual.dedup.${SUBSAMPLE_SIZE}.${LANG} ]; then
|
84 |
+
echo "found deduplicated monolingual sample, skipping deduplication step"
|
85 |
+
else
|
86 |
+
python deduplicate_lines.py $tmp/bpe.monolingual.${SUBSAMPLE_SIZE}.${LANG} \
|
87 |
+
> $tmp/bpe.monolingual.dedup.${SUBSAMPLE_SIZE}.${LANG}
|
88 |
+
fi
|
89 |
+
|
90 |
+
|
91 |
+
if [ -f $OUTDIR/bpe.monolingual.dedup.00.de ]; then
|
92 |
+
echo "found sharded data, skipping sharding step"
|
93 |
+
else
|
94 |
+
split --lines 1000000 --numeric-suffixes \
|
95 |
+
--additional-suffix .${LANG} \
|
96 |
+
$tmp/bpe.monolingual.dedup.${SUBSAMPLE_SIZE}.${LANG} \
|
97 |
+
$OUTDIR/bpe.monolingual.dedup.
|
98 |
+
fi
|
fairseq/examples/backtranslation/prepare-wmt18en2de.sh
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# Adapted from https://github.com/facebookresearch/MIXER/blob/master/prepareData.sh
|
3 |
+
|
4 |
+
echo 'Cloning Moses github repository (for tokenization scripts)...'
|
5 |
+
git clone https://github.com/moses-smt/mosesdecoder.git
|
6 |
+
|
7 |
+
echo 'Cloning Subword NMT repository (for BPE pre-processing)...'
|
8 |
+
git clone https://github.com/rsennrich/subword-nmt.git
|
9 |
+
|
10 |
+
SCRIPTS=mosesdecoder/scripts
|
11 |
+
TOKENIZER=$SCRIPTS/tokenizer/tokenizer.perl
|
12 |
+
CLEAN=$SCRIPTS/training/clean-corpus-n.perl
|
13 |
+
NORM_PUNC=$SCRIPTS/tokenizer/normalize-punctuation.perl
|
14 |
+
REM_NON_PRINT_CHAR=$SCRIPTS/tokenizer/remove-non-printing-char.perl
|
15 |
+
BPEROOT=subword-nmt/subword_nmt
|
16 |
+
BPE_TOKENS=32000
|
17 |
+
|
18 |
+
URLS=(
|
19 |
+
"http://statmt.org/wmt13/training-parallel-europarl-v7.tgz"
|
20 |
+
"http://statmt.org/wmt13/training-parallel-commoncrawl.tgz"
|
21 |
+
"http://data.statmt.org/wmt18/translation-task/training-parallel-nc-v13.tgz"
|
22 |
+
"http://data.statmt.org/wmt18/translation-task/rapid2016.tgz"
|
23 |
+
"http://data.statmt.org/wmt17/translation-task/dev.tgz"
|
24 |
+
"http://statmt.org/wmt14/test-full.tgz"
|
25 |
+
)
|
26 |
+
FILES=(
|
27 |
+
"training-parallel-europarl-v7.tgz"
|
28 |
+
"training-parallel-commoncrawl.tgz"
|
29 |
+
"training-parallel-nc-v13.tgz"
|
30 |
+
"rapid2016.tgz"
|
31 |
+
"dev.tgz"
|
32 |
+
"test-full.tgz"
|
33 |
+
)
|
34 |
+
CORPORA=(
|
35 |
+
"training/europarl-v7.de-en"
|
36 |
+
"commoncrawl.de-en"
|
37 |
+
"training-parallel-nc-v13/news-commentary-v13.de-en"
|
38 |
+
"rapid2016.de-en"
|
39 |
+
)
|
40 |
+
|
41 |
+
if [ ! -d "$SCRIPTS" ]; then
|
42 |
+
echo "Please set SCRIPTS variable correctly to point to Moses scripts."
|
43 |
+
exit 1
|
44 |
+
fi
|
45 |
+
|
46 |
+
OUTDIR=wmt18_en_de
|
47 |
+
|
48 |
+
src=en
|
49 |
+
tgt=de
|
50 |
+
lang=en-de
|
51 |
+
prep=$OUTDIR
|
52 |
+
tmp=$prep/tmp
|
53 |
+
orig=orig
|
54 |
+
|
55 |
+
mkdir -p $orig $tmp $prep
|
56 |
+
|
57 |
+
cd $orig
|
58 |
+
|
59 |
+
for ((i=0;i<${#URLS[@]};++i)); do
|
60 |
+
file=${FILES[i]}
|
61 |
+
if [ -f $file ]; then
|
62 |
+
echo "$file already exists, skipping download"
|
63 |
+
else
|
64 |
+
url=${URLS[i]}
|
65 |
+
wget "$url"
|
66 |
+
if [ -f $file ]; then
|
67 |
+
echo "$url successfully downloaded."
|
68 |
+
else
|
69 |
+
echo "$url not successfully downloaded."
|
70 |
+
exit 1
|
71 |
+
fi
|
72 |
+
if [ ${file: -4} == ".tgz" ]; then
|
73 |
+
tar zxvf $file
|
74 |
+
elif [ ${file: -4} == ".tar" ]; then
|
75 |
+
tar xvf $file
|
76 |
+
fi
|
77 |
+
fi
|
78 |
+
done
|
79 |
+
cd ..
|
80 |
+
|
81 |
+
echo "pre-processing train data..."
|
82 |
+
for l in $src $tgt; do
|
83 |
+
rm $tmp/train.tags.$lang.tok.$l
|
84 |
+
for f in "${CORPORA[@]}"; do
|
85 |
+
cat $orig/$f.$l | \
|
86 |
+
perl $NORM_PUNC $l | \
|
87 |
+
perl $REM_NON_PRINT_CHAR | \
|
88 |
+
perl $TOKENIZER -threads 8 -a -l $l >> $tmp/train.tags.$lang.tok.$l
|
89 |
+
done
|
90 |
+
done
|
91 |
+
|
92 |
+
echo "pre-processing test data..."
|
93 |
+
for l in $src $tgt; do
|
94 |
+
if [ "$l" == "$src" ]; then
|
95 |
+
t="src"
|
96 |
+
else
|
97 |
+
t="ref"
|
98 |
+
fi
|
99 |
+
grep '<seg id' $orig/test-full/newstest2014-deen-$t.$l.sgm | \
|
100 |
+
sed -e 's/<seg id="[0-9]*">\s*//g' | \
|
101 |
+
sed -e 's/\s*<\/seg>\s*//g' | \
|
102 |
+
sed -e "s/\’/\'/g" | \
|
103 |
+
perl $TOKENIZER -threads 8 -a -l $l > $tmp/test.$l
|
104 |
+
echo ""
|
105 |
+
done
|
106 |
+
|
107 |
+
echo "splitting train and valid..."
|
108 |
+
for l in $src $tgt; do
|
109 |
+
awk '{if (NR%100 == 0) print $0; }' $tmp/train.tags.$lang.tok.$l > $tmp/valid.$l
|
110 |
+
awk '{if (NR%100 != 0) print $0; }' $tmp/train.tags.$lang.tok.$l > $tmp/train.$l
|
111 |
+
done
|
112 |
+
|
113 |
+
TRAIN=$tmp/train.de-en
|
114 |
+
BPE_CODE=$prep/code
|
115 |
+
rm -f $TRAIN
|
116 |
+
for l in $src $tgt; do
|
117 |
+
cat $tmp/train.$l >> $TRAIN
|
118 |
+
done
|
119 |
+
|
120 |
+
echo "learn_bpe.py on ${TRAIN}..."
|
121 |
+
python $BPEROOT/learn_bpe.py -s $BPE_TOKENS < $TRAIN > $BPE_CODE
|
122 |
+
|
123 |
+
for L in $src $tgt; do
|
124 |
+
for f in train.$L valid.$L test.$L; do
|
125 |
+
echo "apply_bpe.py to ${f}..."
|
126 |
+
python $BPEROOT/apply_bpe.py -c $BPE_CODE < $tmp/$f > $tmp/bpe.$f
|
127 |
+
done
|
128 |
+
done
|
129 |
+
|
130 |
+
perl $CLEAN -ratio 1.5 $tmp/bpe.train $src $tgt $prep/train 1 250
|
131 |
+
perl $CLEAN -ratio 1.5 $tmp/bpe.valid $src $tgt $prep/valid 1 250
|
132 |
+
|
133 |
+
for L in $src $tgt; do
|
134 |
+
cp $tmp/bpe.test.$L $prep/test.$L
|
135 |
+
done
|
fairseq/examples/backtranslation/sacrebleu.sh
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
if [ $# -ne 5 ]; then
|
4 |
+
echo "usage: $0 [dataset=wmt14/full] [langpair=en-de] [databin] [bpecode] [model]"
|
5 |
+
exit
|
6 |
+
fi
|
7 |
+
|
8 |
+
|
9 |
+
DATASET=$1
|
10 |
+
LANGPAIR=$2
|
11 |
+
DATABIN=$3
|
12 |
+
BPECODE=$4
|
13 |
+
MODEL=$5
|
14 |
+
|
15 |
+
SRCLANG=$(echo $LANGPAIR | cut -d '-' -f 1)
|
16 |
+
TGTLANG=$(echo $LANGPAIR | cut -d '-' -f 2)
|
17 |
+
|
18 |
+
|
19 |
+
BPEROOT=examples/backtranslation/subword-nmt/subword_nmt
|
20 |
+
if [ ! -e $BPEROOT ]; then
|
21 |
+
BPEROOT=subword-nmt/subword_nmt
|
22 |
+
if [ ! -e $BPEROOT ]; then
|
23 |
+
echo 'Cloning Subword NMT repository (for BPE pre-processing)...'
|
24 |
+
git clone https://github.com/rsennrich/subword-nmt.git
|
25 |
+
fi
|
26 |
+
fi
|
27 |
+
|
28 |
+
|
29 |
+
sacrebleu -t $DATASET -l $LANGPAIR --echo src \
|
30 |
+
| sacremoses tokenize -a -l $SRCLANG -q \
|
31 |
+
| python $BPEROOT/apply_bpe.py -c $BPECODE \
|
32 |
+
| fairseq-interactive $DATABIN --path $MODEL \
|
33 |
+
-s $SRCLANG -t $TGTLANG \
|
34 |
+
--beam 5 --remove-bpe --buffer-size 1024 --max-tokens 8000 \
|
35 |
+
| grep ^H- | cut -f 3- \
|
36 |
+
| sacremoses detokenize -l $TGTLANG -q \
|
37 |
+
| sacrebleu -t $DATASET -l $LANGPAIR
|
fairseq/examples/backtranslation/tokenized_bleu.sh
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
if [ $# -ne 5 ]; then
|
4 |
+
echo "usage: $0 [dataset=wmt14/full] [langpair=en-de] [databin] [bpecode] [model]"
|
5 |
+
exit
|
6 |
+
fi
|
7 |
+
|
8 |
+
|
9 |
+
DATASET=$1
|
10 |
+
LANGPAIR=$2
|
11 |
+
DATABIN=$3
|
12 |
+
BPECODE=$4
|
13 |
+
MODEL=$5
|
14 |
+
|
15 |
+
SRCLANG=$(echo $LANGPAIR | cut -d '-' -f 1)
|
16 |
+
TGTLANG=$(echo $LANGPAIR | cut -d '-' -f 2)
|
17 |
+
|
18 |
+
|
19 |
+
BPEROOT=examples/backtranslation/subword-nmt/subword_nmt
|
20 |
+
if [ ! -e $BPEROOT ]; then
|
21 |
+
BPEROOT=subword-nmt/subword_nmt
|
22 |
+
if [ ! -e $BPEROOT ]; then
|
23 |
+
echo 'Cloning Subword NMT repository (for BPE pre-processing)...'
|
24 |
+
git clone https://github.com/rsennrich/subword-nmt.git
|
25 |
+
fi
|
26 |
+
fi
|
27 |
+
|
28 |
+
|
29 |
+
TMP_REF=$(mktemp)
|
30 |
+
|
31 |
+
sacrebleu -t $DATASET -l $LANGPAIR --echo ref -q \
|
32 |
+
| sacremoses normalize -l $TGTLANG -q \
|
33 |
+
| sacremoses tokenize -a -l $TGTLANG -q \
|
34 |
+
> $TMP_REF
|
35 |
+
|
36 |
+
sacrebleu -t $DATASET -l $LANGPAIR --echo src -q \
|
37 |
+
| sacremoses normalize -l $SRCLANG -q \
|
38 |
+
| sacremoses tokenize -a -l $SRCLANG -q \
|
39 |
+
| python $BPEROOT/apply_bpe.py -c $BPECODE \
|
40 |
+
| fairseq-interactive $DATABIN --path $MODEL \
|
41 |
+
-s $SRCLANG -t $TGTLANG \
|
42 |
+
--beam 5 --remove-bpe --buffer-size 1024 --max-tokens 8000 \
|
43 |
+
| grep ^H- | cut -f 3- \
|
44 |
+
| fairseq-score --ref $TMP_REF
|
45 |
+
|
46 |
+
rm -f $TMP_REF
|
fairseq/examples/bart/README.glue.md
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Fine-tuning BART on GLUE tasks
|
2 |
+
|
3 |
+
### 1) Download the data from GLUE website (https://gluebenchmark.com/tasks) using following commands:
|
4 |
+
```bash
|
5 |
+
wget https://gist.githubusercontent.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e/raw/17b8dd0d724281ed7c3b2aeeda662b92809aadd5/download_glue_data.py
|
6 |
+
python download_glue_data.py --data_dir glue_data --tasks all
|
7 |
+
```
|
8 |
+
|
9 |
+
### 2) Preprocess GLUE task data (same as RoBERTa):
|
10 |
+
```bash
|
11 |
+
./examples/roberta/preprocess_GLUE_tasks.sh glue_data <glue_task_name>
|
12 |
+
```
|
13 |
+
`glue_task_name` is one of the following:
|
14 |
+
`{ALL, QQP, MNLI, QNLI, MRPC, RTE, STS-B, SST-2, CoLA}`
|
15 |
+
Use `ALL` for preprocessing all the glue tasks.
|
16 |
+
|
17 |
+
### 3) Fine-tuning on GLUE task:
|
18 |
+
Example fine-tuning cmd for `RTE` task
|
19 |
+
```bash
|
20 |
+
TOTAL_NUM_UPDATES=2036 # 10 epochs through RTE for bsz 16
|
21 |
+
WARMUP_UPDATES=61 # 6 percent of the number of updates
|
22 |
+
LR=1e-05 # Peak LR for polynomial LR scheduler.
|
23 |
+
NUM_CLASSES=2
|
24 |
+
MAX_SENTENCES=16 # Batch size.
