Spaces:
Runtime error
Runtime error
myniu
commited on
Commit
•
826d651
1
Parent(s):
1c2b635
init
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +51 -9
- app.py +838 -0
- ckpts/controlnet/config.json +45 -0
- ckpts/controlnet/diffusion_pytorch_model.safetensors +3 -0
- models/cmp/experiments/rep_learning/alexnet_yfcc+youtube_voc_16gpu_140k/config.yaml +59 -0
- models/cmp/experiments/rep_learning/alexnet_yfcc+youtube_voc_16gpu_140k/resume.sh +8 -0
- models/cmp/experiments/rep_learning/alexnet_yfcc+youtube_voc_16gpu_140k/resume_slurm.sh +9 -0
- models/cmp/experiments/rep_learning/alexnet_yfcc+youtube_voc_16gpu_140k/train.sh +6 -0
- models/cmp/experiments/rep_learning/alexnet_yfcc+youtube_voc_16gpu_140k/train_slurm.sh +7 -0
- models/cmp/experiments/rep_learning/alexnet_yfcc+youtube_voc_16gpu_140k/validate.sh +6 -0
- models/cmp/experiments/rep_learning/alexnet_yfcc+youtube_voc_16gpu_140k/validate_slurm.sh +8 -0
- models/cmp/experiments/rep_learning/alexnet_yfcc_voc_16gpu_70k/config.yaml +58 -0
- models/cmp/experiments/rep_learning/alexnet_yfcc_voc_16gpu_70k/resume.sh +8 -0
- models/cmp/experiments/rep_learning/alexnet_yfcc_voc_16gpu_70k/resume_slurm.sh +9 -0
- models/cmp/experiments/rep_learning/alexnet_yfcc_voc_16gpu_70k/train.sh +6 -0
- models/cmp/experiments/rep_learning/alexnet_yfcc_voc_16gpu_70k/train_slurm.sh +7 -0
- models/cmp/experiments/rep_learning/alexnet_yfcc_voc_16gpu_70k/validate.sh +6 -0
- models/cmp/experiments/rep_learning/alexnet_yfcc_voc_16gpu_70k/validate_slurm.sh +8 -0
- models/cmp/experiments/rep_learning/alexnet_yfcc_voc_8gpu_140k/config.yaml +58 -0
- models/cmp/experiments/rep_learning/alexnet_yfcc_voc_8gpu_140k/resume.sh +6 -0
- models/cmp/experiments/rep_learning/alexnet_yfcc_voc_8gpu_140k/resume_slurm.sh +9 -0
- models/cmp/experiments/rep_learning/alexnet_yfcc_voc_8gpu_140k/train.sh +4 -0
- models/cmp/experiments/rep_learning/alexnet_yfcc_voc_8gpu_140k/train_slurm.sh +7 -0
- models/cmp/experiments/rep_learning/alexnet_yfcc_voc_8gpu_140k/validate.sh +6 -0
- models/cmp/experiments/rep_learning/alexnet_yfcc_voc_8gpu_140k/validate_slurm.sh +8 -0
- models/cmp/experiments/rep_learning/resnet50_yfcc+youtube+vip+mpii_lip_16gpu_70k/config.yaml +61 -0
- models/cmp/experiments/rep_learning/resnet50_yfcc+youtube+vip+mpii_lip_16gpu_70k/resume.sh +8 -0
- models/cmp/experiments/rep_learning/resnet50_yfcc+youtube+vip+mpii_lip_16gpu_70k/resume_slurm.sh +9 -0
- models/cmp/experiments/rep_learning/resnet50_yfcc+youtube+vip+mpii_lip_16gpu_70k/train.sh +6 -0
- models/cmp/experiments/rep_learning/resnet50_yfcc+youtube+vip+mpii_lip_16gpu_70k/train_slurm.sh +7 -0
- models/cmp/experiments/rep_learning/resnet50_yfcc+youtube+vip+mpii_lip_16gpu_70k/validate.sh +6 -0
- models/cmp/experiments/rep_learning/resnet50_yfcc+youtube+vip+mpii_lip_16gpu_70k/validate_slurm.sh +8 -0
- models/cmp/experiments/rep_learning/resnet50_yfcc_coco_16gpu_42k/config.yaml +58 -0
- models/cmp/experiments/rep_learning/resnet50_yfcc_coco_16gpu_42k/resume.sh +8 -0
- models/cmp/experiments/rep_learning/resnet50_yfcc_coco_16gpu_42k/resume_slurm.sh +9 -0
- models/cmp/experiments/rep_learning/resnet50_yfcc_coco_16gpu_42k/train.sh +6 -0
- models/cmp/experiments/rep_learning/resnet50_yfcc_coco_16gpu_42k/train_slurm.sh +7 -0
- models/cmp/experiments/rep_learning/resnet50_yfcc_coco_16gpu_42k/validate.sh +6 -0
- models/cmp/experiments/rep_learning/resnet50_yfcc_coco_16gpu_42k/validate_slurm.sh +8 -0
- models/cmp/experiments/rep_learning/resnet50_yfcc_voc_16gpu_42k/config.yaml +58 -0
- models/cmp/experiments/rep_learning/resnet50_yfcc_voc_16gpu_42k/resume.sh +8 -0
- models/cmp/experiments/rep_learning/resnet50_yfcc_voc_16gpu_42k/resume_slurm.sh +9 -0
- models/cmp/experiments/rep_learning/resnet50_yfcc_voc_16gpu_42k/train.sh +6 -0
- models/cmp/experiments/rep_learning/resnet50_yfcc_voc_16gpu_42k/train_slurm.sh +7 -0
- models/cmp/experiments/rep_learning/resnet50_yfcc_voc_16gpu_42k/validate.sh +6 -0
- models/cmp/experiments/rep_learning/resnet50_yfcc_voc_16gpu_42k/validate_slurm.sh +8 -0
- models/cmp/experiments/semiauto_annot/resnet50_vip+mpii_liteflow/checkpoints/ckpt_iter_42000.pth.tar +3 -0
- models/cmp/experiments/semiauto_annot/resnet50_vip+mpii_liteflow/config.yaml +59 -0
- models/cmp/experiments/semiauto_annot/resnet50_vip+mpii_liteflow/resume.sh +6 -0
- models/cmp/experiments/semiauto_annot/resnet50_vip+mpii_liteflow/resume_slurm.sh +9 -0
README.md
CHANGED
@@ -1,13 +1,55 @@
|
|
1 |
---
|
2 |
-
title: MOFA-Video Traj
|
3 |
-
emoji: 📚
|
4 |
-
colorFrom: red
|
5 |
-
colorTo: gray
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 4.36.1
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
license: apache-2.0
|
|
|
11 |
---
|
|
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
+
sdk_version: 4.5.0
|
4 |
---
|
5 |
+
## Updates 🔥🔥🔥
|
6 |
|
7 |
+
We have released the Gradio demo for **Hybrid (Trajectory + Landmark)** Controls [HERE](https://huggingface.co/MyNiuuu/MOFA-Video-Hybrid)!
