File size: 6,063 Bytes
3f29e4d
 
 
 
 
 
 
 
 
 
5bf80cd
3f29e4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7209ffa
 
 
 
 
b3ab79e
 
3f29e4d
 
 
 
 
 
 
 
 
 
 
 
 
b3ab79e
3f29e4d
 
 
 
 
 
 
 
b3ab79e
3f29e4d
 
 
 
 
 
 
 
b3ab79e
3f29e4d
 
 
 
 
 
 
 
b3ab79e
3f29e4d
7209ffa
 
 
 
 
 
 
 
 
3f29e4d
 
 
 
 
5bf80cd
7209ffa
5bf80cd
 
 
afacb35
5bf80cd
 
 
 
 
afacb35
5bf80cd
 
3f29e4d
 
5bf80cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afacb35
5bf80cd
7209ffa
 
3f29e4d
 
5bf80cd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import gradio as gr
import joblib
import torch
import torch.nn as nn
import torch.nn.functional as F
import json
from transformers import AutoTokenizer, AutoModelForSequenceClassification

print("Pokrećem aplikaciju...")

# --- Učitavanje modela i riječnika ---
svm_pipeline = joblib.load("svm_pipeline.pkl")

with open("word2idx.json", "r", encoding="utf-8") as f:
    word2idx = json.load(f)

class CNNModel(nn.Module):
    def __init__(self, vocab_size, embed_dim=300, num_classes=3, kernel_sizes=[3,4,5], num_filters=128):
        super(CNNModel, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embed_dim, padding_idx=0)
        self.convs = nn.ModuleList([
            nn.Conv2d(1, num_filters, (k, embed_dim)) for k in kernel_sizes
        ])
        self.dropout = nn.Dropout(0.5)
        self.fc = nn.Linear(num_filters * len(kernel_sizes), num_classes)
    def forward(self, x):
        x = self.embedding(x).unsqueeze(1)
        convs = [F.relu(conv(x)).squeeze(3) for conv in self.convs]
        pools = [F.max_pool1d(c, c.size(2)).squeeze(2) for c in convs]
        x = torch.cat(pools, 1)
        x = self.dropout(x)
        return self.fc(x)

class GRUModel(nn.Module):
    def __init__(self, vocab_size, embed_dim=300, hidden_dim=256, num_layers=1, num_classes=3):
        super(GRUModel, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embed_dim, padding_idx=0)
        self.gru = nn.GRU(embed_dim, hidden_dim, num_layers=num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_dim, num_classes)
    def forward(self, x):
        x = self.embedding(x)
        _, h_n = self.gru(x)
        out = self.fc(h_n[-1])
        return out

vocab_size = len(word2idx) + 1
embed_dim = 300
num_classes = 3

cnn_model = CNNModel(vocab_size, embed_dim, num_classes)
cnn_model.load_state_dict(torch.load("cnn_model.pt", map_location=torch.device('cpu')))
cnn_model.eval()

gru_model = GRUModel(vocab_size, embed_dim, hidden_dim=256, num_layers=1, num_classes=num_classes)
gru_model.load_state_dict(torch.load("gru_model.pt", map_location=torch.device('cpu')))
gru_model.eval()

bert_tokenizer = AutoTokenizer.from_pretrained("my_finetuned_model")
bert_model = AutoModelForSequenceClassification.from_pretrained("my_finetuned_model")
bert_model.eval()

# CroSlo model/tokenizer
croslo_tokenizer = AutoTokenizer.from_pretrained("CroSlo")
croslo_model = AutoModelForSequenceClassification.from_pretrained("CroSlo")
croslo_model.eval()

label_names = {0: 'pozitivno', 1: 'neutralno', 2: 'negativno'}

def text_to_indices(text, max_len=100):
    tokens = text.lower().split()
    indices = [word2idx.get(token, 0) for token in tokens]
    if len(indices) < max_len:
        indices += [0] * (max_len - len(indices))
    else:
        indices = indices[:max_len]
    tensor = torch.tensor([indices], dtype=torch.long)
    return tensor

def predict_svm(text):
    proba = svm_pipeline.predict_proba([text])[0]
    pred = svm_pipeline.classes_[proba.argmax()]
    return f"{label_names[pred]} (p={proba.max():.2f})"

def predict_cnn(text):
    with torch.no_grad():
        inputs = text_to_indices(text)
        outputs = cnn_model(inputs)
        probs = F.softmax(outputs, dim=1)
        pred = torch.argmax(probs, dim=1).item()
        confidence = probs[0][pred].item()
    return f"{label_names[pred]} (p={confidence:.2f})"

def predict_gru(text):
    with torch.no_grad():
        inputs = text_to_indices(text)
        outputs = gru_model(inputs)
        probs = F.softmax(outputs, dim=1)
        pred = torch.argmax(probs, dim=1).item()
        confidence = probs[0][pred].item()
    return f"{label_names[pred]} (p={confidence:.2f})"

def predict_bert(text):
    inputs = bert_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
    with torch.no_grad():
        outputs = bert_model(**inputs)
        probs = F.softmax(outputs.logits, dim=1)
        pred = torch.argmax(probs, dim=1).item()
        confidence = probs[0][pred].item()
    return f"{label_names[pred]} (p={confidence:.2f})"

def predict_croslo(text):
    inputs = croslo_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
    with torch.no_grad():
        outputs = croslo_model(**inputs)
        probs = F.softmax(outputs.logits, dim=1)
        pred = torch.argmax(probs, dim=1).item()
        confidence = probs[0][pred].item()
    return f"{label_names[pred]} (p={confidence:.2f})"

def predict_all(text):
    return (
        predict_svm(text),
        predict_cnn(text),
        predict_gru(text),
        predict_bert(text),
        predict_croslo(text),
    )

def clear_all():
    return "", "", "", "", "", ""

with gr.Blocks() as demo:
    gr.Markdown(
        """
        <h1 style="text-align: center; font-size: 48px; margin-bottom: 5px;">Analiza sentimenta</h1>
        <p style="text-align: center; font-size: 16px; margin-top: 0;">Predikcije koriste SVM, CNN, GRU, BERTić i CroSlo modele.</p>
        """,
        elem_id="naslov"
    )

    input_text = gr.Textbox(lines=3, label="Unesite rečenicu za analizu:")

    with gr.Row():
        submit_btn = gr.Button("Submit", variant="primary")
        clear_btn = gr.Button("Clear", variant="secondary")

    with gr.Row():
        with gr.Column():
            gr.Markdown("### Machine Learning")
            svm_output = gr.Textbox(label="SVM (RBF)")
        with gr.Column():
            gr.Markdown("### Deep Learning")
            cnn_output = gr.Textbox(label="CNN")
            gru_output = gr.Textbox(label="GRU")
        with gr.Column():
            gr.Markdown("### Transformers")
            bert_output = gr.Textbox(label="BERTić")
            croslo_output = gr.Textbox(label="CroSlo BERT")

    submit_btn.click(fn=predict_all, inputs=input_text, outputs=[svm_output, cnn_output, gru_output, bert_output, croslo_output])
    clear_btn.click(fn=clear_all, inputs=None, outputs=[input_text, svm_output, cnn_output, gru_output, bert_output, croslo_output])

if __name__ == "__main__":
    demo.launch(share=True)