|
25 |
+
BART_PATH=/path/to/bart/model.pt
|
26 |
+
|
27 |
+
CUDA_VISIBLE_DEVICES=0,1 fairseq-train RTE-bin/ \
|
28 |
+
--restore-file $BART_PATH \
|
29 |
+
--batch-size $MAX_SENTENCES \
|
30 |
+
--max-tokens 4400 \
|
31 |
+
--task sentence_prediction \
|
32 |
+
--add-prev-output-tokens \
|
33 |
+
--layernorm-embedding \
|
34 |
+
--share-all-embeddings \
|
35 |
+
--share-decoder-input-output-embed \
|
36 |
+
--reset-optimizer --reset-dataloader --reset-meters \
|
37 |
+
--required-batch-size-multiple 1 \
|
38 |
+
--init-token 0 \
|
39 |
+
--arch bart_large \
|
40 |
+
--criterion sentence_prediction \
|
41 |
+
--num-classes $NUM_CLASSES \
|
42 |
+
--dropout 0.1 --attention-dropout 0.1 \
|
43 |
+
--weight-decay 0.01 --optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-08 \
|
44 |
+
--clip-norm 0.0 \
|
45 |
+
--lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES \
|
46 |
+
--fp16 --fp16-init-scale 4 --threshold-loss-scale 1 --fp16-scale-window 128 \
|
47 |
+
--max-epoch 10 \
|
48 |
+
--find-unused-parameters \
|
49 |
+
--best-checkpoint-metric accuracy --maximize-best-checkpoint-metric;
|
50 |
+
```
|
51 |
+
|
52 |
+
For each of the GLUE task, you will need to use following cmd-line arguments:
|
53 |
+
|
54 |
+
Model | MNLI | QNLI | QQP | RTE | SST-2 | MRPC | CoLA | STS-B
|
55 |
+
---|---|---|---|---|---|---|---|---
|
56 |
+
`--num-classes` | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 1
|
57 |
+
`--lr` | 5e-6 | 1e-5 | 1e-5 | 1e-5 | 5e-6 | 2e-5 | 2e-5 | 2e-5
|
58 |
+
`bsz` | 128 | 32 | 32 | 32 | 128 | 64 | 64 | 32
|
59 |
+
`--total-num-update` | 30968 | 33112 | 113272 | 1018 | 5233 | 1148 | 1334 | 1799
|
60 |
+
`--warmup-updates` | 1858 | 1986 | 6796 | 61 | 314 | 68 | 80 | 107
|
61 |
+
|
62 |
+
For `STS-B` additionally add `--regression-target --best-checkpoint-metric loss` and remove `--maximize-best-checkpoint-metric`.
|
63 |
+
|
64 |
+
**Note:**
|
65 |
+
|
66 |
+
a) `--total-num-updates` is used by `--polynomial_decay` scheduler and is calculated for `--max-epoch=10` and `--batch-size=32/64/128` depending on the task.
|
67 |
+
|
68 |
+
b) Above cmd-args and hyperparams are tested on Nvidia `V100` GPU with `32gb` of memory for each task. Depending on the GPU memory resources available to you, you can use increase `--update-freq` and reduce `--batch-size`.
|
69 |
+
|
70 |
+
### Inference on GLUE task
|
71 |
+
After training the model as mentioned in previous step, you can perform inference with checkpoints in `checkpoints/` directory using following python code snippet:
|
72 |
+
|
73 |
+
```python
|
74 |
+
from fairseq.models.bart import BARTModel
|
75 |
+
|
76 |
+
bart = BARTModel.from_pretrained(
|
77 |
+
'checkpoints/',
|
78 |
+
checkpoint_file='checkpoint_best.pt',
|
79 |
+
data_name_or_path='RTE-bin'
|
80 |
+
)
|
81 |
+
|
82 |
+
label_fn = lambda label: bart.task.label_dictionary.string(
|
83 |
+
[label + bart.task.label_dictionary.nspecial]
|
84 |
+
)
|
85 |
+
ncorrect, nsamples = 0, 0
|
86 |
+
bart.cuda()
|
87 |
+
bart.eval()
|
88 |
+
with open('glue_data/RTE/dev.tsv') as fin:
|
89 |
+
fin.readline()
|
90 |
+
for index, line in enumerate(fin):
|
91 |
+
tokens = line.strip().split('\t')
|
92 |
+
sent1, sent2, target = tokens[1], tokens[2], tokens[3]
|
93 |
+
tokens = bart.encode(sent1, sent2)
|
94 |
+
prediction = bart.predict('sentence_classification_head', tokens).argmax().item()
|
95 |
+
prediction_label = label_fn(prediction)
|
96 |
+
ncorrect += int(prediction_label == target)
|
97 |
+
nsamples += 1
|
98 |
+
print('| Accuracy: ', float(ncorrect)/float(nsamples))
|
99 |
+
```
|
fairseq/examples/bart/README.md
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension
|
2 |
+
|
3 |
+
[https://arxiv.org/abs/1910.13461](https://arxiv.org/abs/1910.13461)
|
4 |
+
|
5 |
+
## Introduction
|
6 |
+
|
7 |
+
BART is sequence-to-sequence model trained with denoising as pretraining objective. We show that this pretraining objective is more generic and show that we can match [RoBERTa](../roberta) results on SQuAD and GLUE and gain state-of-the-art results on summarization (XSum, CNN dataset), long form generative question answering (ELI5) and dialog response genration (ConvAI2). See the associated paper for more details.
|
8 |
+
|
9 |
+
## Pre-trained models
|
10 |
+
|
11 |
+
Model | Description | # params | Download
|
12 |
+
---|---|---|---
|
13 |
+
`bart.base` | BART model with 6 encoder and decoder layers | 140M | [bart.base.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/bart.base.tar.gz)
|
14 |
+
`bart.large` | BART model with 12 encoder and decoder layers | 400M | [bart.large.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/bart.large.tar.gz)
|
15 |
+
`bart.large.mnli` | `bart.large` finetuned on `MNLI` | 400M | [bart.large.mnli.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/bart.large.mnli.tar.gz)
|
16 |
+
`bart.large.cnn` | `bart.large` finetuned on `CNN-DM` | 400M | [bart.large.cnn.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/bart.large.cnn.tar.gz)
|
17 |
+
`bart.large.xsum` | `bart.large` finetuned on `Xsum` | 400M | [bart.large.xsum.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/bart.large.xsum.tar.gz)
|
18 |
+
|
19 |
+
## Results
|
20 |
+
|
21 |
+
**[GLUE (Wang et al., 2019)](https://gluebenchmark.com/)**
|
22 |
+
_(dev set, single model, single-task finetuning)_
|
23 |
+
|
24 |
+
Model | MNLI | QNLI | QQP | RTE | SST-2 | MRPC | CoLA | STS-B
|
25 |
+
---|---|---|---|---|---|---|---|---
|
26 |
+
`roberta.large` | 90.2 | 94.7 | 92.2 | 86.6 | 96.4 | 90.9 | 68.0 | 92.4
|
27 |
+
`bart.large` | 89.9 | 94.9 | 92.5 | 87.0 | 96.6 | 90.4 | 62.8 | 91.2
|
28 |
+
|
29 |
+
**[SQuAD (Rajpurkar et al., 2018)](https://rajpurkar.github.io/SQuAD-explorer/)**
|
30 |
+
_(dev set, no additional data used)_
|
31 |
+
|
32 |
+
Model | SQuAD 1.1 EM/F1 | SQuAD 2.0 EM/F1
|
33 |
+
---|---|---
|
34 |
+
`roberta.large` | 88.9/94.6 | 86.5/89.4
|
35 |
+
`bart.large` | 88.8/94.6 | 86.1/89.2
|
36 |
+
|
37 |
+
**[CNN/Daily Mail](http://nlpprogress.com/english/summarization.html)**
|
38 |
+
_(test set, no additional data used)_
|
39 |
+
|
40 |
+
Model | R1 | R2 | RL
|
41 |
+
---|---|---|---
|
42 |
+
`BERTSUMEXTABS` | 42.13 | 19.60 | 39.18
|
43 |
+
`bart.large` | 44.16 | 21.28 | 40.90
|
44 |
+
|
45 |
+
## Example usage
|
46 |
+
|
47 |
+
##### Load BART from torch.hub (PyTorch >= 1.1):
|
48 |
+
```python
|
49 |
+
import torch
|
50 |
+
bart = torch.hub.load('pytorch/fairseq', 'bart.large')
|
51 |
+
bart.eval() # disable dropout (or leave in train mode to finetune)
|
52 |
+
```
|
53 |
+
|
54 |
+
##### Load BART (for PyTorch 1.0 or custom models):
|
55 |
+
```python
|
56 |
+
# Download bart.large model
|
57 |
+
wget https://dl.fbaipublicfiles.com/fairseq/models/bart.large.tar.gz
|
58 |
+
tar -xzvf bart.large.tar.gz
|
59 |
+
|
60 |
+
# Load the model in fairseq
|
61 |
+
from fairseq.models.bart import BARTModel
|
62 |
+
bart = BARTModel.from_pretrained('/path/to/bart.large', checkpoint_file='model.pt')
|
63 |
+
bart.eval() # disable dropout (or leave in train mode to finetune)
|
64 |
+
```
|
65 |
+
|
66 |
+
##### Apply Byte-Pair Encoding (BPE) to input text:
|
67 |
+
```python
|
68 |
+
tokens = bart.encode('Hello world!')
|
69 |
+
assert tokens.tolist() == [0, 31414, 232, 328, 2]
|
70 |
+
bart.decode(tokens) # 'Hello world!'
|
71 |
+
```
|
72 |
+
|
73 |
+
##### Extract features from BART:
|
74 |
+
```python
|
75 |
+
# Extract the last layer's features
|
76 |
+
last_layer_features = bart.extract_features(tokens)
|
77 |
+
assert last_layer_features.size() == torch.Size([1, 5, 1024])
|
78 |
+
|
79 |
+
# Extract all layer's features from decoder (layer 0 is the embedding layer)
|
80 |
+
all_layers = bart.extract_features(tokens, return_all_hiddens=True)
|
81 |
+
assert len(all_layers) == 13
|
82 |
+
assert torch.all(all_layers[-1] == last_layer_features)
|
83 |
+
```
|
84 |
+
|
85 |
+
##### Use BART for sentence-pair classification tasks:
|
86 |
+
```python
|
87 |
+
# Download BART already finetuned for MNLI
|
88 |
+
bart = torch.hub.load('pytorch/fairseq', 'bart.large.mnli')
|
89 |
+
bart.eval() # disable dropout for evaluation
|
90 |
+
|
91 |
+
# Encode a pair of sentences and make a prediction
|
92 |
+
tokens = bart.encode('BART is a seq2seq model.', 'BART is not sequence to sequence.')
|
93 |
+
bart.predict('mnli', tokens).argmax() # 0: contradiction
|
94 |
+
|
95 |
+
# Encode another pair of sentences
|
96 |
+
tokens = bart.encode('BART is denoising autoencoder.', 'BART is version of autoencoder.')
|
97 |
+
bart.predict('mnli', tokens).argmax() # 2: entailment
|
98 |
+
```
|
99 |
+
|
100 |
+
##### Register a new (randomly initialized) classification head:
|
101 |
+
```python
|
102 |
+
bart.register_classification_head('new_task', num_classes=3)
|
103 |
+
logprobs = bart.predict('new_task', tokens)
|
104 |
+
```
|
105 |
+
|
106 |
+
##### Batched prediction:
|
107 |
+
```python
|
108 |
+
import torch
|
109 |
+
from fairseq.data.data_utils import collate_tokens
|
110 |
+
|
111 |
+
bart = torch.hub.load('pytorch/fairseq', 'bart.large.mnli')
|
112 |
+
bart.eval()
|
113 |
+
|
114 |
+
batch_of_pairs = [
|
115 |
+
['BART is a seq2seq model.', 'BART is not sequence to sequence.'],
|
116 |
+
['BART is denoising autoencoder.', 'BART is version of autoencoder.'],
|
117 |
+
]
|
118 |
+
|
119 |
+
batch = collate_tokens(
|
120 |
+
[bart.encode(pair[0], pair[1]) for pair in batch_of_pairs], pad_idx=1
|
121 |
+
)
|
122 |
+
|
123 |
+
logprobs = bart.predict('mnli', batch)
|
124 |
+
print(logprobs.argmax(dim=1))
|
125 |
+
# tensor([0, 2])
|
126 |
+
```
|
127 |
+
|
128 |
+
##### Using the GPU:
|
129 |
+
```python
|
130 |
+
bart.cuda()
|
131 |
+
bart.predict('new_task', tokens)
|
132 |
+
```
|
133 |
+
|
134 |
+
#### Filling masks:
|
135 |
+
|
136 |
+
BART can be used to fill multiple `<mask>` tokens in the input.
|
137 |
+
```python
|
138 |
+
bart = torch.hub.load('pytorch/fairseq', 'bart.base')
|
139 |
+
bart.eval()
|
140 |
+
bart.fill_mask(['The cat <mask> on the <mask>.'], topk=3, beam=10)
|
141 |
+
# [[('The cat was on the ground.', tensor(-0.6183)), ('The cat was on the floor.', tensor(-0.6798)), ('The cat sleeps on the couch.', tensor(-0.6830))]]
|
142 |
+
```
|
143 |
+
|
144 |
+
Note that by default we enforce the output length to match the input length.
|
145 |
+
This can be disabled by setting ``match_source_len=False``:
|
146 |
+
```
|
147 |
+
bart.fill_mask(['The cat <mask> on the <mask>.'], topk=3, beam=10, match_source_len=False)
|
148 |
+
# [[('The cat was on the ground.', tensor(-0.6185)), ('The cat was asleep on the couch.', tensor(-0.6276)), ('The cat was on the floor.', tensor(-0.6800))]]
|
149 |
+
```
|
150 |
+
|
151 |
+
Example code to fill masks for a batch of sentences using GPU
|
152 |
+
```
|
153 |
+
bart.cuda()
|
154 |
+
bart.fill_mask(['The cat <mask> on the <mask>.', 'The dog <mask> on the <mask>.'], topk=3, beam=10)
|
155 |
+
# [[('The cat was on the ground.', tensor(-0.6183)), ('The cat was on the floor.', tensor(-0.6798)), ('The cat sleeps on the couch.', tensor(-0.6830))], [('The dog was on the ground.', tensor(-0.6190)), ('The dog lay on the ground.', tensor(-0.6711)),
|
156 |
+
('The dog was asleep on the couch', tensor(-0.6796))]]
|
157 |
+
```
|
158 |
+
|
159 |
+
#### Evaluating the `bart.large.mnli` model:
|
160 |
+
|
161 |
+
Example python code snippet to evaluate accuracy on the MNLI `dev_matched` set.
|
162 |
+
```python
|
163 |
+
label_map = {0: 'contradiction', 1: 'neutral', 2: 'entailment'}
|
164 |
+
ncorrect, nsamples = 0, 0
|
165 |
+
bart.cuda()
|
166 |
+
bart.eval()
|
167 |
+
with open('glue_data/MNLI/dev_matched.tsv') as fin:
|
168 |
+
fin.readline()
|
169 |
+
for index, line in enumerate(fin):
|
170 |
+
tokens = line.strip().split('\t')
|
171 |
+
sent1, sent2, target = tokens[8], tokens[9], tokens[-1]
|
172 |
+
tokens = bart.encode(sent1, sent2)
|
173 |
+
prediction = bart.predict('mnli', tokens).argmax().item()
|
174 |
+
prediction_label = label_map[prediction]
|
175 |
+
ncorrect += int(prediction_label == target)
|
176 |
+
nsamples += 1
|
177 |
+
print('| Accuracy: ', float(ncorrect)/float(nsamples))
|
178 |
+
# Expected output: 0.9010
|
179 |
+
```
|
180 |
+
|
181 |
+
#### Evaluating the `bart.large.cnn` model:
|
182 |
+
- Follow instructions [here](https://github.com/abisee/cnn-dailymail) to download and process into data-files such that `test.source` and `test.target` has one line for each non-tokenized sample.
|
183 |
+
- For simpler preprocessing, you can also `wget https://cdn-datasets.huggingface.co/summarization/cnn_dm_v2.tgz`, although there is no guarantee of identical scores
|
184 |
+
- `huggingface/transformers` has a simpler interface that supports [single-gpu](https://github.com/huggingface/transformers/blob/master/examples/legacy/seq2seq/run_eval.py) and [multi-gpu](https://github.com/huggingface/transformers/blob/master/examples/legacy/seq2seq/run_distributed_eval.py) beam search.
|
185 |
+
In `huggingface/transformers`, the BART models' paths are `facebook/bart-large-cnn` and `facebook/bart-large-xsum`.
