File size: 37,794 Bytes
826d651
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
import gradio as gr
import numpy as np
import cv2
import os
from PIL import Image, ImageFilter
import uuid
from scipy.interpolate import interp1d, PchipInterpolator
import torchvision
# from utils import *
import time
from tqdm import tqdm
import imageio

import torch
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
from einops import rearrange, repeat

from packaging import version

from accelerate.utils import set_seed
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection

from diffusers import AutoencoderKLTemporalDecoder, EulerDiscreteScheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available

from utils.flow_viz import flow_to_image
from utils.utils import split_filename, image2arr, image2pil, ensure_dirname


output_dir_video = "./outputs/videos"
output_dir_frame = "./outputs/frames"


ensure_dirname(output_dir_video)
ensure_dirname(output_dir_frame)


def divide_points_afterinterpolate(resized_all_points, motion_brush_mask):
    k = resized_all_points.shape[0]
    starts = resized_all_points[:, 0]  # [K, 2]

    in_masks = []
    out_masks = []

    for i in range(k):
        x, y = int(starts[i][1]), int(starts[i][0])
        if motion_brush_mask[x][y] == 255:
            in_masks.append(resized_all_points[i])
        else:
            out_masks.append(resized_all_points[i])
    
    in_masks = np.array(in_masks)
    out_masks = np.array(out_masks)

    return in_masks, out_masks
    

def get_sparseflow_and_mask_forward(
        resized_all_points, 
        n_steps, H, W, 
        is_backward_flow=False
    ):

    K = resized_all_points.shape[0]

    starts = resized_all_points[:, 0]  # [K, 2]

    interpolated_ends = resized_all_points[:, 1:]

    s_flow = np.zeros((K, n_steps, H, W, 2))
    mask = np.zeros((K, n_steps, H, W))

    for k in range(K):
        for i in range(n_steps):
            start, end = starts[k], interpolated_ends[k][i]
            flow = np.int64(end - start) * (-1 if is_backward_flow is True else 1)
            s_flow[k][i][int(start[1]), int(start[0])] = flow
            mask[k][i][int(start[1]), int(start[0])] = 1

    s_flow = np.sum(s_flow, axis=0)
    mask = np.sum(mask, axis=0)

    return s_flow, mask



def init_models(pretrained_model_name_or_path, resume_from_checkpoint, weight_dtype, device='cuda', enable_xformers_memory_efficient_attention=False, allow_tf32=False):

    from models.unet_spatio_temporal_condition_controlnet import UNetSpatioTemporalConditionControlNetModel
    from pipeline.pipeline import FlowControlNetPipeline
    from models.svdxt_featureflow_forward_controlnet_s2d_fixcmp_norefine import FlowControlNet, CMP_demo

    print('start loading models...')
    # Load scheduler, tokenizer and models.
    image_encoder = CLIPVisionModelWithProjection.from_pretrained(
        pretrained_model_name_or_path, subfolder="image_encoder", revision=None, variant="fp16"
    )
    vae = AutoencoderKLTemporalDecoder.from_pretrained(
        pretrained_model_name_or_path, subfolder="vae", revision=None, variant="fp16")
    unet = UNetSpatioTemporalConditionControlNetModel.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="unet",
        low_cpu_mem_usage=True,
        variant="fp16",
    )

    controlnet = FlowControlNet.from_pretrained(resume_from_checkpoint)

    cmp = CMP_demo(
        './models/cmp/experiments/semiauto_annot/resnet50_vip+mpii_liteflow/config.yaml',
        42000
    ).to(device)
    cmp.requires_grad_(False)
    
    # Freeze vae and image_encoder
    vae.requires_grad_(False)
    image_encoder.requires_grad_(False)
    unet.requires_grad_(False)
    controlnet.requires_grad_(False)

    # Move image_encoder and vae to gpu and cast to weight_dtype
    image_encoder.to(device, dtype=weight_dtype)
    vae.to(device, dtype=weight_dtype)
    unet.to(device, dtype=weight_dtype)
    controlnet.to(device, dtype=weight_dtype)

    if enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
                print(
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
            unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError(
                "xformers is not available. Make sure it is installed correctly")

    if allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True
    
    pipeline = FlowControlNetPipeline.from_pretrained(
        pretrained_model_name_or_path,
        unet=unet,
        controlnet=controlnet,
        image_encoder=image_encoder,
        vae=vae,
        torch_dtype=weight_dtype,
    )
    pipeline = pipeline.to(device)

    print('models loaded.')