|
8 |
+
|
9 |
+
|
10 |
+
## Introduction
|
11 |
+
|
12 |
+
This repo provides the inference Gradio demo for Trajectory Control of MOFA-Video.
|
13 |
+
|
14 |
+
## Environment Setup
|
15 |
+
|
16 |
+
`pip install -r requirements.txt`
|
17 |
+
|
18 |
+
## Download checkpoints
|
19 |
+
|
20 |
+
1. Download the pretrained checkpoints of [SVD_xt](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt-1-1) from huggingface to `./ckpts`.
|
21 |
+
|
22 |
+
2. Download the checkpint of [MOFA-Adapter](https://huggingface.co/MyNiuuu/MOFA-Video-Traj) from huggingface to `./ckpts`.
|
23 |
+
|
24 |
+
The final structure of checkpoints should be:
|
25 |
+
|
26 |
+
|
27 |
+
```text
|
28 |
+
./ckpts/
|
29 |
+
|-- controlnet
|
30 |
+
| |-- config.json
|
31 |
+
| `-- diffusion_pytorch_model.safetensors
|
32 |
+
|-- stable-video-diffusion-img2vid-xt-1-1
|
33 |
+
| |-- feature_extractor
|
34 |
+
| |-- ...
|
35 |
+
| |-- image_encoder
|
36 |
+
| |-- ...
|
37 |
+
| |-- scheduler
|
38 |
+
| |-- ...
|
39 |
+
| |-- unet
|
40 |
+
| |-- ...
|
41 |
+
| |-- vae
|
42 |
+
| |-- ...
|
43 |
+
| |-- svd_xt_1_1.safetensors
|
44 |
+
| `-- model_index.json
|
45 |
+
```
|
46 |
+
|
47 |
+
## Run Gradio Demo
|
48 |
+
|
49 |
+
`python run_gradio.py`
|
50 |
+
|
51 |
+
Please refer to the instructions on the gradio interface during the inference process.
|
52 |
+
|
53 |
+
## Paper
|
54 |
+
|
55 |
+
arxiv.org/abs/2405.20222
|
app.py
ADDED
@@ -0,0 +1,838 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
import os
|
5 |
+
from PIL import Image, ImageFilter
|
6 |
+
import uuid
|
7 |
+
from scipy.interpolate import interp1d, PchipInterpolator
|
8 |
+
import torchvision
|
9 |
+
# from utils import *
|
10 |
+
import time
|
11 |
+
from tqdm import tqdm
|
12 |
+
import imageio
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.nn.functional as F
|
16 |
+
import torchvision
|
17 |
+
import torchvision.transforms as transforms
|
18 |
+
from einops import rearrange, repeat
|
19 |
+
|
20 |
+
from packaging import version
|
21 |
+
|
22 |
+
from accelerate.utils import set_seed
|
23 |
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
24 |
+
|
25 |
+
from diffusers import AutoencoderKLTemporalDecoder, EulerDiscreteScheduler
|
26 |
+
from diffusers.utils import check_min_version
|
27 |
+
from diffusers.utils.import_utils import is_xformers_available
|
28 |
+
|
29 |
+
from utils.flow_viz import flow_to_image
|
30 |
+
from utils.utils import split_filename, image2arr, image2pil, ensure_dirname
|
31 |
+
|
32 |
+
|
33 |
+
output_dir_video = "./outputs/videos"
|
34 |
+
output_dir_frame = "./outputs/frames"
|
35 |
+
|
36 |
+
|
37 |
+
ensure_dirname(output_dir_video)
|
38 |
+
ensure_dirname(output_dir_frame)
|
39 |
+
|
40 |
+
|
41 |
+
def divide_points_afterinterpolate(resized_all_points, motion_brush_mask):
|
42 |
+
k = resized_all_points.shape[0]
|
43 |
+
starts = resized_all_points[:, 0] # [K, 2]
|
44 |
+
|
45 |
+
in_masks = []
|
46 |
+
out_masks = []
|
47 |
+
|
48 |
+
for i in range(k):
|
49 |
+
x, y = int(starts[i][1]), int(starts[i][0])
|
50 |
+
if motion_brush_mask[x][y] == 255:
|
51 |
+
in_masks.append(resized_all_points[i])
|
52 |
+
else:
|
53 |
+
out_masks.append(resized_all_points[i])
|
54 |
+
|
55 |
+
in_masks = np.array(in_masks)
|
56 |
+
out_masks = np.array(out_masks)
|
57 |
+
|
58 |
+
return in_masks, out_masks
|
59 |
+
|
60 |
+
|
61 |
+
def get_sparseflow_and_mask_forward(
|
62 |
+
resized_all_points,
|
63 |
+
n_steps, H, W,
|
64 |
+
is_backward_flow=False
|
65 |
+
):
|
66 |
+
|
67 |
+
K = resized_all_points.shape[0]
|
68 |
+
|
69 |
+