|
186 |
+
|
187 |
+
In `fairseq`, summaries can be generated using:
|
188 |
+
|
189 |
+
```bash
|
190 |
+
cp data-bin/cnn_dm/dict.source.txt checkpoints/
|
191 |
+
python examples/bart/summarize.py \
|
192 |
+
--model-dir pytorch/fairseq \
|
193 |
+
--model-file bart.large.cnn \
|
194 |
+
--src cnn_dm/test.source \
|
195 |
+
--out cnn_dm/test.hypo
|
196 |
+
```
|
197 |
+
|
198 |
+
For calculating rouge, install `files2rouge` from [here](https://github.com/pltrdy/files2rouge).
|
199 |
+
|
200 |
+
```bash
|
201 |
+
export CLASSPATH=/path/to/stanford-corenlp-full-2016-10-31/stanford-corenlp-3.7.0.jar
|
202 |
+
|
203 |
+
# Tokenize hypothesis and target files.
|
204 |
+
cat test.hypo | java edu.stanford.nlp.process.PTBTokenizer -ioFileList -preserveLines > test.hypo.tokenized
|
205 |
+
cat test.target | java edu.stanford.nlp.process.PTBTokenizer -ioFileList -preserveLines > test.hypo.target
|
206 |
+
files2rouge test.hypo.tokenized test.hypo.target
|
207 |
+
# Expected output: (ROUGE-2 Average_F: 0.21238)
|
208 |
+
```
|
209 |
+
|
210 |
+
|
211 |
+
## Finetuning
|
212 |
+
|
213 |
+
- [Finetuning on GLUE](README.glue.md)
|
214 |
+
- [Finetuning on CNN-DM](README.summarization.md)
|
215 |
+
|
216 |
+
## Citation
|
217 |
+
|
218 |
+
```bibtex
|
219 |
+
@article{lewis2019bart,
|
220 |
+
title = {BART: Denoising Sequence-to-Sequence Pre-training for Natural
|
221 |
+
Language Generation, Translation, and Comprehension},
|
222 |
+
author = {Mike Lewis and Yinhan Liu and Naman Goyal and Marjan Ghazvininejad and
|
223 |
+
Abdelrahman Mohamed and Omer Levy and Veselin Stoyanov
|
224 |
+
and Luke Zettlemoyer },
|
225 |
+
journal={arXiv preprint arXiv:1910.13461},
|
226 |
+
year = {2019},
|
227 |
+
}
|
228 |
+
```
|
fairseq/examples/bart/README.summarization.md
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Fine-tuning BART on CNN-Dailymail summarization task
|
2 |
+
|
3 |
+
### 1) Download the CNN and Daily Mail data and preprocess it into data files with non-tokenized cased samples.
|
4 |
+
|
5 |
+
Follow the instructions [here](https://github.com/abisee/cnn-dailymail) to download the original CNN and Daily Mail datasets. To preprocess the data, refer to the pointers in [this issue](https://github.com/pytorch/fairseq/issues/1391) or check out the code [here](https://github.com/artmatsak/cnn-dailymail).
|
6 |
+
|
7 |
+
Follow the instructions [here](https://github.com/EdinburghNLP/XSum) to download the original Extreme Summarization datasets, or check out the code [here](https://github.com/EdinburghNLP/XSum/tree/master/XSum-Dataset), Please keep the raw dataset and make sure no tokenization nor BPE on the dataset.
|
8 |
+
|
9 |
+
### 2) BPE preprocess:
|
10 |
+
|
11 |
+
```bash
|
12 |
+
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json'
|
13 |
+
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe'
|
14 |
+
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/dict.txt'
|
15 |
+
|
16 |
+
TASK=cnn_dm
|
17 |
+
for SPLIT in train val
|
18 |
+
do
|
19 |
+
for LANG in source target
|
20 |
+
do
|
21 |
+
python -m examples.roberta.multiprocessing_bpe_encoder \
|
22 |
+
--encoder-json encoder.json \
|
23 |
+
--vocab-bpe vocab.bpe \
|
24 |
+
--inputs "$TASK/$SPLIT.$LANG" \
|
25 |
+
--outputs "$TASK/$SPLIT.bpe.$LANG" \
|
26 |
+
--workers 60 \
|
27 |
+
--keep-empty;
|
28 |
+
done
|
29 |
+
done
|
30 |
+
```
|
31 |
+
|
32 |
+
### 3) Binarize dataset:
|
33 |
+
```bash
|
34 |
+
fairseq-preprocess \
|
35 |
+
--source-lang "source" \
|
36 |
+
--target-lang "target" \
|
37 |
+
--trainpref "${TASK}/train.bpe" \
|
38 |
+
--validpref "${TASK}/val.bpe" \
|
39 |
+
--destdir "${TASK}-bin/" \
|
40 |
+
--workers 60 \
|
41 |
+
--srcdict dict.txt \
|
42 |
+
--tgtdict dict.txt;
|
43 |
+
```
|
44 |
+
|
45 |
+
### 4) Fine-tuning on CNN-DM summarization task:
|
46 |
+
Example fine-tuning CNN-DM
|
47 |
+
```bash
|
48 |
+
TOTAL_NUM_UPDATES=20000
|
49 |
+
WARMUP_UPDATES=500
|
50 |
+
LR=3e-05
|
51 |
+
MAX_TOKENS=2048
|
52 |
+
UPDATE_FREQ=4
|
53 |
+
BART_PATH=/path/to/bart/model.pt
|
54 |
+
|
55 |
+
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 fairseq-train cnn_dm-bin \
|
56 |
+
--restore-file $BART_PATH \
|
57 |
+
--max-tokens $MAX_TOKENS \
|
58 |
+
--task translation \
|
59 |
+
--source-lang source --target-lang target \
|
60 |
+
--truncate-source \
|
61 |
+
--layernorm-embedding \
|
62 |
+
--share-all-embeddings \
|
63 |
+
--share-decoder-input-output-embed \
|
64 |
+
--reset-optimizer --reset-dataloader --reset-meters \
|
65 |
+
--required-batch-size-multiple 1 \
|
66 |
+
--arch bart_large \
|
67 |
+
--criterion label_smoothed_cross_entropy \
|
68 |
+
--label-smoothing 0.1 \
|
69 |
+
--dropout 0.1 --attention-dropout 0.1 \
|
70 |
+
--weight-decay 0.01 --optimizer adam --adam-betas "(0.9, 0.999)" --adam-eps 1e-08 \
|
71 |
+
--clip-norm 0.1 \
|
72 |
+
--lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES \
|
73 |
+
--fp16 --update-freq $UPDATE_FREQ \
|
74 |
+
--skip-invalid-size-inputs-valid-test \
|
75 |
+
--find-unused-parameters;
|
76 |
+
```
|
77 |
+
Above is expected to run on `1` node with `8 32gb-V100`.
|
78 |
+
Expected training time is about `5 hours`. Training time can be reduced with distributed training on `4` nodes and `--update-freq 1`.
|
79 |
+
|
80 |
+
Use TOTAL_NUM_UPDATES=15000 UPDATE_FREQ=2 for Xsum task
|
81 |
+
|
82 |
+
### Inference for CNN-DM test data using above trained checkpoint.
|
83 |
+
After training the model as mentioned in previous step, you can perform inference with checkpoints in `checkpoints/` directory using `eval_cnn.py`, for example
|
84 |
+
|
85 |
+
```bash
|
86 |
+
cp data-bin/cnn_dm/dict.source.txt checkpoints/
|
87 |
+
python examples/bart/summarize.py \
|
88 |
+
--model-dir checkpoints \
|
89 |
+
--model-file checkpoint_best.pt \
|
90 |
+
--src cnn_dm/test.source \
|
91 |
+
--out cnn_dm/test.hypo
|
92 |
+
```
|
93 |
+
For XSUM, which uses beam=6, lenpen=1.0, max_len_b=60, min_len=10:
|
94 |
+
```bash
|
95 |
+
cp data-bin/cnn_dm/dict.source.txt checkpoints/
|
96 |
+
python examples/bart/summarize.py \
|
97 |
+
--model-dir checkpoints \
|
98 |
+
--model-file checkpoint_best.pt \
|
99 |
+
--src cnn_dm/test.source \
|
100 |
+
--out cnn_dm/test.hypo \
|
101 |
+
--xsum-kwargs
|
102 |
+
```
|
fairseq/examples/bart/summarize.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from fairseq.models.bart import BARTModel
|
8 |
+
import argparse
|
9 |
+
|
10 |
+
XSUM_KWARGS = dict(beam=6, lenpen=1.0, max_len_b=60, min_len=10, no_repeat_ngram_size=3)
|
11 |
+
CNN_KWARGS = dict(beam=4, lenpen=2.0, max_len_b=140, min_len=55, no_repeat_ngram_size=3)
|
12 |
+
|
13 |
+
|
14 |
+
@torch.no_grad()
|
15 |
+
def generate(bart, infile, outfile="bart_hypo.txt", bsz=32, n_obs=None, **eval_kwargs):
|
16 |
+
count = 1
|
17 |
+
|
18 |
+
# if n_obs is not None: bsz = min(bsz, n_obs)
|
19 |
+
|
20 |
+
with open(infile) as source, open(outfile, "w") as fout:
|
21 |
+
sline = source.readline().strip()
|
22 |
+
slines = [sline]
|
23 |
+
for sline in source:
|
24 |
+
if n_obs is not None and count > n_obs:
|
25 |
+
break
|
26 |
+
if count % bsz == 0:
|
27 |
+
hypotheses_batch = bart.sample(slines, **eval_kwargs)
|
28 |
+
for hypothesis in hypotheses_batch:
|
29 |
+
fout.write(hypothesis + "\n")
|
30 |
+
fout.flush()
|
31 |
+
slines = []
|
32 |
+
|
33 |
+
slines.append(sline.strip())
|
34 |
+
count += 1
|
35 |
+
|
36 |
+
if slines != []:
|
37 |
+
hypotheses_batch = bart.sample(slines, **eval_kwargs)
|
38 |
+
for hypothesis in hypotheses_batch:
|
39 |
+
fout.write(hypothesis + "\n")
|
40 |
+
fout.flush()
|
41 |
+
|
42 |
+
|
43 |
+
def main():
|
44 |
+
"""
|
45 |
+
Usage::
|
46 |
+
|
47 |
+
python examples/bart/summarize.py \
|
48 |
+
--model-dir $HOME/bart.large.cnn \
|
49 |
+
--model-file model.pt \
|
50 |
+
--src $HOME/data-bin/cnn_dm/test.source
|
51 |
+
"""
|
52 |
+
parser = argparse.ArgumentParser()
|
53 |
+
parser.add_argument(
|
54 |
+
"--model-dir",
|
55 |
+
required=True,
|
56 |
+
type=str,
|
57 |
+
default="bart.large.cnn/",
|
58 |
+
help="path containing model file and src_dict.txt",
|
59 |
+
)
|
60 |
+
parser.add_argument(
|
61 |
+
"--model-file",
|
62 |
+
default="checkpoint_best.pt",
|
63 |
+
help="where in model_dir are weights saved",
|
64 |
+
)
|
65 |
+
parser.add_argument(
|
66 |
+
"--src", default="test.source", help="text to summarize", type=str
|
67 |
+
)
|
68 |
+
parser.add_argument(
|
69 |
+
"--out", default="test.hypo", help="where to save summaries", type=str
|
70 |
+
)
|
71 |
+
parser.add_argument("--bsz", default=32, help="where to save summaries", type=int)
|
72 |
+
parser.add_argument(
|
73 |
+
"--n", default=None, help="how many examples to summarize", type=int
|
74 |
+
)
|
75 |
+
parser.add_argument(
|
76 |
+
"--xsum-kwargs",
|
77 |
+
action="store_true",
|
78 |
+
default=False,
|
79 |
+
help="if true use XSUM_KWARGS else CNN_KWARGS",
|
80 |
+
)
|
81 |
+
args = parser.parse_args()
|
82 |
+
eval_kwargs = XSUM_KWARGS if args.xsum_kwargs else CNN_KWARGS
|
83 |
+
if args.model_dir == "pytorch/fairseq":
|
84 |
+
bart = torch.hub.load("pytorch/fairseq", args.model_file)
|
85 |
+
else:
|
86 |
+
bart = BARTModel.from_pretrained(
|
87 |
+
args.model_dir,
|
88 |
+
checkpoint_file=args.model_file,
|
89 |
+
data_name_or_path=args.model_dir,
|
90 |
+
)
|
91 |
+
bart = bart.eval()
|
92 |
+
if torch.cuda.is_available():
|
93 |
+
bart = bart.cuda().half()
|
94 |
+
generate(
|
95 |
+
bart, args.src, bsz=args.bsz, n_obs=args.n, outfile=args.out, **eval_kwargs
|
96 |
+
)
|
97 |
+
|
98 |
+
|
99 |
+
if __name__ == "__main__":
|
100 |
+
main()
|
fairseq/examples/byte_level_bpe/README.md
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Neural Machine Translation with Byte-Level Subwords
|
2 |
+
|
3 |
+
https://arxiv.org/abs/1909.03341
|
4 |
+
|
5 |
+
We provide an implementation of byte-level byte-pair encoding (BBPE), taking IWSLT 2017 Fr-En translation as
|
6 |
+
example.
