Spaces:
Sleeping
Sleeping
File size: 2,901 Bytes
1eebc45 6ea82b1 1eebc45 a8b4012 1eebc45 f62790a 1eebc45 28fb1f0 5dba2ed 55fb13e 5dba2ed 28fb1f0 5dba2ed 02b49f6 5dba2ed 6ea82b1 f62790a 6ea82b1 28fb1f0 bcaa4d3 6ea82b1 28fb1f0 bcaa4d3 6ea82b1 28fb1f0 bcaa4d3 6ea82b1 28fb1f0 6ea82b1 8628f1a 28fb1f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
# -*- coding: utf-8 -*-
# %%capture
# #Use capture to not show the output of installing the libraries!
#model_multi = tf.keras.models.load_model("densenet")
# define the labels for the multi-label classification model
#labels_multi = {0: 'healthy', 1: 'mild', 2: 'moderate'}
#model = tf.keras.models.load_model('/content/drive/MyDrive/project_image_2023_NO/saved_models/saved_model/densenet')
#labels = ['Healthy', 'Patient']
#labels = {0: 'healthy', 1: 'patient'}
import gradio as gr
import requests
import torch
import torch.nn as nn
from PIL import Image
from torchvision.models import resnet50
from torchvision.transforms import functional as F
import numpy as np
import tensorflow as tf
from transformers import pipeline
# load the binary classification model
model_binary = tf.keras.models.load_model("CNN_binary")
# define the labels for the binary classification model
labels_binary = {0: 'healthy', 1: 'Patients'}
# load the multi-label classification model
model_multi = tf.keras.models.load_model("CNN_multiclass")
# define the labels for the multi-label classification model
labels_multi = {0: 'healthy', 1: 'mild', 2: 'moderate'}
def classify_binary(inp):
inp = inp.reshape((-1, 224, 224, 3))
inp = tf.keras.applications.densenet.preprocess_input(inp)
prediction = model_binary.predict(inp)
confidence = float(prediction[0])
return {labels_binary[prediction.argmax()]: confidence}
def classify_multi(inp):
inp = inp.reshape((-1, 224, 224, 3))
inp = tf.keras.applications.densenet.preprocess_input(inp)
prediction = model_multi.predict(inp)
confidences = {labels_multi[i]: float(prediction[0][i]) for i in range(len(labels_multi))}
return confidences
binary_interface = gr.Interface(fn=classify_binary,
inputs=gr.inputs.Image(shape=(224, 224)),
outputs=gr.outputs.Label(num_top_classes=2),
title="Binary Image Classification",
description="Classify an image as healthy or patient.",
examples=[['300104.png']]
)
multi_interface = gr.Interface(fn=classify_multi,
inputs=gr.inputs.Image(shape=(224, 224)),
outputs=gr.outputs.Label(num_top_classes=3),
title="Multi-class Image Classification",
description="Classify an image as healthy, mild or moderate.",
examples=[['300104.png']]
)
demo = gr.Interface([binary_interface, multi_interface],
"tab",
title="Binary and Multi-class Image Classification",
description="Classify an image as healthy, mild or moderate.")
demo.launch()
|