Nina-HK commited on
Commit
8628f1a
1 Parent(s): cd1b21c

update_two

Browse files
Files changed (1) hide show
  1. app.py +26 -14
app.py CHANGED
@@ -20,26 +20,37 @@ from transformers import pipeline
20
  #binary_labels = {0: 'healthy', 1: 'patient'}
21
 
22
  # load the binary classification model
23
- model_binary = tf.keras.models.load_model("densenet")
24
 
25
  # load the multi-label classification model
26
- model_multi = tf.keras.models.load_model("densenet")
27
 
28
  # define the labels for the multi-label classification model
29
- labels_multi = {0: 'healthy', 1: 'mild', 2: 'moderate'}
30
 
31
 
32
  #model = tf.keras.models.load_model('/content/drive/MyDrive/project_image_2023_NO/saved_models/saved_model/densenet')
33
  #labels = ['Healthy', 'Patient']
34
  #labels = {0: 'healthy', 1: 'patient'}
35
 
 
 
 
 
 
 
 
 
 
 
 
36
  def classify_image_binary(inp):
37
  inp = inp.reshape((-1, 224, 224, 3))
38
  inp = tf.keras.applications.densenet.preprocess_input(inp)
39
  prediction = model_binary.predict(inp)
40
  confidence = float(prediction[0])
41
  label = {0: 'healthy', 1: 'patient'}
42
- return {label: confidence}
43
 
44
 
45
  def classify_image_multi(inp):
@@ -49,21 +60,22 @@ def classify_image_multi(inp):
49
  confidences = {labels_multi[i]: float(prediction[0][i]) for i in range(3)}
50
  return confidences
51
 
52
- iface_binary = gr.Interface(fn=classify_image_binary,
53
- inputs=gr.Image(shape=(224, 224)),
54
- outputs=gr.Label(num_top_classes=2),
55
  title="Binary Image Classification",
56
  description="Classify an image as healthy or patient.",
57
  examples=[['300104.png']]
58
  )
59
 
60
- iface_multi = gr.Interface(fn=classify_image_multi,
61
- inputs=gr.Image(shape=(224, 224)),
62
- outputs=gr.Label(num_top_classes=3),
63
- title="Multi-Label Image Classification",
64
- description="Classify an image as healthy, mild, or moderate.",
65
  examples=[['300104.png']]
66
  )
67
 
68
- iface_binary.launch()
69
- iface_multi.launch()
 
 
20
  #binary_labels = {0: 'healthy', 1: 'patient'}
21
 
22
  # load the binary classification model
23
+ #model_binary = tf.keras.models.load_model("densenet")
24
 
25
  # load the multi-label classification model
26
+ #model_multi = tf.keras.models.load_model("densenet")
27
 
28
  # define the labels for the multi-label classification model
29
+ #labels_multi = {0: 'healthy', 1: 'mild', 2: 'moderate'}
30
 
31
 
32
  #model = tf.keras.models.load_model('/content/drive/MyDrive/project_image_2023_NO/saved_models/saved_model/densenet')
33
  #labels = ['Healthy', 'Patient']
34
  #labels = {0: 'healthy', 1: 'patient'}
35
 
36
+
37
+ # load the binary classification model
38
+ model_binary = tf.keras.models.load_model("densenet")
39
+
40
+ # load the multi-label classification model
41
+ model_multi = tf.keras.models.load_model("densenet")
42
+
43
+ # define the labels for the multi-label classification model
44
+ labels_multi = {0: 'healthy', 1: 'mild', 2: 'moderate'}
45
+
46
+
47
  def classify_image_binary(inp):
48
  inp = inp.reshape((-1, 224, 224, 3))
49
  inp = tf.keras.applications.densenet.preprocess_input(inp)
50
  prediction = model_binary.predict(inp)
51
  confidence = float(prediction[0])
52
  label = {0: 'healthy', 1: 'patient'}
53
+ return {label[1]: confidence}
54
 
55
 
56
  def classify_image_multi(inp):
 
60
  confidences = {labels_multi[i]: float(prediction[0][i]) for i in range(3)}
61
  return confidences
62
 
63
+ binary_interface = gr.Interface(fn=classify_image_binary,
64
+ inputs=gr.inputs.Image(shape=(224, 224)),
65
+ outputs=gr.outputs.Label(num_top_classes=2),
66
  title="Binary Image Classification",
67
  description="Classify an image as healthy or patient.",
68
  examples=[['300104.png']]
69
  )
70
 
71
+ multi_interface = gr.Interface(fn=classify_image_multi,
72
+ inputs=gr.inputs.Image(shape=(224, 224)),
73
+ outputs=gr.outputs.Label(num_top_classes=3),
74
+ title="Multi-class Image Classification",
75
+ description="Classify an image as healthy, mild or moderate.",
76
  examples=[['300104.png']]
77
  )
78
 
79
+ binary_interface.launch()
80
+ multi_interface.launch()
81
+