    return pipeline, cmp


def interpolate_trajectory(points, n_points):
    x = [point[0] for point in points]
    y = [point[1] for point in points]

    t = np.linspace(0, 1, len(points))

    fx = PchipInterpolator(t, x)
    fy = PchipInterpolator(t, y)

    new_t = np.linspace(0, 1, n_points)

    new_x = fx(new_t)
    new_y = fy(new_t)
    new_points = list(zip(new_x, new_y))

    return new_points


def visualize_drag_v2(background_image_path, splited_tracks, width, height):
    trajectory_maps = []
    
    background_image = Image.open(background_image_path).convert('RGBA')
    background_image = background_image.resize((width, height))
    w, h = background_image.size
    transparent_background = np.array(background_image)
    transparent_background[:, :, -1] = 128
    transparent_background = Image.fromarray(transparent_background)

    # Create a transparent layer with the same size as the background image
    transparent_layer = np.zeros((h, w, 4))
    for splited_track in splited_tracks:
        if len(splited_track) > 1:
            splited_track = interpolate_trajectory(splited_track, 16)
            splited_track = splited_track[:16]
            for i in range(len(splited_track)-1):
                start_point = (int(splited_track[i][0]), int(splited_track[i][1]))
                end_point = (int(splited_track[i+1][0]), int(splited_track[i+1][1]))
                vx = end_point[0] - start_point[0]
                vy = end_point[1] - start_point[1]
                arrow_length = np.sqrt(vx**2 + vy**2)
                if i == len(splited_track)-2:
                    cv2.arrowedLine(transparent_layer, start_point, end_point, (255, 0, 0, 192), 2, tipLength=8 / arrow_length)
                else:
                    cv2.line(transparent_layer, start_point, end_point, (255, 0, 0, 192), 2)
        else:
            cv2.circle(transparent_layer, (int(splited_track[0][0]), int(splited_track[0][1])), 2, (255, 0, 0, 192), -1)

    transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
    trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
    trajectory_maps.append(trajectory_map)
    return trajectory_maps, transparent_layer


class Drag:
    def __init__(self, device, height, width, model_length):
        self.device = device

        svd_ckpt = "ckpts/stable-video-diffusion-img2vid-xt-1-1"
        mofa_ckpt = "ckpts/controlnet"

        self.device = 'cuda'
        self.weight_dtype = torch.float16

        self.pipeline, self.cmp = init_models(
            svd_ckpt, 
            mofa_ckpt, 
            weight_dtype=self.weight_dtype, 
            device=self.device
        )

        self.height = height
        self.width = width
        self.model_length = model_length

    def get_cmp_flow(self, frames, sparse_optical_flow, mask, brush_mask=None):

        '''
            frames: [b, 13, 3, 384, 384] (0, 1) tensor
            sparse_optical_flow: [b, 13, 2, 384, 384] (-384, 384) tensor
            mask: [b, 13, 2, 384, 384] {0, 1} tensor
        '''

        b, t, c, h, w = frames.shape
        assert h == 384 and w == 384
        frames = frames.flatten(0, 1)  # [b*13, 3, 256, 256]
        sparse_optical_flow = sparse_optical_flow.flatten(0, 1)  # [b*13, 2, 256, 256]
        mask = mask.flatten(0, 1)  # [b*13, 2, 256, 256]
        cmp_flow = self.cmp.run(frames, sparse_optical_flow, mask)  # [b*13, 2, 256, 256]

        if brush_mask is not None:
            brush_mask = torch.from_numpy(brush_mask) / 255.
            brush_mask = brush_mask.to(cmp_flow.device, dtype=cmp_flow.dtype)
            brush_mask = brush_mask.unsqueeze(0).unsqueeze(0)
            cmp_flow = cmp_flow * brush_mask

        cmp_flow = cmp_flow.reshape(b, t, 2, h, w)
        return cmp_flow
    

    def get_flow(self, pixel_values_384, sparse_optical_flow_384, mask_384, motion_brush_mask=None):

        fb, fl, fc, _, _ = pixel_values_384.shape

        controlnet_flow = self.get_cmp_flow(
            pixel_values_384[:, 0:1, :, :, :].repeat(1, fl, 1, 1, 1), 
            sparse_optical_flow_384, 
            mask_384, motion_brush_mask
        )

        if self.height != 384 or self.width != 384:
            scales = [self.height / 384, self.width / 384]
            controlnet_flow = F.interpolate(controlnet_flow.flatten(0, 1), (self.height, self.width), mode='nearest').reshape(fb, fl, 2, self.height, self.width)
            controlnet_flow[:, :, 0] *= scales[1]
            controlnet_flow[:, :, 1] *= scales[0]
        
