File size: 10,673 Bytes
8437114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
#

import math

import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq.modules.fairseq_dropout import FairseqDropout
from fairseq.modules.scalar_bias import scalar_bias


class SingleHeadAttention(nn.Module):
    """
    Single-head attention that supports Gating and Downsampling
    """

    def __init__(
        self,
        out_channels,
        embed_dim,
        head_dim,
        head_index,
        dropout=0.0,
        bias=True,
        project_input=True,
        gated=False,
        downsample=False,
        num_heads=1,
    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.dropout_module = FairseqDropout(
            dropout, module_name=self.__class__.__name__
        )
        self.head_index = head_index
        self.head_dim = head_dim
        self.project_input = project_input
        self.gated = gated
        self.downsample = downsample
        self.num_heads = num_heads
        self.projection = None

        k_layers = []
        v_layers = []
        if self.downsample:
            k_layers.append(Downsample(self.head_index))
            v_layers.append(Downsample(self.head_index))
            out_proj_size = self.head_dim
        else:
            out_proj_size = self.head_dim * self.num_heads
        if self.gated:
            k_layers.append(GatedLinear(self.embed_dim, out_proj_size, bias=bias))
            self.in_proj_q = GatedLinear(self.embed_dim, out_proj_size, bias=bias)
            v_layers.append(GatedLinear(self.embed_dim, out_proj_size, bias=bias))
        else:
            k_layers.append(Linear(self.embed_dim, out_proj_size, bias=bias))
            self.in_proj_q = Linear(self.embed_dim, out_proj_size, bias=bias)
            v_layers.append(Linear(self.embed_dim, out_proj_size, bias=bias))

        self.in_proj_k = nn.Sequential(*k_layers)
        self.in_proj_v = nn.Sequential(*v_layers)

        if self.downsample:
            self.out_proj = Linear(out_proj_size, self.head_dim, bias=bias)
        else:
            self.out_proj = Linear(out_proj_size, out_channels, bias=bias)

        self.scaling = self.head_dim ** -0.5

    def forward(
        self,
        query,
        key,
        value,
        mask_future_timesteps=False,
        key_padding_mask=None,
        use_scalar_bias=False,
    ):
        """Input shape: Time x Batch x Channel
        Self-attention can be implemented by passing in the same arguments for
        query, key and value. Future timesteps can be masked with the
        `mask_future_timesteps` argument. Padding elements can be excluded from
        the key by passing a binary ByteTensor (`key_padding_mask`) with shape:
        batch x src_len, where padding elements are indicated by 1s.
        """
        src_len, bsz, out_channels = key.size()
        tgt_len = query.size(0)
        assert list(query.size()) == [tgt_len, bsz, out_channels]
        assert key.size() == value.size()

        if key_padding_mask is not None:
            assert key_padding_mask.size(0) == bsz
            assert key_padding_mask.size(1) == src_len

        if self.downsample:
            size = bsz
        else:
            size = bsz * self.num_heads

        k = key
        v = value
        q = query
        if self.project_input:
            q = self.in_proj_q(q)
            k = self.in_proj_k(k)
            v = self.in_proj_v(v)
            src_len = k.size()[0]
        q *= self.scaling

        if not self.downsample:
            q = q.view(tgt_len, size, self.head_dim)
            k = k.view(src_len, size, self.head_dim)
            v = v.view(src_len, size, self.head_dim)

        q = q.transpose(0, 1)
        k = k.transpose(0, 1)
        v = v.transpose(0, 1)

        attn_weights = torch.bmm(q, k.transpose(1, 2))
        if mask_future_timesteps:
            assert (
                query.size() == key.size()
            ), "mask_future_timesteps only applies to self-attention"
            attn_weights *= torch.tril(
                attn_weights.data.new([1]).expand(tgt_len, tgt_len).clone(),
                diagonal=-1,
            )[:, :: self.head_index + 1 if self.downsample else 1].unsqueeze(0)
            attn_weights += torch.triu(
                attn_weights.data.new([-math.inf]).expand(tgt_len, tgt_len).clone(),
                diagonal=0,
            )[:, :: self.head_index + 1 if self.downsample else 1].unsqueeze(0)
        tgt_size = tgt_len
        if use_scalar_bias:
            attn_weights = scalar_bias(attn_weights, 2)
            v = scalar_bias(v, 1)
            tgt_size += 1

