File size: 4,060 Bytes
8437114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# Fine-tuning BART on GLUE tasks

### 1) Download the data from GLUE website (https://gluebenchmark.com/tasks) using following commands:
```bash
wget https://gist.githubusercontent.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e/raw/17b8dd0d724281ed7c3b2aeeda662b92809aadd5/download_glue_data.py
python download_glue_data.py --data_dir glue_data --tasks all
```

### 2) Preprocess GLUE task data (same as RoBERTa):
```bash
./examples/roberta/preprocess_GLUE_tasks.sh glue_data <glue_task_name>
```
`glue_task_name` is one of the following:
`{ALL, QQP, MNLI, QNLI, MRPC, RTE, STS-B, SST-2, CoLA}`
Use `ALL` for preprocessing all the glue tasks.

### 3) Fine-tuning on GLUE task:
Example fine-tuning cmd for `RTE` task
```bash
TOTAL_NUM_UPDATES=2036  # 10 epochs through RTE for bsz 16
WARMUP_UPDATES=61      # 6 percent of the number of updates
LR=1e-05                # Peak LR for polynomial LR scheduler.
NUM_CLASSES=2
MAX_SENTENCES=16        # Batch size.
BART_PATH=/path/to/bart/model.pt

CUDA_VISIBLE_DEVICES=0,1 fairseq-train RTE-bin/ \
    --restore-file $BART_PATH \
    --batch-size $MAX_SENTENCES \
    --max-tokens 4400 \
    --task sentence_prediction \
    --add-prev-output-tokens \
    --layernorm-embedding \
    --share-all-embeddings \
    --share-decoder-input-output-embed \
    --reset-optimizer --reset-dataloader --reset-meters \
    --required-batch-size-multiple 1 \
    --init-token 0 \
    --arch bart_large \
    --criterion sentence_prediction \
    --num-classes $NUM_CLASSES \
    --dropout 0.1 --attention-dropout 0.1 \
    --weight-decay 0.01 --optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-08 \
    --clip-norm 0.0 \
    --lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES \
    --fp16 --fp16-init-scale 4 --threshold-loss-scale 1 --fp16-scale-window 128 \
    --max-epoch 10 \
    --find-unused-parameters \
    --best-checkpoint-metric accuracy --maximize-best-checkpoint-metric;
```

For each of the GLUE task, you will need to use following cmd-line arguments:

Model | MNLI | QNLI | QQP | RTE | SST-2 | MRPC | CoLA | STS-B
---|---|---|---|---|---|---|---|---
`--num-classes` | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 1
`--lr` | 5e-6 | 1e-5 | 1e-5 | 1e-5 | 5e-6 | 2e-5 | 2e-5 | 2e-5
`bsz` | 128 | 32 | 32 | 32 | 128 | 64 | 64 | 32
`--total-num-update` | 30968 | 33112 | 113272 | 1018 | 5233 | 1148 | 1334 | 1799
`--warmup-updates` | 1858 | 1986 | 6796 | 61 | 314 | 68 | 80 | 107

For `STS-B` additionally add `--regression-target --best-checkpoint-metric loss` and remove `--maximize-best-checkpoint-metric`.

**Note:**

a) `--total-num-updates` is used by `--polynomial_decay` scheduler and is calculated for `--max-epoch=10` and `--batch-size=32/64/128` depending on the task.

b) Above cmd-args and hyperparams are tested on Nvidia `V100` GPU with `32gb` of memory for each task. Depending on the GPU memory resources available to you, you can use increase `--update-freq` and reduce `--batch-size`.

### Inference on GLUE task
After training the model as mentioned in previous step, you can perform inference with checkpoints in `checkpoints/` directory using following python code snippet:

```python
from fairseq.models.bart import BARTModel

bart = BARTModel.from_pretrained(
    'checkpoints/',
    checkpoint_file='checkpoint_best.pt',
    data_name_or_path='RTE-bin'
)

label_fn = lambda label: bart.task.label_dictionary.string(
    [label + bart.task.label_dictionary.nspecial]
)   
ncorrect, nsamples = 0, 0
bart.cuda()
bart.eval()
with open('glue_data/RTE/dev.tsv') as fin:
    fin.readline()
    for index, line in enumerate(fin):
        tokens = line.strip().split('\t')
        sent1, sent2, target = tokens[1], tokens[2], tokens[3]
        tokens = bart.encode(sent1, sent2)
        prediction = bart.predict('sentence_classification_head', tokens).argmax().item()
        prediction_label = label_fn(prediction)
        ncorrect += int(prediction_label == target)
        nsamples += 1
print('| Accuracy: ', float(ncorrect)/float(nsamples))
```