starts = resized_all_points[:, 0] # [K, 2]
|
70 |
+
|
71 |
+
interpolated_ends = resized_all_points[:, 1:]
|
72 |
+
|
73 |
+
s_flow = np.zeros((K, n_steps, H, W, 2))
|
74 |
+
mask = np.zeros((K, n_steps, H, W))
|
75 |
+
|
76 |
+
for k in range(K):
|
77 |
+
for i in range(n_steps):
|
78 |
+
start, end = starts[k], interpolated_ends[k][i]
|
79 |
+
flow = np.int64(end - start) * (-1 if is_backward_flow is True else 1)
|
80 |
+
s_flow[k][i][int(start[1]), int(start[0])] = flow
|
81 |
+
mask[k][i][int(start[1]), int(start[0])] = 1
|
82 |
+
|
83 |
+
s_flow = np.sum(s_flow, axis=0)
|
84 |
+
mask = np.sum(mask, axis=0)
|
85 |
+
|
86 |
+
return s_flow, mask
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
def init_models(pretrained_model_name_or_path, resume_from_checkpoint, weight_dtype, device='cuda', enable_xformers_memory_efficient_attention=False, allow_tf32=False):
|
91 |
+
|
92 |
+
from models.unet_spatio_temporal_condition_controlnet import UNetSpatioTemporalConditionControlNetModel
|
93 |
+
from pipeline.pipeline import FlowControlNetPipeline
|
94 |
+
from models.svdxt_featureflow_forward_controlnet_s2d_fixcmp_norefine import FlowControlNet, CMP_demo
|
95 |
+
|
96 |
+
print('start loading models...')
|
97 |
+
# Load scheduler, tokenizer and models.
|
98 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
99 |
+
pretrained_model_name_or_path, subfolder="image_encoder", revision=None, variant="fp16"
|
100 |
+
)
|
101 |
+
vae = AutoencoderKLTemporalDecoder.from_pretrained(
|
102 |
+
pretrained_model_name_or_path, subfolder="vae", revision=None, variant="fp16")
|
103 |
+
unet = UNetSpatioTemporalConditionControlNetModel.from_pretrained(
|
104 |
+
pretrained_model_name_or_path,
|
105 |
+
subfolder="unet",
|
106 |
+
low_cpu_mem_usage=True,
|
107 |
+
variant="fp16",
|
108 |
+
)
|
109 |
+
|
110 |
+
controlnet = FlowControlNet.from_pretrained(resume_from_checkpoint)
|
111 |
+
|
112 |
+
cmp = CMP_demo(
|
113 |
+
'./models/cmp/experiments/semiauto_annot/resnet50_vip+mpii_liteflow/config.yaml',
|
114 |
+
42000
|
115 |
+
).to(device)
|
116 |
+
cmp.requires_grad_(False)
|
117 |
+
|
118 |
+
# Freeze vae and image_encoder
|
119 |
+
vae.requires_grad_(False)
|
120 |
+
image_encoder.requires_grad_(False)
|
121 |
+
unet.requires_grad_(False)
|
122 |
+
controlnet.requires_grad_(False)
|
123 |
+
|
124 |
+
# Move image_encoder and vae to gpu and cast to weight_dtype
|
125 |
+
image_encoder.to(device, dtype=weight_dtype)
|
126 |
+
vae.to(device, dtype=weight_dtype)
|
127 |
+
unet.to(device, dtype=weight_dtype)
|
128 |
+
controlnet.to(device, dtype=weight_dtype)
|
129 |
+
|
130 |
+
if enable_xformers_memory_efficient_attention:
|
131 |
+
if is_xformers_available():
|
132 |
+
import xformers
|
133 |
+
|
134 |
+
xformers_version = version.parse(xformers.__version__)
|
135 |
+
if xformers_version == version.parse("0.0.16"):
|
136 |
+
print(
|
137 |
+
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
|
138 |
+
)
|
139 |
+
unet.enable_xformers_memory_efficient_attention()
|
140 |
+
else:
|
141 |
+
raise ValueError(
|
142 |
+
"xformers is not available. Make sure it is installed correctly")
|
143 |
+
|
144 |
+
if allow_tf32:
|
145 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
146 |
+
|
147 |
+
pipeline = FlowControlNetPipeline.from_pretrained(
|
148 |
+
pretrained_model_name_or_path,
|
149 |
+
unet=unet,
|
150 |
+
controlnet=controlnet,
|
151 |
+
image_encoder=image_encoder,
|
152 |
+
vae=vae,
|
153 |
+
torch_dtype=weight_dtype,
|
154 |
+
)
|
155 |
+
pipeline = pipeline.to(device)
|
156 |
+
|
157 |
+
print('models loaded.')