|
7 |
+
|
8 |
+
## Data
|
9 |
+
Get data and generate fairseq binary dataset:
|
10 |
+
```bash
|
11 |
+
bash ./get_data.sh
|
12 |
+
```
|
13 |
+
|
14 |
+
## Model Training
|
15 |
+
Train Transformer model with Bi-GRU embedding contextualization (implemented in `gru_transformer.py`):
|
16 |
+
```bash
|
17 |
+
# VOCAB=bytes
|
18 |
+
# VOCAB=chars
|
19 |
+
VOCAB=bbpe2048
|
20 |
+
# VOCAB=bpe2048
|
21 |
+
# VOCAB=bbpe4096
|
22 |
+
# VOCAB=bpe4096
|
23 |
+
# VOCAB=bpe16384
|
24 |
+
```
|
25 |
+
```bash
|
26 |
+
fairseq-train "data/bin_${VOCAB}" --task translation --user-dir examples/byte_level_bpe/gru_transformer \
|
27 |
+
--arch gru_transformer --encoder-layers 2 --decoder-layers 2 --dropout 0.3 --share-all-embeddings \
|
28 |
+
--optimizer adam --adam-betas '(0.9, 0.98)' \
|
29 |
+
--lr 5e-4 --lr-scheduler inverse_sqrt --warmup-updates 4000 \
|
30 |
+
--criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
|
31 |
+
--log-format 'simple' --log-interval 100 --save-dir "checkpoints/${VOCAB}" \
|
32 |
+
--batch-size 100 --max-update 100000 --update-freq 2
|
33 |
+
```
|
34 |
+
|
35 |
+
## Generation
|
36 |
+
`fairseq-generate` requires bytes (BBPE) decoder to convert byte-level representation back to characters:
|
37 |
+
```bash
|
38 |
+
# BPE=--bpe bytes
|
39 |
+
# BPE=--bpe characters
|
40 |
+
BPE=--bpe byte_bpe --sentencepiece-model-path data/spm_bbpe2048.model
|
41 |
+
# BPE=--bpe sentencepiece --sentencepiece-model data/spm_bpe2048.model
|
42 |
+
# BPE=--bpe byte_bpe --sentencepiece-model-path data/spm_bbpe4096.model
|
43 |
+
# BPE=--bpe sentencepiece --sentencepiece-model data/spm_bpe4096.model
|
44 |
+
# BPE=--bpe sentencepiece --sentencepiece-model data/spm_bpe16384.model
|
45 |
+
```
|
46 |
+
|
47 |
+
```bash
|
48 |
+
fairseq-generate "data/bin_${VOCAB}" --task translation --user-dir examples/byte_level_bpe/gru_transformer \
|
49 |
+
--source-lang fr --gen-subset test --sacrebleu --path "checkpoints/${VOCAB}/checkpoint_last.pt" \
|
50 |
+
--tokenizer moses --moses-target-lang en ${BPE}
|
51 |
+
```
|
52 |
+
When using `fairseq-interactive`, bytes (BBPE) encoder/decoder is required to tokenize input data and detokenize model predictions:
|
53 |
+
```bash
|
54 |
+
fairseq-interactive "data/bin_${VOCAB}" --task translation --user-dir examples/byte_level_bpe/gru_transformer \
|
55 |
+
--path "checkpoints/${VOCAB}/checkpoint_last.pt" --input data/test.fr --tokenizer moses --moses-source-lang fr \
|
56 |
+
--moses-target-lang en ${BPE} --buffer-size 1000 --max-tokens 10000
|
57 |
+
```
|
58 |
+
|
59 |
+
## Results
|
60 |
+
| Vocabulary | Model | BLEU |
|
61 |
+
|:-------------:|:-------------:|:-------------:|
|
62 |
+
| Joint BPE 16k ([Kudo, 2018](https://arxiv.org/abs/1804.10959)) | 512d LSTM 2+2 | 33.81 |
|
63 |
+
| Joint BPE 16k | Transformer base 2+2 (w/ GRU) | 36.64 (36.72) |
|
64 |
+
| Joint BPE 4k | Transformer base 2+2 (w/ GRU) | 35.49 (36.10) |
|
65 |
+
| Joint BBPE 4k | Transformer base 2+2 (w/ GRU) | 35.61 (35.82) |
|
66 |
+
| Joint BPE 2k | Transformer base 2+2 (w/ GRU) | 34.87 (36.13) |
|
67 |
+
| Joint BBPE 2k | Transformer base 2+2 (w/ GRU) | 34.98 (35.43) |
|
68 |
+
| Characters | Transformer base 2+2 (w/ GRU) | 31.78 (33.30) |
|
69 |
+
| Bytes | Transformer base 2+2 (w/ GRU) | 31.57 (33.62) |
|
70 |
+
|
71 |
+
|
72 |
+
## Citation
|
73 |
+
```
|
74 |
+
@misc{wang2019neural,
|
75 |
+
title={Neural Machine Translation with Byte-Level Subwords},
|
76 |
+
author={Changhan Wang and Kyunghyun Cho and Jiatao Gu},
|
77 |
+
year={2019},
|
78 |
+
eprint={1909.03341},
|
79 |
+
archivePrefix={arXiv},
|
80 |
+
primaryClass={cs.CL}
|
81 |
+
}
|
82 |
+
```
|
83 |
+
|
84 |
+
|
85 |
+
## Contact
|
86 |
+
Changhan Wang ([changhan@fb.com](mailto:changhan@fb.com)),
|
87 |
+
Kyunghyun Cho ([kyunghyuncho@fb.com](mailto:kyunghyuncho@fb.com)),
|
88 |
+
Jiatao Gu ([jgu@fb.com](mailto:jgu@fb.com))
|
fairseq/examples/byte_level_bpe/get_bitext.py
ADDED
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
|
7 |
+
import argparse
|
8 |
+
import os
|
9 |
+
import os.path as op
|
10 |
+
from collections import namedtuple
|
11 |
+
from multiprocessing import cpu_count
|
12 |
+
from typing import List, Optional
|
13 |
+
|
14 |
+
import sentencepiece as sp
|
15 |
+
from fairseq.data.encoders.byte_bpe import ByteBPE
|
16 |
+
from fairseq.data.encoders.byte_utils import byte_encode
|
17 |
+
from fairseq.data.encoders.bytes import Bytes
|
18 |
+
from fairseq.data.encoders.characters import Characters
|
19 |
+
from fairseq.data.encoders.moses_tokenizer import MosesTokenizer
|
20 |
+
from fairseq.data.encoders.sentencepiece_bpe import SentencepieceBPE
|
21 |
+
|
22 |
+
|
23 |
+
SPLITS = ["train", "valid", "test"]
|
24 |
+
|
25 |
+
|
26 |
+
def _convert_xml(in_path: str, out_path: str):
|
27 |
+
with open(in_path) as f, open(out_path, "w") as f_o:
|
28 |
+
for s in f:
|
29 |
+
ss = s.strip()
|
30 |
+
if not ss.startswith("<seg"):
|
31 |
+
continue
|
32 |
+
ss = ss.replace("</seg>", "").split('">')
|
33 |
+
assert len(ss) == 2
|
34 |
+
f_o.write(ss[1].strip() + "\n")
|
35 |
+
|
36 |
+
|
37 |
+
def _convert_train(in_path: str, out_path: str):
|
38 |
+
with open(in_path) as f, open(out_path, "w") as f_o:
|
39 |
+
for s in f:
|
40 |
+
ss = s.strip()
|
41 |
+
if ss.startswith("<"):
|
42 |
+
continue
|
43 |
+
f_o.write(ss.strip() + "\n")
|
44 |
+
|
45 |
+
|
46 |
+
def _get_bytes(in_path: str, out_path: str):
|
47 |
+
with open(in_path) as f, open(out_path, "w") as f_o:
|
48 |
+
for s in f:
|
49 |
+
f_o.write(Bytes.encode(s.strip()) + "\n")
|
50 |
+
|
51 |
+
|
52 |
+
def _get_chars(in_path: str, out_path: str):
|
53 |
+
with open(in_path) as f, open(out_path, "w") as f_o:
|
54 |
+
for s in f:
|
55 |
+
f_o.write(Characters.encode(s.strip()) + "\n")
|
56 |
+
|
57 |
+
|
58 |
+
def pretokenize(in_path: str, out_path: str, src: str, tgt: str):
|
59 |
+
Args = namedtuple(
|
60 |
+
"Args",
|
61 |
+
[
|
62 |
+
"moses_source_lang",
|
63 |
+
"moses_target_lang",
|
64 |
+
"moses_no_dash_splits",
|
65 |
+
"moses_no_escape",
|
66 |
+
],
|
67 |
+
)
|
68 |
+
args = Args(
|
69 |
+
moses_source_lang=src,
|
70 |
+
moses_target_lang=tgt,
|
71 |
+
moses_no_dash_splits=False,
|
72 |
+
moses_no_escape=False,
|
73 |
+
)
|
74 |
+
pretokenizer = MosesTokenizer(args)
|
75 |
+
with open(in_path) as f, open(out_path, "w") as f_o:
|
76 |
+
for s in f:
|
77 |
+
f_o.write(pretokenizer.encode(s.strip()) + "\n")
|
78 |
+
|
79 |
+
|
80 |
+
def _convert_to_bchar(in_path_prefix: str, src: str, tgt: str, out_path: str):
|
81 |
+
with open(out_path, "w") as f_o:
|
82 |
+
for lang in [src, tgt]:
|
83 |
+
with open(f"{in_path_prefix}.{lang}") as f:
|
84 |
+
for s in f:
|
85 |
+
f_o.write(byte_encode(s.strip()) + "\n")
|
86 |
+
|
87 |
+
|
88 |
+
def _get_bpe(in_path: str, model_prefix: str, vocab_size: int):
|
89 |
+
arguments = [
|
90 |
+
f"--input={in_path}",
|
91 |
+
f"--model_prefix={model_prefix}",
|
92 |
+
f"--model_type=bpe",
|
93 |
+
f"--vocab_size={vocab_size}",
|
94 |
+
"--character_coverage=1.0",
|
95 |
+
"--normalization_rule_name=identity",
|
96 |
+
f"--num_threads={cpu_count()}",
|
97 |
+
]
|
98 |
+
sp.SentencePieceTrainer.Train(" ".join(arguments))
|
99 |
+
|
100 |
+
|
101 |
+
def _apply_bbpe(model_path: str, in_path: str, out_path: str):
|
102 |
+
Args = namedtuple("Args", ["sentencepiece_model_path"])
|
103 |
+
args = Args(sentencepiece_model_path=model_path)
|
104 |
+
tokenizer = ByteBPE(args)
|
105 |
+
with open(in_path) as f, open(out_path, "w") as f_o:
|
106 |
+
for s in f:
|
107 |
+
f_o.write(tokenizer.encode(s.strip()) + "\n")
|
108 |
+
|
109 |
+
|
110 |
+
def _apply_bpe(model_path: str, in_path: str, out_path: str):
|
111 |
+
Args = namedtuple("Args", ["sentencepiece_model"])
|
112 |
+
args = Args(sentencepiece_model=model_path)
|
113 |
+
tokenizer = SentencepieceBPE(args)
|
114 |
+
with open(in_path) as f, open(out_path, "w") as f_o:
|
115 |
+
for s in f:
|
116 |
+
f_o.write(tokenizer.encode(s.strip()) + "\n")
|
117 |
+
|
118 |
+
|
119 |
+
def _concat_files(in_paths: List[str], out_path: str):
|
120 |
+
with open(out_path, "w") as f_o:
|
121 |
+
for p in in_paths:
|
122 |
+
with open(p) as f:
|
123 |
+
for r in f:
|
124 |
+
f_o.write(r)
|
125 |
+
|
126 |
+
|
127 |
+
def preprocess_iwslt17(
|
128 |
+
root: str,
|
129 |
+
src: str,
|
130 |
+
tgt: str,
|
131 |
+
bpe_size: Optional[int],
|
132 |
+
need_chars: bool,
|
133 |
+
bbpe_size: Optional[int],
|
134 |
+
need_bytes: bool,
|
135 |
+
):
|
136 |
+
# extract bitext
|
137 |
+
in_root = op.join(root, f"{src}-{tgt}")
|
138 |
+
for lang in [src, tgt]:
|
139 |
+
_convert_train(
|
140 |
+
op.join(in_root, f"train.tags.{src}-{tgt}.{lang}"),
|
141 |
+
op.join(root, f"train.{lang}"),
|
142 |
+
)
|
143 |
+
_convert_xml(
|
144 |
+
op.join(in_root, f"IWSLT17.TED.dev2010.{src}-{tgt}.{lang}.xml"),
|
145 |
+
op.join(root, f"valid.{lang}"),
|
146 |
+
)
|
147 |
+
_convert_xml(
|
148 |
+
op.join(in_root, f"IWSLT17.TED.tst2015.{src}-{tgt}.{lang}.xml"),
|
149 |
+
op.join(root, f"test.{lang}"),
|
150 |
+
)
|
151 |
+
# pre-tokenize
|
152 |
+
for lang in [src, tgt]:
|
153 |
+
for split in SPLITS:
|
154 |
+
pretokenize(
|
155 |
+
op.join(root, f"{split}.{lang}"),
|
156 |
+
op.join(root, f"{split}.moses.{lang}"),
|
157 |
+
src,
|
158 |
+
tgt,
|
159 |
+
)
|
160 |
+
# tokenize with BPE vocabulary
|
161 |
+
if bpe_size is not None:
|
162 |
+
# learn vocabulary
|
163 |
+
concated_train_path = op.join(root, "train.all")
|
164 |
+
_concat_files(
|
165 |
+
[op.join(root, "train.moses.fr"), op.join(root, "train.moses.en")],
|
166 |
+
concated_train_path,
|
167 |
+
)
|
168 |
+
bpe_model_prefix = op.join(root, f"spm_bpe{bpe_size}")
|
169 |
+
_get_bpe(concated_train_path, bpe_model_prefix, bpe_size)
|
170 |
+
os.remove(concated_train_path)
|
171 |
+
# apply
|
172 |
+
for lang in [src, tgt]:
|
173 |
+
for split in SPLITS:
|
174 |
+
_apply_bpe(
|
175 |
+
bpe_model_prefix + ".model",
|
176 |
+
op.join(root, f"{split}.moses.{lang}"),
|
177 |
+
op.join(root, f"{split}.moses.bpe{bpe_size}.{lang}"),
|
178 |
+
)
|
179 |
+
# tokenize with bytes vocabulary
|
180 |
+
if need_bytes:
|
181 |
+
for lang in [src, tgt]:
|
182 |
+
for split in SPLITS:
|
183 |
+
_get_bytes(
|
184 |
+
op.join(root, f"{split}.moses.{lang}"),
|
185 |
+
op.join(root, f"{split}.moses.bytes.{lang}"),
|
186 |
+
)
|
187 |
+
# tokenize with characters vocabulary
|
188 |
+
if need_chars:
|
189 |
+
for lang in [src, tgt]:
|
190 |
+
for split in SPLITS:
|
191 |
+
_get_chars(
|
192 |
+
op.join(root, f"{split}.moses.{lang}"),
|
193 |
+
op.join(root, f"{split}.moses.chars.{lang}"),
|
194 |
+
)
|
195 |
+
# tokenize with byte-level BPE vocabulary
|
196 |
+
if bbpe_size is not None:
|
197 |
+
# learn vocabulary
|
198 |
+
bchar_path = op.join(root, "train.bchar")
|
199 |
+
_convert_to_bchar(op.join(root, "train.moses"), src, tgt, bchar_path)
|
200 |
+
bbpe_model_prefix = op.join(root, f"spm_bbpe{bbpe_size}")
|
201 |
+
_get_bpe(bchar_path, bbpe_model_prefix, bbpe_size)
|
202 |
+
os.remove(bchar_path)
|
203 |
+
# apply
|
204 |
+
for lang in [src, tgt]:
|
205 |
+
for split in SPLITS:
|
206 |
+
_apply_bbpe(
|
207 |
+
bbpe_model_prefix + ".model",
|
208 |
+
op.join(root, f"{split}.moses.{lang}"),
|
209 |
+
op.join(root, f"{split}.moses.bbpe{bbpe_size}.{lang}"),
|
210 |
+
)
|
211 |
+
|
212 |
+
|
213 |
+
def main():
|
214 |
+
parser = argparse.ArgumentParser()
|
215 |
+
parser.add_argument("--root", type=str, default="data")
|
216 |
+
parser.add_argument(
|
217 |
+
"--bpe-vocab",
|
218 |
+
default=None,
|
219 |
+
type=int,
|
220 |
+
help="Generate tokenized bitext with BPE of size K."
|
221 |
+
"Default to None (disabled).",
|
222 |
+
)
|
223 |
+
parser.add_argument(
|
224 |
+
"--bbpe-vocab",
|
225 |
+
default=None,
|
226 |
+
type=int,
|
227 |
+
help="Generate tokenized bitext with BBPE of size K."