        if key_padding_mask is not None:
            # don't attend to padding symbols
            if key_padding_mask.max() > 0:
                if self.downsample:
                    attn_weights = attn_weights.view(bsz, 1, tgt_len, src_len)
                else:
                    attn_weights = attn_weights.view(
                        size, self.num_heads, tgt_len, src_len
                    )
                attn_weights = attn_weights.masked_fill(
                    key_padding_mask.unsqueeze(1).unsqueeze(2),
                    -math.inf,
                )
                attn_weights = attn_weights.view(size, tgt_len, src_len)
        attn_weights = F.softmax(attn_weights, dim=-1)
        attn_weights = self.dropout_module(attn_weights)

        attn = torch.bmm(attn_weights, v)
        if self.downsample:
            attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, self.head_dim)
        else:
            attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, self.embed_dim)

        attn = self.out_proj(attn)

        return attn, attn_weights


class DownsampledMultiHeadAttention(nn.ModuleList):
    """
    Multi-headed attention with Gating and Downsampling
    """

    def __init__(
        self,
        out_channels,
        embed_dim,
        num_heads,
        dropout=0.0,
        bias=True,
        project_input=True,
        gated=False,
        downsample=False,
    ):
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.head_dim = embed_dim // num_heads
        self.downsample = downsample
        self.gated = gated
        self.project_input = project_input
        assert self.head_dim * num_heads == embed_dim

        if self.downsample:
            attention_heads = []
            for index in range(self.num_heads):
                attention_heads.append(
                    SingleHeadAttention(
                        out_channels,
                        self.embed_dim,
                        self.head_dim,
                        index,
                        dropout,
                        bias,
                        self.project_input,
                        self.gated,
                        self.downsample,
                        self.num_heads,
                    )
                )
            super().__init__(modules=attention_heads)
            self.out_proj = Linear(embed_dim, out_channels, bias=bias)
        else:
            # either we have a list of attention heads, or just one attention head
            # if not being downsampled, we can do the heads with one linear layer instead of separate ones
            super().__init__()
            self.attention_module = SingleHeadAttention(
                out_channels,
                self.embed_dim,
                self.head_dim,
                1,
                dropout,
                bias,
                self.project_input,
                self.gated,
                self.downsample,
                self.num_heads,
            )

    def forward(
        self,
        query,
        key,
        value,
        mask_future_timesteps=False,
        key_padding_mask=None,
        use_scalar_bias=False,
    ):
        src_len, bsz, embed_dim = key.size()
        tgt_len = query.size(0)
        assert embed_dim == self.embed_dim
        assert list(query.size()) == [tgt_len, bsz, embed_dim]
        assert key.size() == value.size()

        tgt_size = tgt_len
        if use_scalar_bias:
            tgt_size += 1

        attn = []
        attn_weights = []
        if self.downsample:
            for attention_head_number in range(self.num_heads):
                # call the forward of each attention head
                _attn, _attn_weight = self[attention_head_number](
                    query,
                    key,
                    value,
                    mask_future_timesteps,
                    key_padding_mask,
                    use_scalar_bias,
                )
                attn.append(_attn)
                attn_weights.append(_attn_weight)
            full_attn = torch.cat(attn, dim=2)
            full_attn = self.out_proj(full_attn)
            return full_attn, attn_weights[0].clone()
        else:
            _attn, _attn_weight = self.attention_module(
                query,
                key,
                value,
                mask_future_timesteps,
                key_padding_mask,
                use_scalar_bias,
            )
            attn.append(_attn)
            attn_weights.append(_attn_weight)
            full_attn = torch.cat(attn, dim=2)
            full_attn_weights = torch.cat(attn_weights)
            full_attn_weights = full_attn_weights.view(
                bsz, self.num_heads, tgt_size, src_len
            )
            full_attn_weights = full_attn_weights.sum(dim=1) / self.num_heads
            return full_attn, full_attn_weights


class Downsample(nn.Module):
    """
    Selects every nth element, where n is the index
    """

    def __init__(self, index):
        super().__init__()
        self.index = index

    def forward(self, x):
        return x[:: self.index + 1]


def Linear(in_features, out_features, dropout=0.0, bias=True):
    """Weight-normalized Linear layer (input: B x T x C)"""
    m = nn.Linear(in_features, out_features, bias=bias)
    m.weight.data.normal_(mean=0, std=math.sqrt((1 - dropout) / in_features))
    m.bias.data.zero_()
    return nn.utils.weight_norm(m)


def GatedLinear(in_features, out_features, dropout=0.0, bias=True):
    """Weight-normalized Linear layer (input: B x T x C) with interspersed GLU units"""
    return nn.Sequential(
        Linear(in_features, out_features * 4, dropout, bias),
        nn.GLU(),
        Linear(out_features * 2, out_features * 2, dropout, bias),
        nn.GLU(),
        Linear(out_features, out_features, dropout, bias),
    )