|
158 |
+
|
159 |
+
return pipeline, cmp
|
160 |
+
|
161 |
+
|
162 |
+
def interpolate_trajectory(points, n_points):
|
163 |
+
x = [point[0] for point in points]
|
164 |
+
y = [point[1] for point in points]
|
165 |
+
|
166 |
+
t = np.linspace(0, 1, len(points))
|
167 |
+
|
168 |
+
fx = PchipInterpolator(t, x)
|
169 |
+
fy = PchipInterpolator(t, y)
|
170 |
+
|
171 |
+
new_t = np.linspace(0, 1, n_points)
|
172 |
+
|
173 |
+
new_x = fx(new_t)
|
174 |
+
new_y = fy(new_t)
|
175 |
+
new_points = list(zip(new_x, new_y))
|
176 |
+
|
177 |
+
return new_points
|
178 |
+
|
179 |
+
|
180 |
+
def visualize_drag_v2(background_image_path, splited_tracks, width, height):
|
181 |
+
trajectory_maps = []
|
182 |
+
|
183 |
+
background_image = Image.open(background_image_path).convert('RGBA')
|
184 |
+
background_image = background_image.resize((width, height))
|
185 |
+
w, h = background_image.size
|
186 |
+
transparent_background = np.array(background_image)
|
187 |
+
transparent_background[:, :, -1] = 128
|
188 |
+
transparent_background = Image.fromarray(transparent_background)
|
189 |
+
|
190 |
+
# Create a transparent layer with the same size as the background image
|
191 |
+
transparent_layer = np.zeros((h, w, 4))
|
192 |
+
for splited_track in splited_tracks:
|
193 |
+
if len(splited_track) > 1:
|
194 |
+
splited_track = interpolate_trajectory(splited_track, 16)
|
195 |
+
splited_track = splited_track[:16]
|
196 |
+
for i in range(len(splited_track)-1):
|
197 |
+
start_point = (int(splited_track[i][0]), int(splited_track[i][1]))
|
198 |
+
end_point = (int(splited_track[i+1][0]), int(splited_track[i+1][1]))
|
199 |
+
vx = end_point[0] - start_point[0]
|
200 |
+
vy = end_point[1] - start_point[1]
|
201 |
+
arrow_length = np.sqrt(vx**2 + vy**2)
|
202 |
+
if i == len(splited_track)-2:
|
203 |
+
cv2.arrowedLine(transparent_layer, start_point, end_point, (255, 0, 0, 192), 2, tipLength=8 / arrow_length)
|
204 |
+
else:
|
205 |
+
cv2.line(transparent_layer, start_point, end_point, (255, 0, 0, 192), 2)
|
206 |
+
else:
|
207 |
+
cv2.circle(transparent_layer, (int(splited_track[0][0]), int(splited_track[0][1])), 2, (255, 0, 0, 192), -1)
|
208 |
+
|
209 |
+
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
|
210 |
+
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
|
211 |
+
trajectory_maps.append(trajectory_map)
|
212 |
+
return trajectory_maps, transparent_layer
|
213 |
+
|
214 |
+
|
215 |
+
class Drag:
|
216 |
+
def __init__(self, device, height, width, model_length):
|
217 |
+
self.device = device
|
218 |
+
|
219 |
+
svd_ckpt = "ckpts/stable-video-diffusion-img2vid-xt-1-1"
|
220 |
+
mofa_ckpt = "ckpts/controlnet"
|
221 |
+
|
222 |
+
self.device = 'cuda'
|
223 |
+
self.weight_dtype = torch.float16
|
224 |
+
|
225 |
+
self.pipeline, self.cmp = init_models(
|
226 |
+
svd_ckpt,
|
227 |
+
mofa_ckpt,
|
228 |
+
weight_dtype=self.weight_dtype,
|
229 |
+
device=self.device
|
230 |
+
)
|
231 |
+
|
232 |
+
self.height = height
|
233 |
+
self.width = width
|
234 |
+
self.model_length = model_length
|
235 |
+
|
236 |
+
def get_cmp_flow(self, frames, sparse_optical_flow, mask, brush_mask=None):
|
237 |
+
|
238 |
+
'''
|
239 |
+
frames: [b, 13, 3, 384, 384] (0, 1) tensor
|
240 |
+
sparse_optical_flow: [b, 13, 2, 384, 384] (-384, 384) tensor
|
241 |
+
mask: [b, 13, 2, 384, 384] {0, 1} tensor
|
242 |
+
'''
|
243 |
+
|
244 |
+
b, t, c, h, w = frames.shape
|
245 |
+
assert h == 384 and w == 384
|
246 |
+
frames = frames.flatten(0, 1) # [b*13, 3, 256, 256]
|
247 |
+
sparse_optical_flow = sparse_optical_flow.flatten(0, 1) # [b*13, 2, 256, 256]
|
248 |
+
mask = mask.flatten(0, 1) # [b*13, 2, 256, 256]
|
249 |
+
cmp_flow = self.cmp.run(frames, sparse_optical_flow, mask) # [b*13, 2, 256, 256]
|
250 |
+
|
251 |
+
if brush_mask is not None:
|
252 |
+
brush_mask = torch.from_numpy(brush_mask) / 255.