        return controlnet_flow
    

    @torch.no_grad()
    def forward_sample(self, input_drag_384_inmask, input_drag_384_outmask, input_first_frame, input_mask_384_inmask, input_mask_384_outmask, in_mask_flag, out_mask_flag, motion_brush_mask=None, ctrl_scale=1., outputs=dict()):
        '''
            input_drag: [1, 13, 320, 576, 2]
            input_drag_384: [1, 13, 384, 384, 2]
            input_first_frame: [1, 3, 320, 576]
        '''

        seed = 42
        num_frames = self.model_length
        
        set_seed(seed)

        input_first_frame_384 = F.interpolate(input_first_frame, (384, 384))
        input_first_frame_384 = input_first_frame_384.repeat(num_frames - 1, 1, 1, 1).unsqueeze(0)
        input_first_frame_pil = Image.fromarray(np.uint8(input_first_frame[0].cpu().permute(1, 2, 0)*255))
        height, width = input_first_frame.shape[-2:]

        input_drag_384_inmask = input_drag_384_inmask.permute(0, 1, 4, 2, 3)  # [1, 13, 2, 384, 384]
        mask_384_inmask = input_mask_384_inmask.unsqueeze(2).repeat(1, 1, 2, 1, 1)  # [1, 13, 2, 384, 384]
        input_drag_384_outmask = input_drag_384_outmask.permute(0, 1, 4, 2, 3)  # [1, 13, 2, 384, 384]
        mask_384_outmask = input_mask_384_outmask.unsqueeze(2).repeat(1, 1, 2, 1, 1)  # [1, 13, 2, 384, 384]
        
        print('start diffusion process...')

        input_drag_384_inmask = input_drag_384_inmask.to(self.device, dtype=self.weight_dtype)
        mask_384_inmask = mask_384_inmask.to(self.device, dtype=self.weight_dtype)
        input_drag_384_outmask = input_drag_384_outmask.to(self.device, dtype=self.weight_dtype)
        mask_384_outmask = mask_384_outmask.to(self.device, dtype=self.weight_dtype)

        input_first_frame_384 = input_first_frame_384.to(self.device, dtype=self.weight_dtype)

        if in_mask_flag:
            flow_inmask = self.get_flow(
                input_first_frame_384, 
                input_drag_384_inmask, mask_384_inmask, motion_brush_mask
            )
        else:
            fb, fl = mask_384_inmask.shape[:2]
            flow_inmask = torch.zeros(fb, fl, 2, self.height, self.width).to(self.device, dtype=self.weight_dtype)

        if out_mask_flag:
            flow_outmask = self.get_flow(
                input_first_frame_384, 
                input_drag_384_outmask, mask_384_outmask
            )
        else:
            fb, fl = mask_384_outmask.shape[:2]
            flow_outmask = torch.zeros(fb, fl, 2, self.height, self.width).to(self.device, dtype=self.weight_dtype)
        
        inmask_no_zero = (flow_inmask != 0).all(dim=2)
        inmask_no_zero = inmask_no_zero.unsqueeze(2).expand_as(flow_inmask)

        controlnet_flow = torch.where(inmask_no_zero, flow_inmask, flow_outmask)

        val_output = self.pipeline(
            input_first_frame_pil, 
            input_first_frame_pil,
            controlnet_flow, 
            height=height,
            width=width,
            num_frames=num_frames,
            decode_chunk_size=8,
            motion_bucket_id=127,
            fps=7,
            noise_aug_strength=0.02,
            controlnet_cond_scale=ctrl_scale, 
        )

        video_frames, estimated_flow = val_output.frames[0], val_output.controlnet_flow

        for i in range(num_frames):
            img = video_frames[i]
            video_frames[i] = np.array(img)
        video_frames = torch.from_numpy(np.array(video_frames)).cuda().permute(0, 3, 1, 2).unsqueeze(0) / 255.

        print(video_frames.shape)

        viz_esti_flows = []
        for i in range(estimated_flow.shape[1]):
            temp_flow = estimated_flow[0][i].permute(1, 2, 0)
            viz_esti_flows.append(flow_to_image(temp_flow))
        viz_esti_flows = [np.uint8(np.ones_like(viz_esti_flows[-1]) * 255)] + viz_esti_flows
        viz_esti_flows = np.stack(viz_esti_flows)  # [t-1, h, w, c]

        total_nps = viz_esti_flows

        outputs['logits_imgs'] = video_frames
        outputs['flows'] = torch.from_numpy(total_nps).cuda().permute(0, 3, 1, 2).unsqueeze(0) / 255.