|
228 |
+
"Default to None (disabled).",
|
229 |
+
)
|
230 |
+
parser.add_argument(
|
231 |
+
"--byte-vocab",
|
232 |
+
action="store_true",
|
233 |
+
help="Generate tokenized bitext with bytes vocabulary",
|
234 |
+
)
|
235 |
+
parser.add_argument(
|
236 |
+
"--char-vocab",
|
237 |
+
action="store_true",
|
238 |
+
help="Generate tokenized bitext with chars vocabulary",
|
239 |
+
)
|
240 |
+
args = parser.parse_args()
|
241 |
+
|
242 |
+
preprocess_iwslt17(
|
243 |
+
args.root,
|
244 |
+
"fr",
|
245 |
+
"en",
|
246 |
+
args.bpe_vocab,
|
247 |
+
args.char_vocab,
|
248 |
+
args.bbpe_vocab,
|
249 |
+
args.byte_vocab,
|
250 |
+
)
|
251 |
+
|
252 |
+
|
253 |
+
if __name__ == "__main__":
|
254 |
+
main()
|
fairseq/examples/byte_level_bpe/get_data.sh
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
4 |
+
#
|
5 |
+
# This source code is licensed under the MIT license found in the
|
6 |
+
# LICENSE file in the root directory of this source tree.
|
7 |
+
|
8 |
+
PY_BIN_ROOT=
|
9 |
+
|
10 |
+
# PyPI dependency
|
11 |
+
${PY_BIN_ROOT}pip install sentencepiece sacremoses
|
12 |
+
|
13 |
+
# Get data
|
14 |
+
if [ ! -d "data" ]; then
|
15 |
+
mkdir data
|
16 |
+
fi
|
17 |
+
|
18 |
+
if [ ! -f "data/fr-en.tgz" ]; then
|
19 |
+
wget https://wit3.fbk.eu/archive/2017-01-trnted/texts/fr/en/fr-en.tgz -P data
|
20 |
+
tar xvf data/fr-en.tgz -C data
|
21 |
+
fi
|
22 |
+
${PY_BIN_ROOT}python get_bitext.py --bpe-vocab 16384 --byte-vocab --char-vocab
|
23 |
+
for VOCAB_SIZE in 2048 4096; do
|
24 |
+
${PY_BIN_ROOT}python get_bitext.py --bpe-vocab ${VOCAB_SIZE} --bbpe-vocab ${VOCAB_SIZE}
|
25 |
+
done
|
26 |
+
rm -r data/fr-en data/fr-en.tgz
|
27 |
+
|
28 |
+
# Generate binary dataset
|
29 |
+
${PY_BIN_ROOT}/fairseq-preprocess --source-lang fr --target-lang en --destdir data/bin_bpe16384 --joined-dictionary \
|
30 |
+
--workers "$(nproc)" --trainpref data/train.moses.bpe16384 --validpref data/valid.moses.bpe16384 \
|
31 |
+
--testpref data/test.moses.bpe16384
|
32 |
+
|
33 |
+
${PY_BIN_ROOT}/fairseq-preprocess --source-lang fr --target-lang en --destdir data/bin_bytes --joined-dictionary \
|
34 |
+
--workers "$(nproc)" --trainpref data/train.moses.bytes --validpref data/valid.moses.bytes \
|
35 |
+
--testpref data/test.moses.bytes
|
36 |
+
|
37 |
+
${PY_BIN_ROOT}/fairseq-preprocess --source-lang fr --target-lang en --destdir data/bin_chars --joined-dictionary \
|
38 |
+
--workers "$(nproc)" --trainpref data/train.moses.chars --validpref data/valid.moses.chars \
|
39 |
+
--testpref data/test.moses.chars
|
40 |
+
|
41 |
+
for VOCAB_SIZE in 2048 4096; do
|
42 |
+
for TYPE in bbpe bpe; do
|
43 |
+
${PY_BIN_ROOT}/fairseq-preprocess --source-lang fr --target-lang en --destdir "data/bin_${TYPE}${VOCAB_SIZE}" \
|
44 |
+
--joined-dictionary --workers "$(nproc)" --trainpref "data/train.moses.${TYPE}${VOCAB_SIZE}" \
|
45 |
+
--validpref "data/valid.moses.${TYPE}${VOCAB_SIZE}" --testpref "data/test.moses.${TYPE}${VOCAB_SIZE}"
|
46 |
+
done
|
47 |
+
done
|
fairseq/examples/byte_level_bpe/gru_transformer.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
7 |
+
#
|
8 |
+
# This source code is licensed under the MIT license found in the
|
9 |
+
# LICENSE file in the root directory of this source tree.
|
10 |
+
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from fairseq.models import register_model, register_model_architecture
|
14 |
+
from fairseq.models.transformer import TransformerEncoder, TransformerModel
|
15 |
+
|
16 |
+
|
17 |
+
@register_model("gru_transformer")
|
18 |
+
class GRUTransformerModel(TransformerModel):
|
19 |
+
@classmethod
|
20 |
+
def build_encoder(cls, args, src_dict, embed_tokens):
|
21 |
+
return GRUTransformerEncoder(args, src_dict, embed_tokens)
|
22 |
+
|
23 |
+
|
24 |
+
class GRUTransformerEncoder(TransformerEncoder):
|
25 |
+
def __init__(self, args, dictionary, embed_tokens):
|
26 |
+
super().__init__(args, dictionary, embed_tokens)
|
27 |
+
self.emb_ctx = nn.GRU(
|
28 |
+
input_size=embed_tokens.embedding_dim,
|
29 |
+
hidden_size=embed_tokens.embedding_dim // 2,
|
30 |
+
num_layers=1,
|
31 |
+
bidirectional=True,
|
32 |
+
)
|
33 |
+
|
34 |
+
def forward_embedding(self, src_tokens):
|
35 |
+
# embed tokens and positions
|
36 |
+
x = embed = self.embed_scale * self.embed_tokens(src_tokens)
|
37 |
+
if self.embed_positions is not None:
|
38 |
+
x = embed + self.embed_positions(src_tokens)
|
39 |
+
|
40 |
+
# contextualize embeddings
|
41 |
+
x = x.transpose(0, 1)
|
42 |
+
x = self.dropout_module(x)
|
43 |
+
x, _ = self.emb_ctx.forward(x)
|
44 |
+
x = x.transpose(0, 1)
|
45 |
+
|
46 |
+
if self.layernorm_embedding is not None:
|
47 |
+
x = self.layernorm_embedding(x)
|
48 |
+
x = self.dropout_module(x)
|
49 |
+
return x, embed
|
50 |
+
|
51 |
+
|
52 |
+
@register_model_architecture("gru_transformer", "gru_transformer")
|
53 |
+
def gru_transformer_base_architecture(args):
|
54 |
+
args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
|
55 |
+
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
|
56 |
+
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048)
|
57 |
+
args.encoder_layers = getattr(args, "encoder_layers", 6)
|
58 |
+
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
|
59 |
+
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
|
60 |
+
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False)
|
61 |
+
args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
|
62 |
+
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
|
63 |
+
args.decoder_ffn_embed_dim = getattr(
|
64 |
+
args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
|
65 |
+
)
|
66 |
+
args.decoder_layers = getattr(args, "decoder_layers", 6)
|
67 |
+
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
|
68 |
+
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
|
69 |
+
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
|
70 |
+
args.attention_dropout = getattr(args, "attention_dropout", 0.0)
|
71 |
+
args.activation_dropout = getattr(args, "activation_dropout", 0.0)
|
72 |
+
args.activation_fn = getattr(args, "activation_fn", "relu")
|
73 |
+
args.dropout = getattr(args, "dropout", 0.1)
|
74 |
+
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
|
75 |
+
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
|
76 |
+
args.share_decoder_input_output_embed = getattr(
|
77 |
+
args, "share_decoder_input_output_embed", False
|
78 |
+
)
|
79 |
+
args.share_all_embeddings = getattr(args, "share_all_embeddings", False)
|
80 |
+
args.no_token_positional_embeddings = getattr(
|
81 |
+
args, "no_token_positional_embeddings", False
|
82 |
+
)
|
83 |
+
args.adaptive_input = getattr(args, "adaptive_input", False)
|
84 |
+
args.no_cross_attention = getattr(args, "no_cross_attention", False)
|
85 |
+
args.cross_self_attention = getattr(args, "cross_self_attention", False)
|
86 |
+
args.layer_wise_attention = getattr(args, "layer_wise_attention", False)
|
87 |
+
|
88 |
+
args.decoder_output_dim = getattr(
|
89 |
+
args, "decoder_output_dim", args.decoder_embed_dim
|
90 |
+
)
|
91 |
+
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
|
92 |
+
|
93 |
+
args.no_scale_embedding = getattr(args, "no_scale_embedding", False)
|
94 |
+
args.layernorm_embedding = getattr(args, "layernorm_embedding", False)
|
95 |
+
|
96 |
+
|
97 |
+
@register_model_architecture("gru_transformer", "gru_transformer_big")
|
98 |
+
def gru_transformer_big(args):
|
99 |
+
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024)
|
100 |
+
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096)
|
101 |
+
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16)
|
102 |
+
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
|
103 |
+
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024)
|
104 |
+
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096)
|
105 |
+
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
|
106 |
+
args.dropout = getattr(args, "dropout", 0.3)
|
107 |
+
gru_transformer_base_architecture(args)
|
fairseq/examples/camembert/README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# CamemBERT: a Tasty French Language Model
|
2 |
+
|
3 |
+
## Introduction
|
4 |
+
|
5 |
+
[CamemBERT](https://arxiv.org/abs/1911.03894) is a pretrained language model trained on 138GB of French text based on RoBERTa.
|
6 |
+
|
7 |
+
Also available in [github.com/huggingface/transformers](https://github.com/huggingface/transformers/).
|
8 |
+
|
9 |
+
## Pre-trained models
|
10 |
+
|
11 |
+
| Model | #params | Download | Arch. | Training data |
|
12 |
+
|--------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------|
|
13 |
+
| `camembert` / `camembert-base` | 110M | [camembert-base.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/camembert-base.tar.gz) | Base | OSCAR (138 GB of text) |
|
14 |
+
| `camembert-large` | 335M | [camembert-large.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/camembert-large.tar.gz) | Large | CCNet (135 GB of text) |
|
15 |
+
| `camembert-base-ccnet` | 110M | [camembert-base-ccnet.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/camembert-base-ccnet.tar.gz) | Base | CCNet (135 GB of text) |
|
16 |
+
| `camembert-base-wikipedia-4gb` | 110M | [camembert-base-wikipedia-4gb.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/camembert-base-wikipedia-4gb.tar.gz) | Base | Wikipedia (4 GB of text) |
|
17 |
+
| `camembert-base-oscar-4gb` | 110M | [camembert-base-oscar-4gb.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/camembert-base-oscar-4gb.tar.gz) | Base | Subsample of OSCAR (4 GB of text) |
|
18 |
+
| `camembert-base-ccnet-4gb` | 110M | [camembert-base-ccnet-4gb.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/camembert-base-ccnet-4gb.tar.gz) | Base | Subsample of CCNet (4 GB of text) |
|
19 |
+
|
20 |
+
## Example usage
|
21 |
+
|
22 |
+
### fairseq
|
23 |
+
##### Load CamemBERT from torch.hub (PyTorch >= 1.1):
|
24 |
+
```python
|
25 |
+
import torch
|
26 |
+
camembert = torch.hub.load('pytorch/fairseq', 'camembert')
|
27 |
+
camembert.eval() # disable dropout (or leave in train mode to finetune)
|
28 |
+
```
|
29 |
+
|
30 |
+
##### Load CamemBERT (for PyTorch 1.0 or custom models):
|
31 |
+
```python
|
32 |
+
# Download camembert model
|
33 |
+
wget https://dl.fbaipublicfiles.com/fairseq/models/camembert-base.tar.gz
|
34 |
+
tar -xzvf camembert.tar.gz
|
35 |
+
|
36 |
+
# Load the model in fairseq
|
37 |
+
from fairseq.models.roberta import CamembertModel
|
38 |
+
camembert = CamembertModel.from_pretrained('/path/to/camembert')
|
39 |
+
camembert.eval() # disable dropout (or leave in train mode to finetune)
|
40 |
+
```
|
41 |
+
|
42 |
+
##### Filling masks:
|
43 |
+
```python
|
44 |
+
masked_line = 'Le camembert est <mask> :)'
|
45 |
+
camembert.fill_mask(masked_line, topk=3)
|
46 |
+
# [('Le camembert est délicieux :)', 0.4909118115901947, ' délicieux'),
|
47 |
+
# ('Le camembert est excellent :)', 0.10556942224502563, ' excellent'),
|
48 |
+
# ('Le camembert est succulent :)', 0.03453322499990463, ' succulent')]
|
49 |
+
```
|
50 |
+
|
51 |
+
##### Extract features from Camembert:
|
52 |
+
```python
|
53 |
+
# Extract the last layer's features
|
54 |
+
line = "J'aime le camembert !"
|
55 |
+
tokens = camembert.encode(line)
|
56 |
+
last_layer_features = camembert.extract_features(tokens)
|
57 |
+
assert last_layer_features.size() == torch.Size([1, 10, 768])
|
58 |
+
|
59 |
+
# Extract all layer's features (layer 0 is the embedding layer)
|
60 |
+
all_layers = camembert.extract_features(tokens, return_all_hiddens=True)
|
61 |
+
assert len(all_layers) == 13
|
62 |
+
assert torch.all(all_layers[-1] == last_layer_features)
|
63 |
+
```
|
64 |
+
|
65 |
+
## Citation
|
66 |
+
If you use our work, please cite:
|
67 |
+
|
68 |
+
```bibtex
|
69 |
+
@inproceedings{martin2020camembert,
|
70 |
+
title={CamemBERT: a Tasty French Language Model},
|
71 |
+
author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
|
72 |
+
booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
|
73 |
+
year={2020}
|
74 |
+
}
|
75 |
+
```
|
fairseq/examples/constrained_decoding/README.md
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# (Vectorized) Lexically constrained decoding with dynamic beam allocation
|
2 |
+
|
3 |
+
This page provides instructions for how to use lexically constrained decoding in Fairseq.
|
4 |
+
Fairseq implements the code described in the following papers:
|
5 |
+
|
6 |
+
* [Fast Lexically Constrained Decoding With Dynamic Beam Allocation](https://www.aclweb.org/anthology/N18-1119/) (Post & Vilar, 2018)
|
7 |
+
* [Improved Lexically Constrained Decoding for Translation and Monolingual Rewriting](https://www.aclweb.org/anthology/N19-1090/) (Hu et al., 2019)
|
8 |
+
|
9 |
+
## Quick start
|
10 |
+
|
11 |
+
Constrained search is enabled by adding the command-line argument `--constraints` to `fairseq-interactive`.
|
12 |
+
Constraints are appended to each line of input, separated by tabs. Each constraint (one or more tokens)
|
13 |
+
is a separate field.
|
14 |
+
|
15 |
+
The following command, using [Fairseq's WMT19 German--English model](https://github.com/pytorch/fairseq/blob/main/examples/wmt19/README.md),
|
16 |
+
translates the sentence *Die maschinelle Übersetzung ist schwer zu kontrollieren.* with the constraints
|
17 |
+
"hard" and "to influence".
|
18 |
+
|
19 |
+
echo -e "Die maschinelle Übersetzung ist schwer zu kontrollieren.\thard\ttoinfluence" \
|
20 |
+
| normalize.py | tok.py \
|
21 |
+
| fairseq-interactive /path/to/model \
|
22 |
+
--path /path/to/model/model1.pt \
|
23 |
+
--bpe fastbpe \
|
24 |
+
--bpe-codes /path/to/model/bpecodes \
|
25 |
+
--constraints \
|
26 |
+
-s de -t en \
|
27 |
+
--beam 10
|
28 |
+
|
29 |
+
(tok.py and normalize.py can be found in the same directory as this README; they are just shortcuts around Fairseq's WMT19 preprocessing).
|
30 |
+
This will generate the following output:
|
31 |
+
|
32 |
+
[snip]
|
33 |
+
S-0 Die masch@@ in@@ elle Über@@ setzung ist schwer zu kontrollieren .
|
34 |
+
W-0 1.844 seconds
|
35 |
+
C-0 hard
|
36 |
+
C-0 influence
|
37 |
+
H-0 -1.5333266258239746 Mach@@ ine trans@@ lation is hard to influence .
|
38 |
+
D-0 -1.5333266258239746 Machine translation is hard to influence .
|
39 |
+
P-0 -0.5434 -0.1423 -0.1930 -0.1415 -0.2346 -1.8031 -0.1701 -11.7727 -0.1815 -0.1511
|
40 |
+
|
41 |
+
By default, constraints are generated in the order supplied, with any number (zero or more) of tokens generated
|
42 |
+
between constraints. If you wish for the decoder to order the constraints, then use `--constraints unordered`.
|
43 |
+
Note that you may want to use a larger beam.
|
44 |
+
|
45 |
+
## Implementation details
|
46 |
+
|
47 |
+
The heart of the implementation is in `fairseq/search.py`, which adds a `LexicallyConstrainedBeamSearch` instance.