|
253 |
+
brush_mask = brush_mask.to(cmp_flow.device, dtype=cmp_flow.dtype)
|
254 |
+
brush_mask = brush_mask.unsqueeze(0).unsqueeze(0)
|
255 |
+
cmp_flow = cmp_flow * brush_mask
|
256 |
+
|
257 |
+
cmp_flow = cmp_flow.reshape(b, t, 2, h, w)
|
258 |
+
return cmp_flow
|
259 |
+
|
260 |
+
|
261 |
+
def get_flow(self, pixel_values_384, sparse_optical_flow_384, mask_384, motion_brush_mask=None):
|
262 |
+
|
263 |
+
fb, fl, fc, _, _ = pixel_values_384.shape
|
264 |
+
|
265 |
+
controlnet_flow = self.get_cmp_flow(
|
266 |
+
pixel_values_384[:, 0:1, :, :, :].repeat(1, fl, 1, 1, 1),
|
267 |
+
sparse_optical_flow_384,
|
268 |
+
mask_384, motion_brush_mask
|
269 |
+
)
|
270 |
+
|
271 |
+
if self.height != 384 or self.width != 384:
|
272 |
+
scales = [self.height / 384, self.width / 384]
|
273 |
+
controlnet_flow = F.interpolate(controlnet_flow.flatten(0, 1), (self.height, self.width), mode='nearest').reshape(fb, fl, 2, self.height, self.width)
|
274 |
+
controlnet_flow[:, :, 0] *= scales[1]
|
275 |
+
controlnet_flow[:, :, 1] *= scales[0]
|
276 |
+
|
277 |
+
return controlnet_flow
|
278 |
+
|
279 |
+
|
280 |
+
@torch.no_grad()
|
281 |
+
def forward_sample(self, input_drag_384_inmask, input_drag_384_outmask, input_first_frame, input_mask_384_inmask, input_mask_384_outmask, in_mask_flag, out_mask_flag, motion_brush_mask=None, ctrl_scale=1., outputs=dict()):
|
282 |
+
'''
|
283 |
+
input_drag: [1, 13, 320, 576, 2]
|
284 |
+
input_drag_384: [1, 13, 384, 384, 2]
|
285 |
+
input_first_frame: [1, 3, 320, 576]
|
286 |
+
'''
|
287 |
+
|
288 |
+
seed = 42
|
289 |
+
num_frames = self.model_length
|
290 |
+
|
291 |
+
set_seed(seed)
|
292 |
+
|
293 |
+
input_first_frame_384 = F.interpolate(input_first_frame, (384, 384))
|
294 |
+
input_first_frame_384 = input_first_frame_384.repeat(num_frames - 1, 1, 1, 1).unsqueeze(0)
|
295 |
+
input_first_frame_pil = Image.fromarray(np.uint8(input_first_frame[0].cpu().permute(1, 2, 0)*255))
|
296 |
+
height, width = input_first_frame.shape[-2:]
|
297 |
+
|
298 |
+
input_drag_384_inmask = input_drag_384_inmask.permute(0, 1, 4, 2, 3) # [1, 13, 2, 384, 384]
|
299 |
+
mask_384_inmask = input_mask_384_inmask.unsqueeze(2).repeat(1, 1, 2, 1, 1) # [1, 13, 2, 384, 384]
|
300 |
+
input_drag_384_outmask = input_drag_384_outmask.permute(0, 1, 4, 2, 3) # [1, 13, 2, 384, 384]
|
301 |
+
mask_384_outmask = input_mask_384_outmask.unsqueeze(2).repeat(1, 1, 2, 1, 1) # [1, 13, 2, 384, 384]
|
302 |
+
|
303 |
+
print('start diffusion process...')
|
304 |
+
|
305 |
+
input_drag_384_inmask = input_drag_384_inmask.to(self.device, dtype=self.weight_dtype)
|
306 |
+
mask_384_inmask = mask_384_inmask.to(self.device, dtype=self.weight_dtype)
|
307 |
+
input_drag_384_outmask = input_drag_384_outmask.to(self.device, dtype=self.weight_dtype)
|
308 |
+
mask_384_outmask = mask_384_outmask.to(self.device, dtype=self.weight_dtype)
|
309 |
+
|
310 |
+
input_first_frame_384 = input_first_frame_384.to(self.device, dtype=self.weight_dtype)
|
311 |
+
|
312 |
+
if in_mask_flag:
|
313 |
+
flow_inmask = self.get_flow(
|
314 |
+
input_first_frame_384,
|
315 |
+
input_drag_384_inmask, mask_384_inmask, motion_brush_mask
|
316 |
+
)
|
317 |
+
else:
|
318 |
+
fb, fl = mask_384_inmask.shape[:2]
|
319 |
+
flow_inmask = torch.zeros(fb, fl, 2, self.height, self.width).to(self.device, dtype=self.weight_dtype)
|
320 |
+
|
321 |
+
if out_mask_flag:
|
322 |
+
flow_outmask = self.get_flow(
|
323 |
+
input_first_frame_384,
|
324 |
+
input_drag_384_outmask, mask_384_outmask
|
325 |
+
)
|
326 |
+
else:
|
327 |
+
fb, fl = mask_384_outmask.shape[:2]
|
328 |
+
flow_outmask = torch.zeros(fb, fl, 2, self.height, self.width).to(self.device, dtype=self.weight_dtype)
|
329 |
+
|
330 |
+
inmask_no_zero = (flow_inmask != 0).all(dim=2)
|
331 |
+
inmask_no_zero = inmask_no_zero.unsqueeze(2).expand_as(flow_inmask)
|
332 |
+
|
333 |
+
controlnet_flow = torch.where(inmask_no_zero, flow_inmask, flow_outmask)
|
334 |
+
|
335 |
+
val_output = self.pipeline(
|
336 |
+
input_first_frame_pil,
|
337 |
+
input_first_frame_pil,
|
338 |
+
controlnet_flow,
|
339 |
+
height=height,
|
340 |
+
width=width,
|
341 |
+
num_frames=num_frames,
|
342 |
+
decode_chunk_size=8,
|
343 |
+
motion_bucket_id=127,
|
344 |
+
fps=7,
|
345 |
+
noise_aug_strength=0.02,
|
346 |
+
controlnet_cond_scale=ctrl_scale,
|
347 |
+
)
|
348 |
+
|
349 |
+
video_frames, estimated_flow = val_output.frames[0], val_output.controlnet_flow
|
350 |
+
|
351 |
+
for i in range(num_frames):
|
352 |
+
img = video_frames[i]
|
353 |
+
video_frames[i] = np.array(img)
|
354 |
+
video_frames = torch.from_numpy(np.array(video_frames)).cuda().permute(0, 3, 1, 2).unsqueeze(0) / 255.
