Files changed (1) hide show
  1. app.py +7 -1
app.py CHANGED
@@ -19,6 +19,8 @@ import yt_dlp # Added import for yt-dlp
19
  MODEL_NAME = "NbAiLab/nb-whisper-large"
20
  lang = "no"
21
 
 
 
22
  share = (os.environ.get("SHARE", "False")[0].lower() in "ty1") or None
23
  auth_token = os.environ.get("AUTH_TOKEN") or True
24
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
@@ -29,7 +31,7 @@ def pipe(file, return_timestamps=False):
29
  asr = pipeline(
30
  task="automatic-speech-recognition",
31
  model=MODEL_NAME,
32
- chunk_length_s=30,
33
  device=device,
34
  token=auth_token,
35
  torch_dtype=torch.float16,
@@ -62,6 +64,7 @@ def transcribe(file, return_timestamps=False):
62
  line = f"[{start_time} -> {end_time}] {chunk['text']}"
63
  text.append(line)
64
  formatted_text = "\n".join(text)
 
65
  return formatted_text
66
 
67
  def _return_yt_html_embed(yt_url):
@@ -97,6 +100,8 @@ def yt_transcribe(yt_url, return_timestamps=False):
97
  demo = gr.Blocks()
98
 
99
  with demo:
 
 
100
  mf_transcribe = gr.Interface(
101
  fn=transcribe,
102
  inputs=[
@@ -110,6 +115,7 @@ with demo:
110
  f" modellen [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) og 🤗 Transformers til å transkribere lydfiler opp til 30 minutter."
111
  ),
112
  allow_flagging="never",
 
113
  )
114
 
115
  # Uncomment to add the YouTube transcription interface if needed
 
19
  MODEL_NAME = "NbAiLab/nb-whisper-large"
20
  lang = "no"
21
 
22
+ logo_path = "home/angelina/Nedlastinger/Screenshot 2024-10-10 at 13-30-13 Nasjonalbiblioteket — Melkeveien designkontor.png"
23
+
24
  share = (os.environ.get("SHARE", "False")[0].lower() in "ty1") or None
25
  auth_token = os.environ.get("AUTH_TOKEN") or True
26
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 
31
  asr = pipeline(
32
  task="automatic-speech-recognition",
33
  model=MODEL_NAME,
34
+ chunk_length_s=28,
35
  device=device,
36
  token=auth_token,
37
  torch_dtype=torch.float16,
 
64
  line = f"[{start_time} -> {end_time}] {chunk['text']}"
65
  text.append(line)
66
  formatted_text = "\n".join(text)
67
+ formatted_text += "\n\nTranskribert med NB-Whisper demo"
68
  return formatted_text
69
 
70
  def _return_yt_html_embed(yt_url):
 
100
  demo = gr.Blocks()
101
 
102
  with demo:
103
+ gr.Image(value=logo_path, label="Nasjonalbibliotek Logo", elem_id="logo")
104
+
105
  mf_transcribe = gr.Interface(
106
  fn=transcribe,
107
  inputs=[
 
115
  f" modellen [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) og 🤗 Transformers til å transkribere lydfiler opp til 30 minutter."
116
  ),
117
  allow_flagging="never",
118
+ show_submit_button=False,
119
  )
120
 
121
  # Uncomment to add the YouTube transcription interface if needed