|
48 |
+
This instance of beam search tracks the progress of each hypothesis in the beam through the set of constraints
|
49 |
+
provided for each input sentence. It does this using one of two classes, both found in `fairseq/token_generation_contstraints.py`:
|
50 |
+
|
51 |
+
* OrderedConstraintState: assumes the `C` input constraints will be generated in the provided order
|
52 |
+
* UnorderedConstraintState: tries to apply `C` (phrasal) constraints in all `C!` orders
|
53 |
+
|
54 |
+
## Differences from Sockeye
|
55 |
+
|
56 |
+
There are a number of [differences from Sockeye's implementation](https://awslabs.github.io/sockeye/inference.html#lexical-constraints).
|
57 |
+
|
58 |
+
* Generating constraints in the order supplied (the default option here) is not available in Sockeye.
|
59 |
+
* Due to an improved beam allocation method, there is no need to prune the beam.
|
60 |
+
* Again due to better allocation, beam sizes as low as 10 or even 5 are often sufficient.
|
61 |
+
* [The vector extensions described in Hu et al.](https://github.com/edwardjhu/sockeye/tree/trie_constraints) (NAACL 2019) were never merged
|
62 |
+
into the main Sockeye branch.
|
63 |
+
|
64 |
+
## Citation
|
65 |
+
|
66 |
+
The paper first describing lexical constraints for seq2seq decoding is:
|
67 |
+
|
68 |
+
```bibtex
|
69 |
+
@inproceedings{hokamp-liu-2017-lexically,
|
70 |
+
title = "Lexically Constrained Decoding for Sequence Generation Using Grid Beam Search",
|
71 |
+
author = "Hokamp, Chris and
|
72 |
+
Liu, Qun",
|
73 |
+
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
|
74 |
+
month = jul,
|
75 |
+
year = "2017",
|
76 |
+
address = "Vancouver, Canada",
|
77 |
+
publisher = "Association for Computational Linguistics",
|
78 |
+
url = "https://www.aclweb.org/anthology/P17-1141",
|
79 |
+
doi = "10.18653/v1/P17-1141",
|
80 |
+
pages = "1535--1546",
|
81 |
+
}
|
82 |
+
```
|
83 |
+
|
84 |
+
The fairseq implementation uses the extensions described in
|
85 |
+
|
86 |
+
```bibtex
|
87 |
+
@inproceedings{post-vilar-2018-fast,
|
88 |
+
title = "Fast Lexically Constrained Decoding with Dynamic Beam Allocation for Neural Machine Translation",
|
89 |
+
author = "Post, Matt and
|
90 |
+
Vilar, David",
|
91 |
+
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)",
|
92 |
+
month = jun,
|
93 |
+
year = "2018",
|
94 |
+
address = "New Orleans, Louisiana",
|
95 |
+
publisher = "Association for Computational Linguistics",
|
96 |
+
url = "https://www.aclweb.org/anthology/N18-1119",
|
97 |
+
doi = "10.18653/v1/N18-1119",
|
98 |
+
pages = "1314--1324",
|
99 |
+
}
|
100 |
+
```
|
101 |
+
|
102 |
+
and
|
103 |
+
|
104 |
+
```bibtex
|
105 |
+
@inproceedings{hu-etal-2019-improved,
|
106 |
+
title = "Improved Lexically Constrained Decoding for Translation and Monolingual Rewriting",
|
107 |
+
author = "Hu, J. Edward and
|
108 |
+
Khayrallah, Huda and
|
109 |
+
Culkin, Ryan and
|
110 |
+
Xia, Patrick and
|
111 |
+
Chen, Tongfei and
|
112 |
+
Post, Matt and
|
113 |
+
Van Durme, Benjamin",
|
114 |
+
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
|
115 |
+
month = jun,
|
116 |
+
year = "2019",
|
117 |
+
address = "Minneapolis, Minnesota",
|
118 |
+
publisher = "Association for Computational Linguistics",
|
119 |
+
url = "https://www.aclweb.org/anthology/N19-1090",
|
120 |
+
doi = "10.18653/v1/N19-1090",
|
121 |
+
pages = "839--850",
|
122 |
+
}
|
123 |
+
```
|
fairseq/examples/constrained_decoding/normalize.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
#
|
3 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
4 |
+
#
|
5 |
+
# This source code is licensed under the MIT license found in the
|
6 |
+
# LICENSE file in the root directory of this source tree.
|
7 |
+
|
8 |
+
import sys
|
9 |
+
|
10 |
+
from sacremoses.normalize import MosesPunctNormalizer
|
11 |
+
|
12 |
+
|
13 |
+
def main(args):
|
14 |
+
normalizer = MosesPunctNormalizer(lang=args.lang, penn=args.penn)
|
15 |
+
for line in sys.stdin:
|
16 |
+
print(normalizer.normalize(line.rstrip()), flush=True)
|
17 |
+
|
18 |
+
|
19 |
+
if __name__ == "__main__":
|
20 |
+
import argparse
|
21 |
+
|
22 |
+
parser = argparse.ArgumentParser()
|
23 |
+
parser.add_argument("--lang", "-l", default="en")
|
24 |
+
parser.add_argument("--penn", "-p", action="store_true")
|
25 |
+
args = parser.parse_args()
|
26 |
+
|
27 |
+
main(args)
|
fairseq/examples/constrained_decoding/tok.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
#
|
3 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
4 |
+
#
|
5 |
+
# This source code is licensed under the MIT license found in the
|
6 |
+
# LICENSE file in the root directory of this source tree.
|
7 |
+
|
8 |
+
import sys
|
9 |
+
|
10 |
+
import sacremoses
|
11 |
+
|
12 |
+
|
13 |
+
def main(args):
|
14 |
+
"""Tokenizes, preserving tabs"""
|
15 |
+
mt = sacremoses.MosesTokenizer(lang=args.lang)
|
16 |
+
|
17 |
+
def tok(s):
|
18 |
+
return mt.tokenize(s, return_str=True)
|
19 |
+
|
20 |
+
for line in sys.stdin:
|
21 |
+
parts = list(map(tok, line.split("\t")))
|
22 |
+
print(*parts, sep="\t", flush=True)
|
23 |
+
|
24 |
+
|
25 |
+
if __name__ == "__main__":
|
26 |
+
import argparse
|
27 |
+
|
28 |
+
parser = argparse.ArgumentParser()
|
29 |
+
parser.add_argument("--lang", "-l", default="en")
|
30 |
+
parser.add_argument("--penn", "-p", action="store_true")
|
31 |
+
parser.add_argument("--fields", "-f", help="fields to tokenize")
|
32 |
+
args = parser.parse_args()
|
33 |
+
|
34 |
+
main(args)
|
fairseq/examples/conv_seq2seq/README.md
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Convolutional Sequence to Sequence Learning (Gehring et al., 2017)
|
2 |
+
|
3 |
+
## Pre-trained models
|
4 |
+
|
5 |
+
Description | Dataset | Model | Test set(s)
|
6 |
+
---|---|---|---
|
7 |
+
Convolutional <br> ([Gehring et al., 2017](https://arxiv.org/abs/1705.03122)) | [WMT14 English-French](http://statmt.org/wmt14/translation-task.html#Download) | [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/wmt14.v2.en-fr.fconv-py.tar.bz2) | newstest2014: <br> [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt14.v2.en-fr.newstest2014.tar.bz2) <br> newstest2012/2013: <br> [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt14.v2.en-fr.ntst1213.tar.bz2)
|
8 |
+
Convolutional <br> ([Gehring et al., 2017](https://arxiv.org/abs/1705.03122)) | [WMT14 English-German](http://statmt.org/wmt14/translation-task.html#Download) | [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/wmt14.en-de.fconv-py.tar.bz2) | newstest2014: <br> [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt14.en-de.newstest2014.tar.bz2)
|
9 |
+
Convolutional <br> ([Gehring et al., 2017](https://arxiv.org/abs/1705.03122)) | [WMT17 English-German](http://statmt.org/wmt17/translation-task.html#Download) | [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/wmt17.v2.en-de.fconv-py.tar.bz2) | newstest2014: <br> [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt17.v2.en-de.newstest2014.tar.bz2)
|
10 |
+
|
11 |
+
## Example usage
|
12 |
+
|
13 |
+
See the [translation README](../translation/README.md) for instructions on reproducing results for WMT'14 En-De and
|
14 |
+
WMT'14 En-Fr using the `fconv_wmt_en_de` and `fconv_wmt_en_fr` model architectures.
|
15 |
+
|
16 |
+
## Citation
|
17 |
+
|
18 |
+
```bibtex
|
19 |
+
@inproceedings{gehring2017convs2s,
|
20 |
+
title = {Convolutional Sequence to Sequence Learning},
|
21 |
+
author = {Gehring, Jonas, and Auli, Michael and Grangier, David and Yarats, Denis and Dauphin, Yann N},
|
22 |
+
booktitle = {Proc. of ICML},
|
23 |
+
year = 2017,
|
24 |
+
}
|
25 |
+
```
|
fairseq/examples/criss/README.md
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Cross-lingual Retrieval for Iterative Self-Supervised Training
|
2 |
+
|
3 |
+
https://arxiv.org/pdf/2006.09526.pdf
|
4 |
+
|
5 |
+
## Introduction
|
6 |
+
|
7 |
+
CRISS is a multilingual sequence-to-sequnce pretraining method where mining and training processes are applied iteratively, improving cross-lingual alignment and translation ability at the same time.
|
8 |
+
|
9 |
+
## Requirements:
|
10 |
+
|
11 |
+
* faiss: https://github.com/facebookresearch/faiss
|
12 |
+
* mosesdecoder: https://github.com/moses-smt/mosesdecoder
|
13 |
+
* flores: https://github.com/facebookresearch/flores
|
14 |
+
* LASER: https://github.com/facebookresearch/LASER
|
15 |
+
|
16 |
+
## Unsupervised Machine Translation
|
17 |
+
##### 1. Download and decompress CRISS checkpoints
|
18 |
+
```
|
19 |
+
cd examples/criss
|
20 |
+
wget https://dl.fbaipublicfiles.com/criss/criss_3rd_checkpoints.tar.gz
|
21 |
+
tar -xf criss_checkpoints.tar.gz
|
22 |
+
```
|
23 |
+
##### 2. Download and preprocess Flores test dataset
|
24 |
+
Make sure to run all scripts from examples/criss directory
|
25 |
+
```
|
26 |
+
bash download_and_preprocess_flores_test.sh
|
27 |
+
```
|
28 |
+
|
29 |
+
##### 3. Run Evaluation on Sinhala-English
|
30 |
+
```
|
31 |
+
bash unsupervised_mt/eval.sh
|
32 |
+
```
|
33 |
+
|
34 |
+
## Sentence Retrieval
|
35 |
+
##### 1. Download and preprocess Tatoeba dataset
|
36 |
+
```
|
37 |
+
bash download_and_preprocess_tatoeba.sh
|
38 |
+
```
|
39 |
+
|
40 |
+
##### 2. Run Sentence Retrieval on Tatoeba Kazakh-English
|
41 |
+
```
|
42 |
+
bash sentence_retrieval/sentence_retrieval_tatoeba.sh
|
43 |
+
```
|
44 |
+
|
45 |
+
## Mining
|
46 |
+
##### 1. Install faiss
|
47 |
+
Follow instructions on https://github.com/facebookresearch/faiss/blob/master/INSTALL.md
|
48 |
+
##### 2. Mine pseudo-parallel data between Kazakh and English
|
49 |
+
```
|
50 |
+
bash mining/mine_example.sh
|
51 |
+
```
|
52 |
+
|
53 |
+
## Citation
|
54 |
+
```bibtex
|
55 |
+
@article{tran2020cross,
|
56 |
+
title={Cross-lingual retrieval for iterative self-supervised training},
|
57 |
+
author={Tran, Chau and Tang, Yuqing and Li, Xian and Gu, Jiatao},
|
58 |
+
journal={arXiv preprint arXiv:2006.09526},
|
59 |
+
year={2020}
|
60 |
+
}
|
61 |
+
```
|
fairseq/examples/criss/download_and_preprocess_flores_test.sh
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
3 |
+
# All rights reserved.
|
4 |
+
#
|
5 |
+
# This source code is licensed under the license found in the
|
6 |
+
# LICENSE file in the root directory of this source tree.
|
7 |
+
|
8 |
+
SPM_ENCODE=flores/scripts/spm_encode.py
|
9 |
+
DATA=data_tmp
|
10 |
+
SPM_MODEL=criss_checkpoints/sentence.bpe.model
|
11 |
+
DICT=criss_checkpoints/dict.txt
|
12 |
+
|
13 |
+
download_data() {
|
14 |
+
CORPORA=$1
|
15 |
+
URL=$2
|
16 |
+
|
17 |
+
if [ -f $CORPORA ]; then
|
18 |
+
echo "$CORPORA already exists, skipping download"
|
19 |
+
else
|
20 |
+
echo "Downloading $URL"
|
21 |
+
wget $URL -O $CORPORA --no-check-certificate || rm -f $CORPORA
|
22 |
+
if [ -f $CORPORA ]; then
|
23 |
+
echo "$URL successfully downloaded."
|
24 |
+
else
|
25 |
+
echo "$URL not successfully downloaded."
|
26 |
+
rm -f $CORPORA
|
27 |
+
fi
|
28 |
+
fi
|
29 |
+
}
|
30 |
+
|
31 |
+
if [[ -f flores ]]; then
|
32 |
+
echo "flores already cloned"
|
33 |
+
else
|
34 |
+
git clone https://github.com/facebookresearch/flores
|
35 |
+
fi
|
36 |
+
|
37 |
+
mkdir -p $DATA
|
38 |
+
download_data $DATA/wikipedia_en_ne_si_test_sets.tgz "https://github.com/facebookresearch/flores/raw/master/data/wikipedia_en_ne_si_test_sets.tgz"
|
39 |
+
pushd $DATA
|
40 |
+
pwd
|
41 |
+
tar -vxf wikipedia_en_ne_si_test_sets.tgz
|
42 |
+
popd
|
43 |
+
|
44 |
+
|
45 |
+
for lang in ne_NP si_LK; do
|
46 |
+
datadir=$DATA/${lang}-en_XX-flores
|
47 |
+
rm -rf $datadir
|
48 |
+
mkdir -p $datadir
|
49 |
+
TEST_PREFIX=$DATA/wikipedia_en_ne_si_test_sets/wikipedia.test
|
50 |
+
python $SPM_ENCODE \
|
51 |
+
--model ${SPM_MODEL} \
|
52 |
+
--output_format=piece \
|
53 |
+
--inputs ${TEST_PREFIX}.${lang:0:2}-en.${lang:0:2} ${TEST_PREFIX}.${lang:0:2}-en.en \
|
54 |
+
--outputs $datadir/test.bpe.${lang}-en_XX.${lang} $datadir/test.bpe.${lang}-en_XX.en_XX
