Icarevic commited on
Commit
7209ffa
·
verified ·
1 Parent(s): 634edcc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -3
app.py CHANGED
@@ -59,6 +59,11 @@ bert_tokenizer = AutoTokenizer.from_pretrained("my_finetuned_model")
59
  bert_model = AutoModelForSequenceClassification.from_pretrained("my_finetuned_model")
60
  bert_model.eval()
61
 
 
 
 
 
 
62
  label_names = {0: 'pozitivno', 1: 'neutralno', 2: 'negativno'}
63
 
64
  def text_to_indices(text, max_len=100):
@@ -103,19 +108,28 @@ def predict_bert(text):
103
  confidence = probs[0][pred].item()
104
  return f"{label_names[pred]} (p={confidence:.2f})"
105
 
 
 
 
 
 
 
 
 
 
106
  def predict_all(text):
107
  return (
108
  predict_svm(text),
109
  predict_cnn(text),
110
  predict_gru(text),
111
  predict_bert(text),
 
112
  )
113
 
114
  def clear_all():
115
  return "", "", "", "", ""
116
 
117
  with gr.Blocks() as demo:
118
- # Naslov veći, centriran
119
  gr.Markdown(
120
  """
121
  <h1 style="text-align: center; font-size: 48px; margin-bottom: 5px;">Analiza sentimenta</h1>
@@ -141,9 +155,10 @@ with gr.Blocks() as demo:
141
  with gr.Column():
142
  gr.Markdown("### Transformers")
143
  bert_output = gr.Textbox(label="BERTić")
 
144
 
145
- submit_btn.click(fn=predict_all, inputs=input_text, outputs=[svm_output, cnn_output, gru_output, bert_output])
146
- clear_btn.click(fn=clear_all, inputs=None, outputs=[input_text, svm_output, cnn_output, gru_output, bert_output])
147
 
148
  if __name__ == "__main__":
149
  demo.launch(share=True)
 
59
  bert_model = AutoModelForSequenceClassification.from_pretrained("my_finetuned_model")
60
  bert_model.eval()
61
 
62
+ # CroSlo model/tokenizer
63
+ croslo_tokenizer = AutoTokenizer.from_pretrained("CroSlo")
64
+ croslo_model = AutoModelForSequenceClassification.from_pretrained("CroSlo")
65
+ croslo_model.eval()
66
+
67
  label_names = {0: 'pozitivno', 1: 'neutralno', 2: 'negativno'}
68
 
69
  def text_to_indices(text, max_len=100):
 
108
  confidence = probs[0][pred].item()
109
  return f"{label_names[pred]} (p={confidence:.2f})"
110
 
111
+ def predict_croslo(text):
112
+ inputs = croslo_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
113
+ with torch.no_grad():
114
+ outputs = croslo_model(**inputs)
115
+ probs = F.softmax(outputs.logits, dim=1)
116
+ pred = torch.argmax(probs, dim=1).item()
117
+ confidence = probs[0][pred].item()
118
+ return f"{label_names[pred]} (p={confidence:.2f})"
119
+
120
  def predict_all(text):
121
  return (
122
  predict_svm(text),
123
  predict_cnn(text),
124
  predict_gru(text),
125
  predict_bert(text),
126
+ predict_croslo(text),
127
  )
128
 
129
  def clear_all():
130
  return "", "", "", "", ""
131
 
132
  with gr.Blocks() as demo:
 
133
  gr.Markdown(
134
  """
135
  <h1 style="text-align: center; font-size: 48px; margin-bottom: 5px;">Analiza sentimenta</h1>
 
155
  with gr.Column():
156
  gr.Markdown("### Transformers")
157
  bert_output = gr.Textbox(label="BERTić")
158
+ croslo_output = gr.Textbox(label="CroSlo BERT")
159
 
160
+ submit_btn.click(fn=predict_all, inputs=input_text, outputs=[svm_output, cnn_output, gru_output, bert_output, croslo_output])
161
+ clear_btn.click(fn=clear_all, inputs=None, outputs=[input_text, svm_output, cnn_output, gru_output, bert_output, croslo_output])
162
 
163
  if __name__ == "__main__":
164
  demo.launch(share=True)