        return outputs

    @torch.no_grad()
    def get_cmp_flow_from_tracking_points(self, tracking_points, motion_brush_mask, first_frame_path):

        original_width, original_height = self.width, self.height

        input_all_points = tracking_points.constructor_args['value']

        if len(input_all_points) == 0 or len(input_all_points[-1]) == 1:
            return np.uint8(np.ones((original_width, original_height, 3))*255)
        
        resized_all_points = [tuple([tuple([int(e1[0]*self.width/original_width), int(e1[1]*self.height/original_height)]) for e1 in e]) for e in input_all_points]
        resized_all_points_384 = [tuple([tuple([int(e1[0]*384/original_width), int(e1[1]*384/original_height)]) for e1 in e]) for e in input_all_points]

        new_resized_all_points = []
        new_resized_all_points_384 = []
        for tnum in range(len(resized_all_points)):
            new_resized_all_points.append(interpolate_trajectory(input_all_points[tnum], self.model_length))
            new_resized_all_points_384.append(interpolate_trajectory(resized_all_points_384[tnum], self.model_length))

        resized_all_points = np.array(new_resized_all_points)
        resized_all_points_384 = np.array(new_resized_all_points_384)

        motion_brush_mask_384 = cv2.resize(motion_brush_mask, (384, 384), cv2.INTER_NEAREST)

        resized_all_points_384_inmask, resized_all_points_384_outmask = \
            divide_points_afterinterpolate(resized_all_points_384, motion_brush_mask_384)

        in_mask_flag = False
        out_mask_flag = False
        
        if resized_all_points_384_inmask.shape[0] != 0:
            in_mask_flag = True
            input_drag_384_inmask, input_mask_384_inmask = \
                get_sparseflow_and_mask_forward(
                    resized_all_points_384_inmask, 
                    self.model_length - 1, 384, 384
                )
        else:
            input_drag_384_inmask, input_mask_384_inmask = \
                np.zeros((self.model_length - 1, 384, 384, 2)), \
                    np.zeros((self.model_length - 1, 384, 384))
        
        if resized_all_points_384_outmask.shape[0] != 0:
            out_mask_flag = True
            input_drag_384_outmask, input_mask_384_outmask = \
                get_sparseflow_and_mask_forward(
                    resized_all_points_384_outmask, 
                    self.model_length - 1, 384, 384
                )
        else:
            input_drag_384_outmask, input_mask_384_outmask = \
                np.zeros((self.model_length - 1, 384, 384, 2)), \
                    np.zeros((self.model_length - 1, 384, 384))

        input_drag_384_inmask = torch.from_numpy(input_drag_384_inmask).unsqueeze(0).to(self.device)  # [1, 13, h, w, 2]
        input_mask_384_inmask = torch.from_numpy(input_mask_384_inmask).unsqueeze(0).to(self.device)  # [1, 13, h, w]
        input_drag_384_outmask = torch.from_numpy(input_drag_384_outmask).unsqueeze(0).to(self.device)  # [1, 13, h, w, 2]
        input_mask_384_outmask = torch.from_numpy(input_mask_384_outmask).unsqueeze(0).to(self.device)  # [1, 13, h, w]

        first_frames_transform = transforms.Compose([
            lambda x: Image.fromarray(x),
            transforms.ToTensor(),
        ])

        input_first_frame = image2arr(first_frame_path)
        input_first_frame = repeat(first_frames_transform(input_first_frame), 'c h w -> b c h w', b=1).to(self.device)

        seed = 42
        num_frames = self.model_length
        
        set_seed(seed)

        input_first_frame_384 = F.interpolate(input_first_frame, (384, 384))
        input_first_frame_384 = input_first_frame_384.repeat(num_frames - 1, 1, 1, 1).unsqueeze(0)

        input_drag_384_inmask = input_drag_384_inmask.permute(0, 1, 4, 2, 3)  # [1, 13, 2, 384, 384]
        mask_384_inmask = input_mask_384_inmask.unsqueeze(2).repeat(1, 1, 2, 1, 1)  # [1, 13, 2, 384, 384]
        input_drag_384_outmask = input_drag_384_outmask.permute(0, 1, 4, 2, 3)  # [1, 13, 2, 384, 384]
        mask_384_outmask = input_mask_384_outmask.unsqueeze(2).repeat(1, 1, 2, 1, 1)  # [1, 13, 2, 384, 384]

        input_drag_384_inmask = input_drag_384_inmask.to(self.device, dtype=self.weight_dtype)
        mask_384_inmask = mask_384_inmask.to(self.device, dtype=self.weight_dtype)
        input_drag_384_outmask = input_drag_384_outmask.to(self.device, dtype=self.weight_dtype)
        mask_384_outmask = mask_384_outmask.to(self.device, dtype=self.weight_dtype)