|
55 |
+
|
56 |
+
# binarize data
|
57 |
+
fairseq-preprocess \
|
58 |
+
--source-lang ${lang} --target-lang en_XX \
|
59 |
+
--testpref $datadir/test.bpe.${lang}-en_XX \
|
60 |
+
--destdir $datadir \
|
61 |
+
--srcdict ${DICT} \
|
62 |
+
--joined-dictionary \
|
63 |
+
--workers 4
|
64 |
+
done
|
fairseq/examples/criss/download_and_preprocess_tatoeba.sh
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
3 |
+
# All rights reserved.
|
4 |
+
#
|
5 |
+
# This source code is licensed under the license found in the
|
6 |
+
# LICENSE file in the root directory of this source tree.
|
7 |
+
|
8 |
+
SPM_ENCODE=flores/scripts/spm_encode.py
|
9 |
+
DATA=data_tmp
|
10 |
+
SPM_MODEL=criss_checkpoints/sentence.bpe.model
|
11 |
+
DICT=criss_checkpoints/dict.txt
|
12 |
+
|
13 |
+
if [[ -f flores ]]; then
|
14 |
+
echo "flores already cloned"
|
15 |
+
else
|
16 |
+
git clone https://github.com/facebookresearch/flores
|
17 |
+
fi
|
18 |
+
if [[ -f LASER ]]; then
|
19 |
+
echo "LASER already cloned"
|
20 |
+
else
|
21 |
+
git clone https://github.com/facebookresearch/LASER
|
22 |
+
fi
|
23 |
+
mkdir -p data_tmp
|
24 |
+
declare -A lang_tatoeba_map=( ["ar_AR"]="ara" ["de_DE"]="deu" ["es_XX"]="spa" ["et_EE"]="est" ["fi_FI"]="fin" ["fr_XX"]="fra" ["hi_IN"]="hin" ["it_IT"]="ita" ["ja_XX"]="jpn" ["ko_KR"]="kor" ["kk_KZ"]="kaz" ["nl_XX"]="nld" ["ru_RU"]="rus" ["tr_TR"]="tur" ["vi_VN"]="vie" ["zh_CN"]="cmn")
|
25 |
+
for lang in ar_AR de_DE es_XX et_EE fi_FI fr_XX hi_IN it_IT ja_XX kk_KZ ko_KR nl_XX ru_RU tr_TR vi_VN zh_CN; do
|
26 |
+
lang_tatoeba=${lang_tatoeba_map[$lang]}
|
27 |
+
echo $lang_tatoeba
|
28 |
+
datadir=$DATA/${lang}-en_XX-tatoeba
|
29 |
+
rm -rf $datadir
|
30 |
+
mkdir -p $datadir
|
31 |
+
TEST_PREFIX=LASER/data/tatoeba/v1/tatoeba
|
32 |
+
python $SPM_ENCODE \
|
33 |
+
--model ${SPM_MODEL} \
|
34 |
+
--output_format=piece \
|
35 |
+
--inputs ${TEST_PREFIX}.${lang_tatoeba}-eng.${lang_tatoeba} ${TEST_PREFIX}.${lang_tatoeba}-eng.eng \
|
36 |
+
--outputs $datadir/test.bpe.${lang}-en_XX.${lang} $datadir/test.bpe.${lang}-en_XX.en_XX
|
37 |
+
|
38 |
+
# binarize data
|
39 |
+
fairseq-preprocess \
|
40 |
+
--source-lang ${lang} --target-lang en_XX \
|
41 |
+
--testpref $datadir/test.bpe.${lang}-en_XX \
|
42 |
+
--destdir $datadir \
|
43 |
+
--srcdict ${DICT} \
|
44 |
+
--joined-dictionary \
|
45 |
+
--workers 4
|
46 |
+
done
|
fairseq/examples/criss/mining/mine.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3 -u
|
2 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the MIT license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
import argparse
|
7 |
+
import glob
|
8 |
+
from subprocess import check_call
|
9 |
+
|
10 |
+
try:
|
11 |
+
import faiss
|
12 |
+
|
13 |
+
has_faiss = True
|
14 |
+
except ImportError:
|
15 |
+
has_faiss = False
|
16 |
+
import numpy as np
|
17 |
+
|
18 |
+
|
19 |
+
GB = 1024 * 1024 * 1024
|
20 |
+
|
21 |
+
|
22 |
+
def call(cmd):
|
23 |
+
print(cmd)
|
24 |
+
check_call(cmd, shell=True)
|
25 |
+
|
26 |
+
|
27 |
+
def get_batches(directory, lang, prefix="all_avg_pool"):
|
28 |
+
print(f"Finding in {directory}/{prefix}.{lang}*")
|
29 |
+
files = glob.glob(f"{directory}/{prefix}.{lang}*")
|
30 |
+
emb_files = []
|
31 |
+
txt_files = []
|
32 |
+
for emb_fi in files:
|
33 |
+
emb_files.append(emb_fi)
|
34 |
+
txt_fi = emb_fi.replace(prefix, "sentences")
|
35 |
+
txt_files.append(txt_fi)
|
36 |
+
return emb_files, txt_files
|
37 |
+
|
38 |
+
|
39 |
+
def load_batch(emb_file, dim):
|
40 |
+
embeddings = np.fromfile(emb_file, dtype=np.float32)
|
41 |
+
num_rows = int(embeddings.shape[0] / dim)
|
42 |
+
embeddings = embeddings.reshape((num_rows, dim))
|
43 |
+
faiss.normalize_L2(embeddings)
|
44 |
+
return embeddings
|
45 |
+
|
46 |
+
|
47 |
+
def knnGPU_sharded(x_batches_f, y_batches_f, dim, k, direction="x2y"):
|
48 |
+
if not has_faiss:
|
49 |
+
raise ImportError("Please install Faiss")
|
50 |
+
sims = []
|
51 |
+
inds = []
|
52 |
+
xfrom = 0
|
53 |
+
xto = 0
|
54 |
+
for x_batch_f in x_batches_f:
|
55 |
+
yfrom = 0
|
56 |
+
yto = 0
|
57 |
+
x_batch = load_batch(x_batch_f, dim)
|
58 |
+
xto = xfrom + x_batch.shape[0]
|
59 |
+
bsims, binds = [], []
|
60 |
+
for y_batch_f in y_batches_f:
|
61 |
+
y_batch = load_batch(y_batch_f, dim)
|
62 |
+
neighbor_size = min(k, y_batch.shape[0])
|
63 |
+
yto = yfrom + y_batch.shape[0]
|
64 |
+
print("{}-{} -> {}-{}".format(xfrom, xto, yfrom, yto))
|
65 |
+
idx = faiss.IndexFlatIP(dim)
|
66 |
+
idx = faiss.index_cpu_to_all_gpus(idx)
|
67 |
+
idx.add(y_batch)
|
68 |
+
bsim, bind = idx.search(x_batch, neighbor_size)
|
69 |
+
|
70 |
+
bsims.append(bsim)
|
71 |
+
binds.append(bind + yfrom)
|
72 |
+
yfrom += y_batch.shape[0]
|
73 |
+
del idx
|
74 |
+
del y_batch
|
75 |
+
bsims = np.concatenate(bsims, axis=1)
|
76 |
+
binds = np.concatenate(binds, axis=1)
|
77 |
+
aux = np.argsort(-bsims, axis=1)
|
78 |
+
sim_batch = np.zeros((x_batch.shape[0], k), dtype=np.float32)
|
79 |
+
ind_batch = np.zeros((x_batch.shape[0], k), dtype=np.int64)
|
80 |
+
for i in range(x_batch.shape[0]):
|
81 |
+
for j in range(k):
|
82 |
+
sim_batch[i, j] = bsims[i, aux[i, j]]
|
83 |
+
ind_batch[i, j] = binds[i, aux[i, j]]
|
84 |
+
sims.append(sim_batch)
|
85 |
+
inds.append(ind_batch)
|
86 |
+
xfrom += x_batch.shape[0]
|
87 |
+
del x_batch
|
88 |
+
sim = np.concatenate(sims, axis=0)
|
89 |
+
ind = np.concatenate(inds, axis=0)
|
90 |
+
return sim, ind
|
91 |
+
|
92 |
+
|
93 |
+
def score(sim, fwd_mean, bwd_mean, margin):
|
94 |
+
return margin(sim, (fwd_mean + bwd_mean) / 2)
|
95 |
+
|
96 |
+
|
97 |
+
def score_candidates(
|
98 |
+
sim_mat, candidate_inds, fwd_mean, bwd_mean, margin, verbose=False
|
99 |
+
):
|
100 |
+
print(" - scoring {:d} candidates".format(sim_mat.shape[0]))
|
101 |
+
scores = np.zeros(candidate_inds.shape)
|
102 |
+
for i in range(scores.shape[0]):
|
103 |
+
for j in range(scores.shape[1]):
|
104 |
+
k = int(candidate_inds[i, j])
|
105 |
+
scores[i, j] = score(sim_mat[i, j], fwd_mean[i], bwd_mean[k], margin)
|
106 |
+
return scores
|
107 |
+
|
108 |
+
|
109 |
+
def load_text(files):
|
110 |
+
all_sentences = []
|
111 |
+
for fi in files:
|
112 |
+
with open(fi) as sentence_fi:
|
113 |
+
for line in sentence_fi:
|
114 |
+
all_sentences.append(line.strip())
|
115 |
+
print(f"Read {len(all_sentences)} sentences")
|
116 |
+
return all_sentences
|
117 |
+
|
118 |
+
|
119 |
+
if __name__ == "__main__":
|
120 |
+
parser = argparse.ArgumentParser(description="Mine bitext")
|
121 |
+
parser.add_argument("--src-lang", help="Source language")
|
122 |
+
parser.add_argument("--tgt-lang", help="Target language")
|
123 |
+
parser.add_argument(
|
124 |
+
"--dict-path", help="Path to dictionary file", default="dict.txt"
|
125 |
+
)
|
126 |
+
parser.add_argument(
|
127 |
+
"--spm-path", help="Path to SPM model file", default="sentence.bpe.model"
|
128 |
+
)
|
129 |
+
parser.add_argument("--dim", type=int, default=1024, help="Embedding dimension")
|
130 |
+
parser.add_argument("--mem", type=int, default=5, help="Memory in GB")
|
131 |
+
parser.add_argument("--src-dir", help="Source directory")
|
132 |
+
parser.add_argument("--tgt-dir", help="Target directory")
|
133 |
+
parser.add_argument("--output", help="Output path")
|
134 |
+
parser.add_argument(
|
135 |
+
"--neighborhood", type=int, default=4, help="Embedding dimension"
|
136 |
+
)
|
137 |
+
parser.add_argument(
|
138 |
+
"--threshold", type=float, default=1.06, help="Threshold on mined bitext"
|
139 |
+
)
|
140 |
+
parser.add_argument(
|
141 |
+
"--valid-size",
|
142 |
+
type=int,
|
143 |
+
default=2000,
|
144 |
+
help="Number of sentences used for validation set",
|
145 |
+
)
|
146 |
+
parser.add_argument(
|
147 |
+
"--min-count",
|
148 |
+
type=int,
|
149 |
+
default=50000,
|
150 |
+
help="Min num sentences used for each language",
|
151 |
+
)
|
152 |
+
args = parser.parse_args()
|
153 |
+
|
154 |
+
x_batches_f, x_sents_f = get_batches(args.src_dir, args.src_lang)
|
155 |
+
y_batches_f, y_sents_f = get_batches(args.tgt_dir, args.tgt_lang)
|
156 |
+
margin = lambda a, b: a / b
|
157 |
+
y2x_sim, y2x_ind = knnGPU_sharded(
|
158 |
+
y_batches_f, x_batches_f, args.dim, args.neighborhood, direction="y2x"
|
159 |
+
)
|
160 |
+
x2y_sim, x2y_ind = knnGPU_sharded(
|
161 |
+
x_batches_f, y_batches_f, args.dim, args.neighborhood, direction="x2y"
|
162 |
+
)
|
163 |
+
|
164 |
+
x2y_mean = x2y_sim.mean(axis=1)
|
165 |
+
y2x_mean = y2x_sim.mean(axis=1)
|
166 |
+
fwd_scores = score_candidates(x2y_sim, x2y_ind, x2y_mean, y2x_mean, margin)
|
167 |
+
bwd_scores = score_candidates(y2x_sim, y2x_ind, y2x_mean, x2y_mean, margin)
|
168 |
+
fwd_best = x2y_ind[np.arange(x2y_sim.shape[0]), fwd_scores.argmax(axis=1)]
|
169 |
+
bwd_best = y2x_ind[np.arange(y2x_sim.shape[0]), bwd_scores.argmax(axis=1)]
|
170 |
+
indices = np.stack(
|
171 |
+
(
|
172 |
+
np.concatenate((np.arange(x2y_ind.shape[0]), bwd_best)),
|
173 |
+
np.concatenate((fwd_best, np.arange(y2x_ind.shape[0]))),
|
174 |
+
),
|
175 |
+
axis=1,
|
176 |
+
)
|
177 |
+
scores = np.concatenate((fwd_scores.max(axis=1), bwd_scores.max(axis=1)))
|
178 |
+
|
179 |
+
x_sentences = load_text(x_sents_f)
|
180 |
+
y_sentences = load_text(y_sents_f)
|
181 |
+
|
182 |
+
threshold = args.threshold
|
183 |
+
min_count = args.min_count
|
184 |
+
seen_src, seen_trg = set(), set()
|
185 |
+
directory = args.output
|
186 |
+
call(f"mkdir -p {directory}")
|
187 |
+
src_out = open(
|
188 |
+
f"{directory}/all.{args.src_lang}",
|
189 |
+
mode="w",
|
190 |
+
encoding="utf-8",
|
191 |
+
errors="surrogateescape",
|
192 |
+
)
|
193 |
+
tgt_out = open(
|
194 |
+
f"{directory}/all.{args.tgt_lang}",
|
195 |
+
mode="w",
|
196 |
+
encoding="utf-8",
|
197 |
+
errors="surrogateescape",
|
198 |
+
)
|
199 |
+
scores_out = open(
|
200 |
+
f"{directory}/all.scores", mode="w", encoding="utf-8", errors="surrogateescape"
|
201 |
+
)
|
202 |
+
count = 0
|
203 |
+
for i in np.argsort(-scores):
|
204 |
+
src_ind, trg_ind = indices[i]
|
205 |
+
if src_ind not in seen_src and trg_ind not in seen_trg:
|
206 |
+
seen_src.add(src_ind)
|
207 |
+
seen_trg.add(trg_ind)
|
208 |
+
if scores[i] > threshold or count < min_count:
|
209 |
+
if x_sentences[src_ind]:
|
210 |
+
print(scores[i], file=scores_out)
|
211 |
+
print(x_sentences[src_ind], file=src_out)
|
212 |
+
print(y_sentences[trg_ind], file=tgt_out)
|
213 |
+
count += 1
|
214 |
+
else:
|
215 |
+
print(f"Ignoring sentence: {x_sentences[src_ind]}")
|
216 |
+
src_out.close()
|
217 |
+
tgt_out.close()
|
218 |
+
scores_out.close()
|
219 |
+
|
220 |
+
print(f"Found {count} pairs for threshold={threshold}")
|
221 |
+
with open(f"{directory}/all.{args.src_lang}") as all_s, open(
|
222 |
+
f"{directory}/all.{args.tgt_lang}"
|
223 |
+
) as all_t, open(f"{directory}/valid.{args.src_lang}", "w") as valid_s, open(
|
224 |
+
f"{directory}/valid.{args.tgt_lang}", "w"
|
225 |
+
) as valid_t, open(
|
226 |
+
f"{directory}/train.{args.src_lang}", "w"
|
227 |
+
) as train_s, open(
|
228 |
+
f"{directory}/train.{args.tgt_lang}", "w"
|
229 |
+
) as train_t:
|
230 |
+
count = 0
|
231 |
+
for s_line, t_line in zip(all_s, all_t):
|
232 |
+
s_line = s_line.split("\t")[1]
|
233 |
+
t_line = t_line.split("\t")[1]
|
234 |
+
if count >= args.valid_size:
|
235 |
+
train_s.write(s_line)
|
236 |
+
train_t.write(t_line)
|
237 |
+
else:
|
238 |
+
valid_s.write(s_line)
|
239 |
+
valid_t.write(t_line)
