File size: 6,385 Bytes
c5936cd
 
 
 
 
 
 
cf437f7
c5936cd
 
cf437f7
c5936cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b3c370
 
 
 
c5936cd
6b3c370
 
c5936cd
 
6b3c370
c5936cd
 
 
 
 
8d18428
c5936cd
 
 
 
 
8d18428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5936cd
 
d884ff4
c5936cd
 
 
 
 
d884ff4
c5936cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d18428
 
 
 
 
 
587a001
 
 
 
 
 
 
 
c5936cd
 
cf437f7
 
c5936cd
587a001
 
 
 
 
 
c5936cd
 
 
 
cf437f7
c5936cd
587a001
c5936cd
587a001
 
 
 
c5936cd
587a001
 
 
 
 
c5936cd
 
cf437f7
 
c5936cd
 
cf437f7
c5936cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc59a7b
c5936cd
0673283
 
 
c5936cd
 
 
 
 
 
 
cf437f7
 
 
 
 
 
 
 
cc59a7b
 
 
cf437f7
cc59a7b
cf437f7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
from typing import List, Tuple
from pathlib import Path
import subprocess
import os

from dotenv import load_dotenv
from haystack.preview import Pipeline
from haystack.preview.dataclasses import GeneratedAnswer
from haystack.preview.components.retrievers import MemoryBM25Retriever
from haystack.preview.components.generators.openai.gpt import GPTGenerator
from haystack.preview.components.builders.answer_builder import AnswerBuilder
from haystack.preview.components.builders.prompt_builder import PromptBuilder
from haystack.preview.components.preprocessors import (
    DocumentCleaner,
    TextDocumentSplitter,
)
from haystack.preview.components.writers import DocumentWriter
from haystack.preview.components.file_converters import TextFileToDocument
from haystack.preview.document_stores.memory import MemoryDocumentStore
import streamlit as st

# Load the environment variables, we're going to need it for OpenAI
load_dotenv()

# This is the list of documentation that we're going to fetch
DOCUMENTATIONS = [
    ("DocArray", "https://github.com/docarray/docarray", "./docs/**/*.md"),
    ("Streamlit", "https://github.com/streamlit/docs", "./content/**/*.md"),
    ("Jinja", "https://github.com/pallets/jinja", "./docs/**/*.rst"),
    ("Pandas", "https://github.com/pandas-dev/pandas", "./docs/source/**/*.rst"),
    (
        "Elasticsearch",
        "https://github.com/elastic/elasticsearch",
        "./docs/**/*.asciidoc",
    ),
    ("NumPy", "https://github.com/numpy/numpy", "./doc/**/*.rst"),
]


@st.cache_data(show_spinner=False)
def fetch(documentations: List[Tuple[str, str, str]]):
    files = []
    for name, url, pattern in documentations:
        st.write(f"Fetching {name} repository")
        repo = Path(__file__).parent / "downloaded_docs" / name
        if not repo.exists():
            subprocess.run(["git", "clone", "--depth", "1", url, str(repo)], check=True)
        res = subprocess.run(
            ["git", "rev-parse", "--abbrev-ref", "HEAD"],
            check=True,
            capture_output=True,
            encoding="utf-8",
        )
        branch = res.stdout.strip()
        for p in repo.glob(pattern):
            data = {
                "path": p,
                "metadata": {
                    "url_source": f"{url}/tree/{branch}/{p.relative_to(repo)}",
                    "suffix": p.suffix,
                },
            }
            files.append(data)

    return files


@st.cache_resource(show_spinner=False)
def document_store():
    # We're going to store the processed documents in here
    return MemoryDocumentStore()


@st.cache_resource(show_spinner=False)
def index_files(files):
    # We create some components
    text_converter = TextFileToDocument(progress_bar=False)
    document_cleaner = DocumentCleaner()
    document_splitter = TextDocumentSplitter()
    document_writer = DocumentWriter(
        document_store=document_store(), policy="overwrite"
    )

    # And our pipeline
    indexing_pipeline = Pipeline()
    indexing_pipeline.add_component("converter", text_converter)
    indexing_pipeline.add_component("cleaner", document_cleaner)
    indexing_pipeline.add_component("splitter", document_splitter)
    indexing_pipeline.add_component("writer", document_writer)
    indexing_pipeline.connect("converter", "cleaner")
    indexing_pipeline.connect("cleaner", "splitter")
    indexing_pipeline.connect("splitter", "writer")

    # And now we save the documentation in our MemoryDocumentStore
    paths = []
    metadata = []
    for f in files:
        paths.append(f["path"])
        metadata.append(f["metadata"])
    indexing_pipeline.run(
        {
            "converter": {
                "paths": paths,
                "metadata": metadata,
            }
        }
    )


def search(question: str) -> GeneratedAnswer:
    retriever = MemoryBM25Retriever(document_store=document_store(), top_k=5)

    template = (
        "Take a deep breath and think then answer given the context"
        "Context: {{ documents|map(attribute='text')|replace('\n', ' ')|join(';') }}"
        "Question: {{ query }}"
        "Answer:"
    )
    prompt_builder = PromptBuilder(template)

    OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
    generator = GPTGenerator(api_key=OPENAI_API_KEY)
    answer_builder = AnswerBuilder()

    query_pipeline = Pipeline()

    query_pipeline.add_component("docs_retriever", retriever)
    query_pipeline.add_component("prompt_builder", prompt_builder)
    query_pipeline.add_component("gpt35", generator)
    query_pipeline.add_component("answer_builder", answer_builder)

    query_pipeline.connect("docs_retriever.documents", "prompt_builder.documents")
    query_pipeline.connect("prompt_builder.prompt", "gpt35.prompt")
    query_pipeline.connect("docs_retriever.documents", "answer_builder.documents")
    query_pipeline.connect("gpt35.replies", "answer_builder.replies")
    res = query_pipeline.run(
        {
            "docs_retriever": {"query": question},
            "prompt_builder": {"query": question},
            "answer_builder": {"query": question},
        }
    )
    return res["answer_builder"]["answers"][0]


with st.status(
    "Downloading documentation files...",
    expanded=st.session_state.get("expanded", True),
) as status:
    files = fetch(DOCUMENTATIONS)
    status.update(label="Indexing documentation...")
    index_files(files)
    status.update(
        label="Download and indexing complete!", state="complete", expanded=False
    )
    st.session_state["expanded"] = False


st.header("🔎 Documentation finder", divider="rainbow")

st.caption(
    f"Use this to search answers for {', '.join([d[0] for d in DOCUMENTATIONS])}"
)

if question := st.text_input(
    label="What do you need to know?", placeholder="What is a DataFrame?"
):
    with st.spinner("Waiting"):
        answer = search(question)

    if not st.session_state.get("run_once", False):
        st.balloons()
        st.session_state["run_once"] = True

    st.markdown(answer.data)
    with st.expander("See sources:"):
        for document in answer.documents:
            url_source = document.metadata.get("url_source", "")
            st.write(url_source)
            if document.metadata.get("suffix") == ".md":
                st.markdown(document.text)
            else:
                st.write(document.text)
            st.divider()