        input_first_frame_384 = input_first_frame_384.to(self.device, dtype=self.weight_dtype)

        if in_mask_flag:
            flow_inmask = self.get_flow(
                input_first_frame_384, 
                input_drag_384_inmask, mask_384_inmask, motion_brush_mask_384
            )
        else:
            fb, fl = mask_384_inmask.shape[:2]
            flow_inmask = torch.zeros(fb, fl, 2, self.height, self.width).to(self.device, dtype=self.weight_dtype)

        if out_mask_flag:
            flow_outmask = self.get_flow(
                input_first_frame_384, 
                input_drag_384_outmask, mask_384_outmask
            )
        else:
            fb, fl = mask_384_outmask.shape[:2]
            flow_outmask = torch.zeros(fb, fl, 2, self.height, self.width).to(self.device, dtype=self.weight_dtype)
        
        inmask_no_zero = (flow_inmask != 0).all(dim=2)
        inmask_no_zero = inmask_no_zero.unsqueeze(2).expand_as(flow_inmask)

        controlnet_flow = torch.where(inmask_no_zero, flow_inmask, flow_outmask)

        controlnet_flow = controlnet_flow[0, -1].permute(1, 2, 0)
        viz_esti_flows = flow_to_image(controlnet_flow)  # [h, w, c]

        return viz_esti_flows

    def run(self, first_frame_path, tracking_points, inference_batch_size, motion_brush_mask, motion_brush_viz, ctrl_scale):
        
        original_width, original_height = self.width, self.height

        input_all_points = tracking_points.constructor_args['value']
        resized_all_points = [tuple([tuple([int(e1[0]*self.width/original_width), int(e1[1]*self.height/original_height)]) for e1 in e]) for e in input_all_points]
        resized_all_points_384 = [tuple([tuple([int(e1[0]*384/original_width), int(e1[1]*384/original_height)]) for e1 in e]) for e in input_all_points]

        new_resized_all_points = []
        new_resized_all_points_384 = []
        for tnum in range(len(resized_all_points)):
            new_resized_all_points.append(interpolate_trajectory(input_all_points[tnum], self.model_length))
            new_resized_all_points_384.append(interpolate_trajectory(resized_all_points_384[tnum], self.model_length))

        resized_all_points = np.array(new_resized_all_points)
        resized_all_points_384 = np.array(new_resized_all_points_384)

        motion_brush_mask_384 = cv2.resize(motion_brush_mask, (384, 384), cv2.INTER_NEAREST)

        resized_all_points_384_inmask, resized_all_points_384_outmask = \
            divide_points_afterinterpolate(resized_all_points_384, motion_brush_mask_384)

        in_mask_flag = False
        out_mask_flag = False
        
        if resized_all_points_384_inmask.shape[0] != 0:
            in_mask_flag = True
            input_drag_384_inmask, input_mask_384_inmask = \
                get_sparseflow_and_mask_forward(
                    resized_all_points_384_inmask, 
                    self.model_length - 1, 384, 384
                )
        else:
            input_drag_384_inmask, input_mask_384_inmask = \
                np.zeros((self.model_length - 1, 384, 384, 2)), \
                    np.zeros((self.model_length - 1, 384, 384))
        
        if resized_all_points_384_outmask.shape[0] != 0:
            out_mask_flag = True
            input_drag_384_outmask, input_mask_384_outmask = \
                get_sparseflow_and_mask_forward(
                    resized_all_points_384_outmask, 
                    self.model_length - 1, 384, 384
                )
        else:
            input_drag_384_outmask, input_mask_384_outmask = \
                np.zeros((self.model_length - 1, 384, 384, 2)), \
                    np.zeros((self.model_length - 1, 384, 384))

        input_drag_384_inmask = torch.from_numpy(input_drag_384_inmask).unsqueeze(0)  # [1, 13, h, w, 2]
        input_mask_384_inmask = torch.from_numpy(input_mask_384_inmask).unsqueeze(0)  # [1, 13, h, w]
        input_drag_384_outmask = torch.from_numpy(input_drag_384_outmask).unsqueeze(0)  # [1, 13, h, w, 2]
        input_mask_384_outmask = torch.from_numpy(input_mask_384_outmask).unsqueeze(0)  # [1, 13, h, w]

        dir, base, ext = split_filename(first_frame_path)
        id = base.split('_')[0]
        
        image_pil = image2pil(first_frame_path)
        image_pil = image_pil.resize((self.width, self.height), Image.BILINEAR).convert('RGB')
        
        visualized_drag, _ = visualize_drag_v2(first_frame_path, resized_all_points, self.width, self.height)