|
355 |
+
|
356 |
+
print(video_frames.shape)
|
357 |
+
|
358 |
+
viz_esti_flows = []
|
359 |
+
for i in range(estimated_flow.shape[1]):
|
360 |
+
temp_flow = estimated_flow[0][i].permute(1, 2, 0)
|
361 |
+
viz_esti_flows.append(flow_to_image(temp_flow))
|
362 |
+
viz_esti_flows = [np.uint8(np.ones_like(viz_esti_flows[-1]) * 255)] + viz_esti_flows
|
363 |
+
viz_esti_flows = np.stack(viz_esti_flows) # [t-1, h, w, c]
|
364 |
+
|
365 |
+
total_nps = viz_esti_flows
|
366 |
+
|
367 |
+
outputs['logits_imgs'] = video_frames
|
368 |
+
outputs['flows'] = torch.from_numpy(total_nps).cuda().permute(0, 3, 1, 2).unsqueeze(0) / 255.
|
369 |
+
|
370 |
+
return outputs
|
371 |
+
|
372 |
+
@torch.no_grad()
|
373 |
+
def get_cmp_flow_from_tracking_points(self, tracking_points, motion_brush_mask, first_frame_path):
|
374 |
+
|
375 |
+
original_width, original_height = self.width, self.height
|
376 |
+
|
377 |
+
input_all_points = tracking_points.constructor_args['value']
|
378 |
+
|
379 |
+
if len(input_all_points) == 0 or len(input_all_points[-1]) == 1:
|
380 |
+
return np.uint8(np.ones((original_width, original_height, 3))*255)
|
381 |
+
|
382 |
+
resized_all_points = [tuple([tuple([int(e1[0]*self.width/original_width), int(e1[1]*self.height/original_height)]) for e1 in e]) for e in input_all_points]
|
383 |
+
resized_all_points_384 = [tuple([tuple([int(e1[0]*384/original_width), int(e1[1]*384/original_height)]) for e1 in e]) for e in input_all_points]
|
384 |
+
|
385 |
+
new_resized_all_points = []
|
386 |
+
new_resized_all_points_384 = []
|
387 |
+
for tnum in range(len(resized_all_points)):
|
388 |
+
new_resized_all_points.append(interpolate_trajectory(input_all_points[tnum], self.model_length))
|
389 |
+
new_resized_all_points_384.append(interpolate_trajectory(resized_all_points_384[tnum], self.model_length))
|
390 |
+
|
391 |
+
resized_all_points = np.array(new_resized_all_points)
|
392 |
+
resized_all_points_384 = np.array(new_resized_all_points_384)
|
393 |
+
|
394 |
+
motion_brush_mask_384 = cv2.resize(motion_brush_mask, (384, 384), cv2.INTER_NEAREST)
|
395 |
+
|
396 |
+
resized_all_points_384_inmask, resized_all_points_384_outmask = \
|
397 |
+
divide_points_afterinterpolate(resized_all_points_384, motion_brush_mask_384)
|
398 |
+
|
399 |
+
in_mask_flag = False
|
400 |
+
out_mask_flag = False
|
401 |
+
|
402 |
+
if resized_all_points_384_inmask.shape[0] != 0:
|
403 |
+
in_mask_flag = True
|
404 |
+
input_drag_384_inmask, input_mask_384_inmask = \
|
405 |
+
get_sparseflow_and_mask_forward(
|
406 |
+
resized_all_points_384_inmask,
|
407 |
+
self.model_length - 1, 384, 384
|
408 |
+
)
|
409 |
+
else:
|
410 |
+
input_drag_384_inmask, input_mask_384_inmask = \
|
411 |
+
np.zeros((self.model_length - 1, 384, 384, 2)), \
|
412 |
+
np.zeros((self.model_length - 1, 384, 384))
|
413 |
+
|
414 |
+
if resized_all_points_384_outmask.shape[0] != 0:
|
415 |
+
out_mask_flag = True
|
416 |
+
input_drag_384_outmask, input_mask_384_outmask = \
|
417 |
+
get_sparseflow_and_mask_forward(
|
418 |
+
resized_all_points_384_outmask,
|
419 |
+
self.model_length - 1, 384, 384
|
420 |
+
)
|
421 |
+
else:
|
422 |
+
input_drag_384_outmask, input_mask_384_outmask = \
|
423 |
+
np.zeros((self.model_length - 1, 384, 384, 2)), \
|
424 |
+
np.zeros((self.model_length - 1, 384, 384))
|
425 |
+
|
426 |
+
input_drag_384_inmask = torch.from_numpy(input_drag_384_inmask).unsqueeze(0).to(self.device) # [1, 13, h, w, 2]
|
427 |
+
input_mask_384_inmask = torch.from_numpy(input_mask_384_inmask).unsqueeze(0).to(self.device) # [1, 13, h, w]
|
428 |
+
input_drag_384_outmask = torch.from_numpy(input_drag_384_outmask).unsqueeze(0).to(self.device) # [1, 13, h, w, 2]
|
429 |
+
input_mask_384_outmask = torch.from_numpy(input_mask_384_outmask).unsqueeze(0).to(self.device) # [1, 13, h, w]
|
430 |
+
|
431 |
+
first_frames_transform = transforms.Compose([
|
432 |
+
lambda x: Image.fromarray(x),
|
433 |
+
transforms.ToTensor(),
|
434 |
+
])
|
435 |
+
|
436 |
+
input_first_frame = image2arr(first_frame_path)
|
437 |
+
input_first_frame = repeat(first_frames_transform(input_first_frame), 'c h w -> b c h w', b=1).to(self.device)
|
438 |
+
|
439 |
+
seed = 42
|
440 |
+
num_frames = self.model_length
|
441 |
+
|
442 |
+
set_seed(seed)
|
443 |
+
|
444 |
+
