Update app.py
Browse files
app.py
CHANGED
@@ -59,6 +59,11 @@ bert_tokenizer = AutoTokenizer.from_pretrained("my_finetuned_model")
|
|
59 |
bert_model = AutoModelForSequenceClassification.from_pretrained("my_finetuned_model")
|
60 |
bert_model.eval()
|
61 |
|
|
|
|
|
|
|
|
|
|
|
62 |
label_names = {0: 'pozitivno', 1: 'neutralno', 2: 'negativno'}
|
63 |
|
64 |
def text_to_indices(text, max_len=100):
|
@@ -103,19 +108,28 @@ def predict_bert(text):
|
|
103 |
confidence = probs[0][pred].item()
|
104 |
return f"{label_names[pred]} (p={confidence:.2f})"
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
def predict_all(text):
|
107 |
return (
|
108 |
predict_svm(text),
|
109 |
predict_cnn(text),
|
110 |
predict_gru(text),
|
111 |
predict_bert(text),
|
|
|
112 |
)
|
113 |
|
114 |
def clear_all():
|
115 |
return "", "", "", "", ""
|
116 |
|
117 |
with gr.Blocks() as demo:
|
118 |
-
# Naslov veći, centriran
|
119 |
gr.Markdown(
|
120 |
"""
|
121 |
<h1 style="text-align: center; font-size: 48px; margin-bottom: 5px;">Analiza sentimenta</h1>
|
@@ -141,9 +155,10 @@ with gr.Blocks() as demo:
|
|
141 |
with gr.Column():
|
142 |
gr.Markdown("### Transformers")
|
143 |
bert_output = gr.Textbox(label="BERTić")
|
|
|
144 |
|
145 |
-
submit_btn.click(fn=predict_all, inputs=input_text, outputs=[svm_output, cnn_output, gru_output, bert_output])
|
146 |
-
clear_btn.click(fn=clear_all, inputs=None, outputs=[input_text, svm_output, cnn_output, gru_output, bert_output])
|
147 |
|
148 |
if __name__ == "__main__":
|
149 |
demo.launch(share=True)
|
|
|
59 |
bert_model = AutoModelForSequenceClassification.from_pretrained("my_finetuned_model")
|
60 |
bert_model.eval()
|
61 |
|
62 |
+
# CroSlo model/tokenizer
|
63 |
+
croslo_tokenizer = AutoTokenizer.from_pretrained("CroSlo")
|
64 |
+
croslo_model = AutoModelForSequenceClassification.from_pretrained("CroSlo")
|
65 |
+
croslo_model.eval()
|
66 |
+
|
67 |
label_names = {0: 'pozitivno', 1: 'neutralno', 2: 'negativno'}
|
68 |
|
69 |
def text_to_indices(text, max_len=100):
|
|
|
108 |
confidence = probs[0][pred].item()
|
109 |
return f"{label_names[pred]} (p={confidence:.2f})"
|
110 |
|
111 |
+
def predict_croslo(text):
|
112 |
+
inputs = croslo_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
113 |
+
with torch.no_grad():
|
114 |
+
outputs = croslo_model(**inputs)
|
115 |
+
probs = F.softmax(outputs.logits, dim=1)
|
116 |
+
pred = torch.argmax(probs, dim=1).item()
|
117 |
+
confidence = probs[0][pred].item()
|
118 |
+
return f"{label_names[pred]} (p={confidence:.2f})"
|
119 |
+
|
120 |
def predict_all(text):
|
121 |
return (
|
122 |
predict_svm(text),
|
123 |
predict_cnn(text),
|
124 |
predict_gru(text),
|
125 |
predict_bert(text),
|
126 |
+
predict_croslo(text),
|
127 |
)
|
128 |
|
129 |
def clear_all():
|
130 |
return "", "", "", "", ""
|
131 |
|
132 |
with gr.Blocks() as demo:
|
|
|
133 |
gr.Markdown(
|
134 |
"""
|
135 |
<h1 style="text-align: center; font-size: 48px; margin-bottom: 5px;">Analiza sentimenta</h1>
|
|
|
155 |
with gr.Column():
|
156 |
gr.Markdown("### Transformers")
|
157 |
bert_output = gr.Textbox(label="BERTić")
|
158 |
+
croslo_output = gr.Textbox(label="CroSlo BERT")
|
159 |
|
160 |
+
submit_btn.click(fn=predict_all, inputs=input_text, outputs=[svm_output, cnn_output, gru_output, bert_output, croslo_output])
|
161 |
+
clear_btn.click(fn=clear_all, inputs=None, outputs=[input_text, svm_output, cnn_output, gru_output, bert_output, croslo_output])
|
162 |
|
163 |
if __name__ == "__main__":
|
164 |
demo.launch(share=True)
|