        motion_brush_viz_pil = Image.fromarray(motion_brush_viz.astype(np.uint8)).convert('RGBA')
        visualized_drag = visualized_drag[0].convert('RGBA')
        visualized_drag_brush = Image.alpha_composite(motion_brush_viz_pil, visualized_drag)
        
        first_frames_transform = transforms.Compose([
                        lambda x: Image.fromarray(x),
                        transforms.ToTensor(),
                    ])
        
        outputs = None
        ouput_video_list = []
        ouput_flow_list = []
        num_inference = 1
        for i in tqdm(range(num_inference)):
            if not outputs:
                first_frames = image2arr(first_frame_path)
                first_frames = repeat(first_frames_transform(first_frames), 'c h w -> b c h w', b=inference_batch_size).to(self.device)
            else:
                first_frames = outputs['logits_imgs'][:, -1]
            

            outputs = self.forward_sample(
                input_drag_384_inmask.to(self.device), 
                input_drag_384_outmask.to(self.device), 
                first_frames.to(self.device),
                input_mask_384_inmask.to(self.device),
                input_mask_384_outmask.to(self.device),
                in_mask_flag,
                out_mask_flag, 
                motion_brush_mask_384,
                ctrl_scale)

            ouput_video_list.append(outputs['logits_imgs'])
            ouput_flow_list.append(outputs['flows'])

        hint_path = os.path.join(output_dir_video, str(id), f'{id}_hint.png')
        visualized_drag_brush.save(hint_path)
        
        for i in range(inference_batch_size):
            output_tensor = [ouput_video_list[0][i]]
            flow_tensor = [ouput_flow_list[0][i]]
            output_tensor = torch.cat(output_tensor, dim=0)
            flow_tensor = torch.cat(flow_tensor, dim=0)
            
            outputs_path = os.path.join(output_dir_video, str(id), f's{ctrl_scale}', f'{id}_output.gif')
            flows_path = os.path.join(output_dir_video, str(id), f's{ctrl_scale}', f'{id}_flow.gif')

            outputs_mp4_path = os.path.join(output_dir_video, str(id), f's{ctrl_scale}', f'{id}_output.mp4')
            flows_mp4_path = os.path.join(output_dir_video, str(id), f's{ctrl_scale}', f'{id}_flow.mp4')

            outputs_frames_path = os.path.join(output_dir_frame, str(id), f's{ctrl_scale}', f'{id}_output')
            flows_frames_path = os.path.join(output_dir_frame, str(id), f's{ctrl_scale}', f'{id}_flow')

            os.makedirs(os.path.join(output_dir_video, str(id), f's{ctrl_scale}'), exist_ok=True)
            os.makedirs(os.path.join(outputs_frames_path), exist_ok=True)
            os.makedirs(os.path.join(flows_frames_path), exist_ok=True)

            print(output_tensor.shape)

            output_RGB = output_tensor.permute(0, 2, 3, 1).mul(255).cpu().numpy()
            flow_RGB = flow_tensor.permute(0, 2, 3, 1).mul(255).cpu().numpy()

            torchvision.io.write_video(
                outputs_mp4_path, 
                output_RGB, 
                fps=20, video_codec='h264', options={'crf': '10'}
            )

            torchvision.io.write_video(
                flows_mp4_path, 
                flow_RGB, 
                fps=20, video_codec='h264', options={'crf': '10'}
            )

            imageio.mimsave(outputs_path, np.uint8(output_RGB), fps=20, loop=0)

            imageio.mimsave(flows_path, np.uint8(flow_RGB), fps=20, loop=0)

            for f in range(output_RGB.shape[0]):
                Image.fromarray(np.uint8(output_RGB[f])).save(os.path.join(outputs_frames_path, f'{str(f).zfill(3)}.png'))
                Image.fromarray(np.uint8(flow_RGB[f])).save(os.path.join(flows_frames_path, f'{str(f).zfill(3)}.png'))

        return hint_path, outputs_path, flows_path, outputs_mp4_path, flows_mp4_path


with gr.Blocks() as demo:
    gr.Markdown("""<h1 align="center">MOFA-Video</h1><br>""")

    gr.Markdown("""Official Gradio Demo for <a href='https://myniuuu.github.io/MOFA_Video'><b>MOFA-Video: Controllable Image Animation via Generative Motion Field Adaptions in Frozen Image-to-Video Diffusion Model</b></a>.<br>""")