input_first_frame_384 = F.interpolate(input_first_frame, (384, 384))
|
445 |
+
input_first_frame_384 = input_first_frame_384.repeat(num_frames - 1, 1, 1, 1).unsqueeze(0)
|
446 |
+
|
447 |
+
input_drag_384_inmask = input_drag_384_inmask.permute(0, 1, 4, 2, 3) # [1, 13, 2, 384, 384]
|
448 |
+
mask_384_inmask = input_mask_384_inmask.unsqueeze(2).repeat(1, 1, 2, 1, 1) # [1, 13, 2, 384, 384]
|
449 |
+
input_drag_384_outmask = input_drag_384_outmask.permute(0, 1, 4, 2, 3) # [1, 13, 2, 384, 384]
|
450 |
+
mask_384_outmask = input_mask_384_outmask.unsqueeze(2).repeat(1, 1, 2, 1, 1) # [1, 13, 2, 384, 384]
|
451 |
+
|
452 |
+
input_drag_384_inmask = input_drag_384_inmask.to(self.device, dtype=self.weight_dtype)
|
453 |
+
mask_384_inmask = mask_384_inmask.to(self.device, dtype=self.weight_dtype)
|
454 |
+
input_drag_384_outmask = input_drag_384_outmask.to(self.device, dtype=self.weight_dtype)
|
455 |
+
mask_384_outmask = mask_384_outmask.to(self.device, dtype=self.weight_dtype)
|
456 |
+
|
457 |
+
input_first_frame_384 = input_first_frame_384.to(self.device, dtype=self.weight_dtype)
|
458 |
+
|
459 |
+
if in_mask_flag:
|
460 |
+
flow_inmask = self.get_flow(
|
461 |
+
input_first_frame_384,
|
462 |
+
input_drag_384_inmask, mask_384_inmask, motion_brush_mask_384
|
463 |
+
)
|
464 |
+
else:
|
465 |
+
fb, fl = mask_384_inmask.shape[:2]
|
466 |
+
flow_inmask = torch.zeros(fb, fl, 2, self.height, self.width).to(self.device, dtype=self.weight_dtype)
|
467 |
+
|
468 |
+
if out_mask_flag:
|
469 |
+
flow_outmask = self.get_flow(
|
470 |
+
input_first_frame_384,
|
471 |
+
input_drag_384_outmask, mask_384_outmask
|
472 |
+
)
|
473 |
+
else:
|
474 |
+
fb, fl = mask_384_outmask.shape[:2]
|
475 |
+
flow_outmask = torch.zeros(fb, fl, 2, self.height, self.width).to(self.device, dtype=self.weight_dtype)
|
476 |
+
|
477 |
+
inmask_no_zero = (flow_inmask != 0).all(dim=2)
|
478 |
+
inmask_no_zero = inmask_no_zero.unsqueeze(2).expand_as(flow_inmask)
|
479 |
+
|
480 |
+
controlnet_flow = torch.where(inmask_no_zero, flow_inmask, flow_outmask)
|
481 |
+
|
482 |
+
controlnet_flow = controlnet_flow[0, -1].permute(1, 2, 0)
|
483 |
+
viz_esti_flows = flow_to_image(controlnet_flow) # [h, w, c]
|
484 |
+
|
485 |
+
return viz_esti_flows
|
486 |
+
|
487 |
+
def run(self, first_frame_path, tracking_points, inference_batch_size, motion_brush_mask, motion_brush_viz, ctrl_scale):
|
488 |
+
|
489 |
+
original_width, original_height = self.width, self.height
|
490 |
+
|
491 |
+
input_all_points = tracking_points.constructor_args['value']
|
492 |
+
resized_all_points = [tuple([tuple([int(e1[0]*self.width/original_width), int(e1[1]*self.height/original_height)]) for e1 in e]) for e in input_all_points]
|
493 |
+
resized_all_points_384 = [tuple([tuple([int(e1[0]*384/original_width), int(e1[1]*384/original_height)]) for e1 in e]) for e in input_all_points]
|
494 |
+
|
495 |
+
new_resized_all_points = []
|
496 |
+
new_resized_all_points_384 = []
|
497 |
+
for tnum in range(len(resized_all_points)):
|
498 |
+
new_resized_all_points.append(interpolate_trajectory(input_all_points[tnum], self.model_length))
|
499 |
+
new_resized_all_points_384.append(interpolate_trajectory(resized_all_points_384[tnum], self.model_length))
|
500 |
+
|
501 |
+
resized_all_points = np.array(new_resized_all_points)
|
502 |
+
resized_all_points_384 = np.array(new_resized_all_points_384)
|
503 |
+
|
504 |
+
motion_brush_mask_384 = cv2.resize(motion_brush_mask, (384, 384), cv2.INTER_NEAREST)
|
505 |
+
|
506 |
+
resized_all_points_384_inmask, resized_all_points_384_outmask = \
|
507 |
+
divide_points_afterinterpolate(resized_all_points_384, motion_brush_mask_384)
|
508 |
+
|
509 |
+
in_mask_flag = False
|
510 |
+
out_mask_flag = False
|
511 |
+
|
512 |
+
if resized_all_points_384_inmask.shape[0] != 0:
|
513 |
+
in_mask_flag = True
|
514 |
+
input_drag_384_inmask, input_mask_384_inmask = \
|
515 |
+
get_sparseflow_and_mask_forward(
|
516 |
+
resized_all_points_384_inmask,
|
517 |
+
self.model_length - 1, 384, 384
|
518 |
+
)
|
519 |
+
else:
|
520 |
+
input_drag_384_inmask, input_mask_384_inmask = \
|
521 |
+
np.zeros((self.model_length - 1, 384, 384, 2)), \
|
522 |
+
np.zeros((self.model_length - 1, 384, 384))
|
523 |
+
|
524 |
+
if resized_all_points_384_outmask.shape[0] != 0:
|
525 |
+
out_mask_flag = True
|