|
240 |
+
count += 1
|
fairseq/examples/criss/mining/mine_example.sh
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
3 |
+
# All rights reserved.
|
4 |
+
#
|
5 |
+
# This source code is licensed under the license found in the
|
6 |
+
# LICENSE file in the root directory of this source tree.
|
7 |
+
#
|
8 |
+
source_lang=kk_KZ
|
9 |
+
target_lang=en_XX
|
10 |
+
MODEL=criss_checkpoints/criss.3rd.pt
|
11 |
+
SPM=criss_checkpoints/sentence.bpe.model
|
12 |
+
SPLIT=test
|
13 |
+
LANG_DICT=criss_checkpoints/lang_dict.txt
|
14 |
+
SPM_ENCODE=flores/scripts/spm_encode.py
|
15 |
+
SAVE_ENCODER=save_encoder.py
|
16 |
+
ENCODER_SAVE_ROOT=sentence_embeddings/$MODEL
|
17 |
+
DICT=criss_checkpoints/dict.txt
|
18 |
+
THRESHOLD=1.02
|
19 |
+
MIN_COUNT=500
|
20 |
+
|
21 |
+
DATA_DIR=data_tmp
|
22 |
+
SAVE_DIR=mining/${source_lang}_${target_lang}_mined
|
23 |
+
ENCODER_SAVE_DIR=${ENCODER_SAVE_ROOT}/${source_lang}-${target_lang}
|
24 |
+
INPUT_DIR=$DATA_DIR/${source_lang}-${target_lang}-tatoeba
|
25 |
+
|
26 |
+
mkdir -p $ENCODER_SAVE_DIR/${target_lang}
|
27 |
+
mkdir -p $ENCODER_SAVE_DIR/${source_lang}
|
28 |
+
mkdir -p $SAVE_DIR
|
29 |
+
|
30 |
+
## Save encoder outputs
|
31 |
+
|
32 |
+
# Save encoder outputs for source sentences
|
33 |
+
python $SAVE_ENCODER \
|
34 |
+
${INPUT_DIR} \
|
35 |
+
--path ${MODEL} \
|
36 |
+
--task translation_multi_simple_epoch \
|
37 |
+
--lang-pairs ${source_lang}-${target_lang} \
|
38 |
+
--lang-dict ${LANG_DICT} \
|
39 |
+
--gen-subset ${SPLIT} \
|
40 |
+
--bpe 'sentencepiece' \
|
41 |
+
-s ${source_lang} -t ${target_lang} \
|
42 |
+
--sentencepiece-model ${SPM} \
|
43 |
+
--remove-bpe 'sentencepiece' \
|
44 |
+
--beam 1 \
|
45 |
+
--lang-tok-style mbart \
|
46 |
+
--encoder-save-dir ${ENCODER_SAVE_DIR}/${source_lang}
|
47 |
+
|
48 |
+
## Save encoder outputs for target sentences
|
49 |
+
python $SAVE_ENCODER \
|
50 |
+
${INPUT_DIR} \
|
51 |
+
--path ${MODEL} \
|
52 |
+
--lang-pairs ${source_lang}-${target_lang} \
|
53 |
+
--lang-dict ${LANG_DICT} \
|
54 |
+
--task translation_multi_simple_epoch \
|
55 |
+
--gen-subset ${SPLIT} \
|
56 |
+
--bpe 'sentencepiece' \
|
57 |
+
-t ${source_lang} -s ${target_lang} \
|
58 |
+
--sentencepiece-model ${SPM} \
|
59 |
+
--remove-bpe 'sentencepiece' \
|
60 |
+
--beam 1 \
|
61 |
+
--lang-tok-style mbart \
|
62 |
+
--encoder-save-dir ${ENCODER_SAVE_DIR}/${target_lang}
|
63 |
+
|
64 |
+
## Mining
|
65 |
+
python mining/mine.py \
|
66 |
+
--src-lang ${source_lang} \
|
67 |
+
--tgt-lang ${target_lang} \
|
68 |
+
--dim 1024 \
|
69 |
+
--mem 10 \
|
70 |
+
--neighborhood 4 \
|
71 |
+
--src-dir ${ENCODER_SAVE_DIR}/${source_lang} \
|
72 |
+
--tgt-dir ${ENCODER_SAVE_DIR}/${target_lang} \
|
73 |
+
--output $SAVE_DIR \
|
74 |
+
--threshold ${THRESHOLD} \
|
75 |
+
--min-count ${MIN_COUNT} \
|
76 |
+
--valid-size 100 \
|
77 |
+
--dict-path ${DICT} \
|
78 |
+
--spm-path ${SPM} \
|
79 |
+
|
80 |
+
|
81 |
+
## Process and binarize mined data
|
82 |
+
python $SPM_ENCODE \
|
83 |
+
--model ${SPM} \
|
84 |
+
--output_format=piece \
|
85 |
+
--inputs mining/${source_lang}_${target_lang}_mined/train.${source_lang} mining/${source_lang}_${target_lang}_mined/train.${target_lang} \
|
86 |
+
--outputs mining/${source_lang}_${target_lang}_mined/train.bpe.${source_lang} mining/${source_lang}_${target_lang}_mined/train.bpe.${target_lang}
|
87 |
+
|
88 |
+
python $SPM_ENCODE \
|
89 |
+
--model ${SPM} \
|
90 |
+
--output_format=piece \
|
91 |
+
--inputs mining/${source_lang}_${target_lang}_mined/valid.${source_lang} mining/${source_lang}_${target_lang}_mined/valid.${target_lang} \
|
92 |
+
--outputs mining/${source_lang}_${target_lang}_mined/valid.bpe.${source_lang} mining/${source_lang}_${target_lang}_mined/valid.bpe.${target_lang}
|
93 |
+
|
94 |
+
|
95 |
+
fairseq-preprocess \
|
96 |
+
--source-lang ${source_lang} \
|
97 |
+
--target-lang ${target_lang} \
|
98 |
+
--trainpref mining/${source_lang}_${target_lang}_mined/train.bpe \
|
99 |
+
--validpref mining/${source_lang}_${target_lang}_mined/valid.bpe \
|
100 |
+
--destdir mining/${source_lang}_${target_lang}_mined \
|
101 |
+
--srcdict ${DICT} \
|
102 |
+
--joined-dictionary \
|
103 |
+
--workers 8
|
fairseq/examples/criss/save_encoder.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3 -u
|
2 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the MIT license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
"""
|
7 |
+
Translate pre-processed data with a trained model.
|
8 |
+
"""
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
from fairseq import checkpoint_utils, options, progress_bar, tasks, utils
|
13 |
+
from fairseq.sequence_generator import EnsembleModel
|
14 |
+
from fairseq.utils import safe_hasattr
|
15 |
+
|
16 |
+
|
17 |
+
def get_avg_pool(
|
18 |
+
models, sample, prefix_tokens, src_dict, remove_bpe, has_langtok=False
|
19 |
+
):
|
20 |
+
model = EnsembleModel(models)
|
21 |
+
|
22 |
+
# model.forward normally channels prev_output_tokens into the decoder
|
23 |
+
# separately, but SequenceGenerator directly calls model.encoder
|
24 |
+
encoder_input = {
|
25 |
+
k: v for k, v in sample["net_input"].items() if k != "prev_output_tokens"
|
26 |
+
}
|
27 |
+
|
28 |
+
# compute the encoder output for each beam
|
29 |
+
encoder_outs = model.forward_encoder(encoder_input)
|
30 |
+
np_encoder_outs = encoder_outs[0].encoder_out.cpu().numpy().astype(np.float32)
|
31 |
+
encoder_mask = 1 - encoder_outs[0].encoder_padding_mask.cpu().numpy().astype(
|
32 |
+
np.float32
|
33 |
+
)
|
34 |
+
encoder_mask = np.expand_dims(encoder_mask.T, axis=2)
|
35 |
+
if has_langtok:
|
36 |
+
encoder_mask = encoder_mask[1:, :, :]
|
37 |
+
np_encoder_outs = np_encoder_outs[1, :, :]
|
38 |
+
masked_encoder_outs = encoder_mask * np_encoder_outs
|
39 |
+
avg_pool = (masked_encoder_outs / encoder_mask.sum(axis=0)).sum(axis=0)
|
40 |
+
return avg_pool
|
41 |
+
|
42 |
+
|
43 |
+
def main(args):
|
44 |
+
assert args.path is not None, "--path required for generation!"
|
45 |
+
assert (
|
46 |
+
not args.sampling or args.nbest == args.beam
|
47 |
+
), "--sampling requires --nbest to be equal to --beam"
|
48 |
+
assert (
|
49 |
+
args.replace_unk is None or args.raw_text
|
50 |
+
), "--replace-unk requires a raw text dataset (--raw-text)"
|
51 |
+
|
52 |
+
args.beam = 1
|
53 |
+
utils.import_user_module(args)
|
54 |
+
|
55 |
+
if args.max_tokens is None:
|
56 |
+
args.max_tokens = 12000
|
57 |
+
print(args)
|
58 |
+
use_cuda = torch.cuda.is_available() and not args.cpu
|
59 |
+
|
60 |
+
# Load dataset splits
|
61 |
+
task = tasks.setup_task(args)
|
62 |
+
task.load_dataset(args.gen_subset)
|
63 |
+
|
64 |
+
# Set dictionaries
|
65 |
+
try:
|
66 |
+
src_dict = getattr(task, "source_dictionary", None)
|
67 |
+
except NotImplementedError:
|
68 |
+
src_dict = None
|
69 |
+
tgt_dict = task.target_dictionary
|
70 |
+
|
71 |
+
# Load ensemble
|
72 |
+
print("| loading model(s) from {}".format(args.path))
|
73 |
+
models, _model_args = checkpoint_utils.load_model_ensemble(
|
74 |
+
args.path.split(":"),
|
75 |
+
arg_overrides=eval(args.model_overrides),
|
76 |
+
task=task,
|
77 |
+
)
|
78 |
+
|
79 |
+
# Optimize ensemble for generation
|
80 |
+
for model in models:
|
81 |
+
model.make_generation_fast_(
|
82 |
+
beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
|
83 |
+
need_attn=args.print_alignment,
|
84 |
+
)
|
85 |
+
if args.fp16:
|
86 |
+
model.half()
|
87 |
+
if use_cuda:
|
88 |
+
model.cuda()
|
89 |
+
|
90 |
+
# Load alignment dictionary for unknown word replacement
|
91 |
+
# (None if no unknown word replacement, empty if no path to align dictionary)
|
92 |
+
align_dict = utils.load_align_dict(args.replace_unk)
|
93 |
+
|
94 |
+
# Load dataset (possibly sharded)
|
95 |
+
itr = task.get_batch_iterator(
|
96 |
+
dataset=task.dataset(args.gen_subset),
|
97 |
+
max_tokens=args.max_tokens,
|
98 |
+
max_positions=utils.resolve_max_positions(
|
99 |
+
task.max_positions(),
|
100 |
+
),
|
101 |
+
ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
|
102 |
+
required_batch_size_multiple=args.required_batch_size_multiple,
|
103 |
+
num_shards=args.num_shards,
|
104 |
+
shard_id=args.shard_id,
|
105 |
+
num_workers=args.num_workers,
|
106 |
+
).next_epoch_itr(shuffle=False)
|
107 |
+
|
108 |
+
num_sentences = 0
|
109 |
+
source_sentences = []
|
110 |
+
shard_id = 0
|
111 |
+
all_avg_pool = None
|
112 |
+
encoder_has_langtok = (
|
113 |
+
safe_hasattr(task.args, "encoder_langtok")
|
114 |
+
and task.args.encoder_langtok is not None
|
115 |
+
and safe_hasattr(task.args, "lang_tok_replacing_bos_eos")
|
116 |
+
and not task.args.lang_tok_replacing_bos_eos
|
117 |
+
)
|
118 |
+
with progress_bar.build_progress_bar(args, itr) as t:
|
119 |
+
for sample in t:
|
120 |
+
if sample is None:
|
121 |
+
print("Skipping None")
|
122 |
+
continue
|
123 |
+
sample = utils.move_to_cuda(sample) if use_cuda else sample
|
124 |
+
if "net_input" not in sample:
|
125 |
+
continue
|
126 |
+
|
127 |
+
prefix_tokens = None
|
128 |
+
if args.prefix_size > 0:
|
129 |
+
prefix_tokens = sample["target"][:, : args.prefix_size]
|
130 |
+
|
131 |
+
with torch.no_grad():
|
132 |
+
avg_pool = get_avg_pool(
|
133 |
+
models,
|
134 |
+
sample,
|
135 |
+
prefix_tokens,
|
136 |
+
src_dict,
|
137 |
+
args.post_process,
|
138 |
+
has_langtok=encoder_has_langtok,
|
139 |
+
)
|
140 |
+
if all_avg_pool is not None:
|
141 |
+
all_avg_pool = np.concatenate((all_avg_pool, avg_pool))
|
142 |
+
else:
|
143 |
+
all_avg_pool = avg_pool
|
144 |
+
|
145 |
+
if not isinstance(sample["id"], list):
|
146 |
+
sample_ids = sample["id"].tolist()
|
147 |
+
else:
|
148 |
+
sample_ids = sample["id"]
|
149 |
+
for i, sample_id in enumerate(sample_ids):
|
150 |
+
# Remove padding
|
151 |
+
src_tokens = utils.strip_pad(
|
152 |
+
sample["net_input"]["src_tokens"][i, :], tgt_dict.pad()
|
153 |
+
)
|
154 |
+
|
155 |
+
# Either retrieve the original sentences or regenerate them from tokens.
|
156 |
+
if align_dict is not None:
|
157 |
+
src_str = task.dataset(args.gen_subset).src.get_original_text(
|
158 |
+
sample_id
|
159 |
+
)
|
160 |
+
else:
|
161 |
+
if src_dict is not None:
|
162 |
+
src_str = src_dict.string(src_tokens, args.post_process)
|
163 |
+
else:
|
164 |
+
src_str = ""
|
165 |
+
|
166 |
+
if not args.quiet:
|
167 |
+
if src_dict is not None:
|
168 |
+
print("S-{}\t{}".format(sample_id, src_str))
|
169 |
+
|
170 |
+
source_sentences.append(f"{sample_id}\t{src_str}")
|
171 |
+
|
172 |
+
num_sentences += sample["nsentences"]
|
173 |
+
if all_avg_pool.shape[0] >= 1000000:
|
174 |
+
with open(
|
175 |
+
f"{args.encoder_save_dir}/all_avg_pool.{args.source_lang}.{shard_id}",
|
176 |
+
"w",
|
177 |
+
) as avg_pool_file:
|
178 |
+
all_avg_pool.tofile(avg_pool_file)
|
179 |
+
with open(
|
180 |
+
f"{args.encoder_save_dir}/sentences.{args.source_lang}.{shard_id}",
|
181 |
+
"w",
|
182 |
+
) as sentence_file:
|
183 |
+
sentence_file.writelines(f"{line}\n" for line in source_sentences)
|
184 |
+
all_avg_pool = None
|
185 |
+
source_sentences = []
|
186 |
+
shard_id += 1
|
187 |
+
|
188 |
+
if all_avg_pool is not None:
|
189 |
+
with open(
|
190 |
+
f"{args.encoder_save_dir}/all_avg_pool.{args.source_lang}.{shard_id}", "w"
|
191 |
+
) as avg_pool_file:
|
192 |
+
all_avg_pool.tofile(avg_pool_file)
|
193 |
+
with open(
|
194 |
+
f"{args.encoder_save_dir}/sentences.{args.source_lang}.{shard_id}", "w"
|
195 |
+
) as sentence_file:
|
196 |
+
sentence_file.writelines(f"{line}\n" for line in source_sentences)
|
197 |
+
return None
|
198 |
+
|
199 |
+
|
200 |
+
def cli_main():
|
201 |
+
parser = options.get_generation_parser()
|
202 |
+
parser.add_argument(
|
203 |
+
"--encoder-save-dir",
|
204 |
+
default="",
|
205 |
+
type=str,
|
206 |
+
metavar="N",
|
207 |
+
help="directory to save encoder outputs",
|
208 |
+
)
|
209 |
+
args = options.parse_args_and_arch(parser)
|
210 |
+
main(args)
|
211 |
+
|
212 |
+
|
213 |
+
if __name__ == "__main__":
|
214 |
+
cli_main()
|