    gr.Markdown(
        """
        During the inference, kindly follow these instructions:
        <br>
        1. Use the "Upload Image" button to upload an image. Avoid dragging the image directly into the window. <br>
        2. Proceed to draw trajectories: <br>
            2.1. Click "Add Trajectory" first, then select points on the "Add Trajectory Here" image. The first click sets the starting point. Click multiple points to create a non-linear trajectory. To add a new trajectory, click "Add Trajectory" again and select points on the image. Avoid clicking the "Add Trajectory" button multiple times without clicking points in the image to add the trajectory, as this can lead to errors. <br>
            2.2. After adding each trajectory, an optical flow image will be displayed automatically. Use it as a reference to adjust the trajectory for desired effects (e.g., area, intensity). <br>
            2.3. To delete the latest trajectory, click "Delete Last Trajectory." <br>
            2.4. Choose the Control Scale in the bar. This determines the control intensity. Setting it to 0 means no control (pure generation result of SVD itself), while setting it to 1 results in the strongest control (which will not lead to good results in most cases because of twisting artifacts). A preset value of 0.6 is recommended for most cases. <br>
            2.5. To use the motion brush for restraining the control area of the trajectory, click to add masks on the "Add Motion Brush Here" image. The motion brush restricts the optical flow area derived from the trajectory whose starting point is within the motion brush. The displayed optical flow image will change correspondingly. Adjust the motion brush radius using the "Motion Brush Radius" bar. <br>
        3. Click the "Run" button to animate the image according to the path. <br>
        """
    )

    target_size = 512
    DragNUWA_net = Drag("cuda:0", target_size, target_size, 25)
    first_frame_path = gr.State()
    tracking_points = gr.State([])
    motion_brush_points = gr.State([])
    motion_brush_mask = gr.State()
    motion_brush_viz = gr.State()
    inference_batch_size = gr.State(1)

    def preprocess_image(image):

        image_pil = image2pil(image.name)
        raw_w, raw_h = image_pil.size

        max_edge = min(raw_w, raw_h)
        resize_ratio = target_size / max_edge

        image_pil = image_pil.resize((round(raw_w * resize_ratio), round(raw_h * resize_ratio)), Image.BILINEAR)

        new_w, new_h = image_pil.size
        crop_w = new_w - (new_w % 64)
        crop_h = new_h - (new_h % 64)

        image_pil = transforms.CenterCrop((crop_h, crop_w))(image_pil.convert('RGB'))

        DragNUWA_net.width = crop_w
        DragNUWA_net.height = crop_h

        id = str(time.time()).split('.')[0]
        os.makedirs(os.path.join(output_dir_video, str(id)), exist_ok=True)
        os.makedirs(os.path.join(output_dir_frame, str(id)), exist_ok=True)

        first_frame_path = os.path.join(output_dir_video, str(id), f"{id}_input.png")
        image_pil.save(first_frame_path)

        return first_frame_path, first_frame_path, first_frame_path, gr.State([]), gr.State([]), np.zeros((crop_h, crop_w)), np.zeros((crop_h, crop_w, 4))

    def add_drag(tracking_points):
        if len(tracking_points.constructor_args['value']) != 0 and tracking_points.constructor_args['value'][-1] == []:
            return tracking_points
        tracking_points.constructor_args['value'].append([])
        return tracking_points

    def add_mask(motion_brush_points):
        motion_brush_points.constructor_args['value'].append([])
        return motion_brush_points
    
    def delete_last_drag(tracking_points, first_frame_path, motion_brush_mask):
        if len(tracking_points.constructor_args['value']) > 0:
            tracking_points.constructor_args['value'].pop()
        transparent_background = Image.open(first_frame_path).convert('RGBA')
        w, h = transparent_background.size
        transparent_layer = np.zeros((h, w, 4))
        for track in tracking_points.constructor_args['value']:
            if len(track) > 1:
                for i in range(len(track)-1):
                    start_point = track[i]
                    end_point = track[i+1]
                    vx = end_point[0] - start_point[0]
                    vy = end_point[1] - start_point[1]
                    arrow_length = np.sqrt(vx**2 + vy**2)
                    if i == len(track)-2:
                        cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
                    else:
                        cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
            else:
                cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)

        transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
        trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)

        viz_flow = DragNUWA_net.get_cmp_flow_from_tracking_points(tracking_points, motion_brush_mask, first_frame_path)

        return tracking_points, trajectory_map, viz_flow
    
    def add_motion_brushes(motion_brush_points, motion_brush_mask, transparent_layer, first_frame_path, radius, tracking_points, evt: gr.SelectData):
        
        transparent_background = Image.open(first_frame_path).convert('RGBA')
        w, h = transparent_background.size

        motion_points = motion_brush_points.constructor_args['value']
        motion_points.append(evt.index)

        x, y = evt.index

        cv2.circle(motion_brush_mask, (x, y), radius, 255, -1)
        cv2.circle(transparent_layer, (x, y), radius, (0, 0, 255, 255), -1)
        
        transparent_layer_pil = Image.fromarray(transparent_layer.astype(np.uint8))
        motion_map = Image.alpha_composite(transparent_background, transparent_layer_pil)

        viz_flow = DragNUWA_net.get_cmp_flow_from_tracking_points(tracking_points, motion_brush_mask, first_frame_path)

        return motion_brush_mask, transparent_layer, motion_map, viz_flow

    def add_tracking_points(tracking_points, first_frame_path, motion_brush_mask, evt: gr.SelectData):

        print(f"You selected {evt.value} at {evt.index} from {evt.target}")
        
        if len(tracking_points.constructor_args['value']) == 0:
            tracking_points.constructor_args['value'].append([])
            
        tracking_points.constructor_args['value'][-1].append(evt.index)

        # print(tracking_points.constructor_args['value'])

        transparent_background = Image.open(first_frame_path).convert('RGBA')
        w, h = transparent_background.size
        transparent_layer = np.zeros((h, w, 4))
        for track in tracking_points.constructor_args['value']:
            if len(track) > 1:
                for i in range(len(track)-1):
                    start_point = track[i]
                    end_point = track[i+1]
                    vx = end_point[0] - start_point[0]
                    vy = end_point[1] - start_point[1]
                    arrow_length = np.sqrt(vx**2 + vy**2)
                    if i == len(track)-2:
                        cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
                    else:
                        cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
            else:
                cv2.circle(transparent_layer, tuple(track[0]), 3, (255, 0, 0, 255), -1)

        transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
        trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)

        viz_flow = DragNUWA_net.get_cmp_flow_from_tracking_points(tracking_points, motion_brush_mask, first_frame_path)

        return tracking_points, trajectory_map, viz_flow

    with gr.Row():
        with gr.Column(scale=2):
            image_upload_button = gr.UploadButton(label="Upload Image",file_types=["image"])
            add_drag_button = gr.Button(value="Add Trajectory")
            run_button = gr.Button(value="Run")
            delete_last_drag_button = gr.Button(value="Delete Last Trajectory")
            brush_radius = gr.Slider(label='Motion Brush Radius', 
                                             minimum=1, 
                                             maximum=100, 
                                             step=1, 
                                             value=10)
            ctrl_scale = gr.Slider(label='Control Scale', 
                                             minimum=0, 
                                             maximum=1., 
                                             step=0.01, 
                                             value=0.6)

        with gr.Column(scale=5):
            input_image = gr.Image(label="Add Trajectory Here",
                                interactive=True)
        with gr.Column(scale=5):
            input_image_mask = gr.Image(label="Add Motion Brush Here",
                                interactive=True)
             
    with gr.Row():   
        with gr.Column(scale=6):
            viz_flow = gr.Image(label="Visualized Flow")
        with gr.Column(scale=6):
            hint_image = gr.Image(label="Visualized Hint Image")
    with gr.Row():
        with gr.Column(scale=6):
            output_video = gr.Image(label="Output Video")
        with gr.Column(scale=6):
            output_flow = gr.Image(label="Output Flow")
    
    with gr.Row():
        with gr.Column(scale=6):
            output_video_mp4 = gr.Video(label="Output Video mp4")
        with gr.Column(scale=6):
            output_flow_mp4 = gr.Video(label="Output Flow mp4")
    
    image_upload_button.upload(preprocess_image, image_upload_button, [input_image, input_image_mask, first_frame_path, tracking_points, motion_brush_points, motion_brush_mask, motion_brush_viz])

    add_drag_button.click(add_drag, tracking_points, tracking_points)

    delete_last_drag_button.click(delete_last_drag, [tracking_points, first_frame_path, motion_brush_mask], [tracking_points, input_image, viz_flow])

    input_image.select(add_tracking_points, [tracking_points, first_frame_path, motion_brush_mask], [tracking_points, input_image, viz_flow])

    input_image_mask.select(add_motion_brushes, [motion_brush_points, motion_brush_mask, motion_brush_viz, first_frame_path, brush_radius, tracking_points], [motion_brush_mask, motion_brush_viz, input_image_mask, viz_flow])

    run_button.click(DragNUWA_net.run, [first_frame_path, tracking_points, inference_batch_size, motion_brush_mask, motion_brush_viz, ctrl_scale], [hint_image, output_video, output_flow, output_video_mp4, output_flow_mp4])

    demo.launch(server_name="127.0.0.1", debug=True, server_port=9080)