526 |
+
input_drag_384_outmask, input_mask_384_outmask = \
|
527 |
+
get_sparseflow_and_mask_forward(
|
528 |
+
resized_all_points_384_outmask,
|
529 |
+
self.model_length - 1, 384, 384
|
530 |
+
)
|
531 |
+
else:
|
532 |
+
input_drag_384_outmask, input_mask_384_outmask = \
|
533 |
+
np.zeros((self.model_length - 1, 384, 384, 2)), \
|
534 |
+
np.zeros((self.model_length - 1, 384, 384))
|
535 |
+
|
536 |
+
input_drag_384_inmask = torch.from_numpy(input_drag_384_inmask).unsqueeze(0) # [1, 13, h, w, 2]
|
537 |
+
input_mask_384_inmask = torch.from_numpy(input_mask_384_inmask).unsqueeze(0) # [1, 13, h, w]
|
538 |
+
input_drag_384_outmask = torch.from_numpy(input_drag_384_outmask).unsqueeze(0) # [1, 13, h, w, 2]
|
539 |
+
input_mask_384_outmask = torch.from_numpy(input_mask_384_outmask).unsqueeze(0) # [1, 13, h, w]
|
540 |
+
|
541 |
+
dir, base, ext = split_filename(first_frame_path)
|
542 |
+
id = base.split('_')[0]
|
543 |
+
|
544 |
+
image_pil = image2pil(first_frame_path)
|
545 |
+
image_pil = image_pil.resize((self.width, self.height), Image.BILINEAR).convert('RGB')
|
546 |
+
|
547 |
+
visualized_drag, _ = visualize_drag_v2(first_frame_path, resized_all_points, self.width, self.height)
|
548 |
+
|
549 |
+
motion_brush_viz_pil = Image.fromarray(motion_brush_viz.astype(np.uint8)).convert('RGBA')
|
550 |
+
visualized_drag = visualized_drag[0].convert('RGBA')
|
551 |
+
visualized_drag_brush = Image.alpha_composite(motion_brush_viz_pil, visualized_drag)
|
552 |
+
|
553 |
+
first_frames_transform = transforms.Compose([
|
554 |
+
lambda x: Image.fromarray(x),
|
555 |
+
transforms.ToTensor(),
|
556 |
+
])
|
557 |
+
|
558 |
+
outputs = None
|
559 |
+
ouput_video_list = []
|
560 |
+
ouput_flow_list = []
|
561 |
+
num_inference = 1
|
562 |
+
for i in tqdm(range(num_inference)):
|
563 |
+
if not outputs:
|
564 |
+
first_frames = image2arr(first_frame_path)
|
565 |
+
first_frames = repeat(first_frames_transform(first_frames), 'c h w -> b c h w', b=inference_batch_size).to(self.device)
|
566 |
+
else:
|
567 |
+
first_frames = outputs['logits_imgs'][:, -1]
|
568 |
+
|
569 |
+
|
570 |
+
outputs = self.forward_sample(
|
571 |
+
input_drag_384_inmask.to(self.device),
|
572 |
+
input_drag_384_outmask.to(self.device),
|
573 |
+
first_frames.to(self.device),
|
574 |
+
input_mask_384_inmask.to(self.device),
|
575 |
+
input_mask_384_outmask.to(self.device),
|
576 |
+
in_mask_flag,
|
577 |
+
out_mask_flag,
|
578 |
+
motion_brush_mask_384,
|
579 |
+
ctrl_scale)
|
580 |
+
|
581 |
+
ouput_video_list.append(outputs['logits_imgs'])
|
582 |
+
ouput_flow_list.append(outputs['flows'])
|
583 |
+
|
584 |
+
hint_path = os.path.join(output_dir_video, str(id), f'{id}_hint.png')
|
585 |
+
visualized_drag_brush.save(hint_path)
|
586 |
+
|
587 |
+
for i in range(inference_batch_size):
|
588 |
+
output_tensor = [ouput_video_list[0][i]]
|
589 |
+
flow_tensor = [ouput_flow_list[0][i]]
|
590 |
+
output_tensor = torch.cat(output_tensor, dim=0)
|
591 |
+
flow_tensor = torch.cat(flow_tensor, dim=0)
|
592 |
+
|
593 |
+
outputs_path = os.path.join(output_dir_video, str(id), f's{ctrl_scale}', f'{id}_output.gif')
|
594 |
+
flows_path = os.path.join(output_dir_video, str(id), f's{ctrl_scale}', f'{id}_flow.gif')
|
595 |
+
|
596 |
+
outputs_mp4_path = os.path.join(output_dir_video, str(id), f's{ctrl_scale}', f'{id}_output.mp4')
|
597 |
+
flows_mp4_path = os.path.join(output_dir_video, str(id), f's{ctrl_scale}', f'{id}_flow.mp4')
|
598 |
+
|
599 |
+
outputs_frames_path = os.path.join(output_dir_frame, str(id), f's{ctrl_scale}', f'{id}_output')
|
600 |
+
flows_frames_path = os.path.join(output_dir_frame, str(id), f's{ctrl_scale}', f'{id}_flow')
|
601 |
+
|
602 |
+
os.makedirs(os.path.join(output_dir_video, str(id), f's{ctrl_scale}'), exist_ok=True)
|
603 |
+
os.makedirs(os.path.join(outputs_frames_path), exist_ok=True)
|
604 |
+
os.makedirs(os.path.join(flows_frames_path), exist_ok=True)
|
605 |
+
|
606 |
+
print(output_tensor.shape)
|
607 |
+
|
608 |
+
output_RGB = output_tensor.permute(0, 2, 3, 1).mul(255).cpu().numpy()
|
609 |
+
flow_RGB = flow_tensor.permute(0, 2, 3, 1).mul(255).cpu().numpy()
|
610 |
+
|
611 |
+
torchvision.io.write_video(
|
612 |
+
outputs_mp4_path,
|
613 |
+
output_RGB,
|
614 |
+
fps=20, video_codec='h264', options={'crf': '10'}
|
615 |
+
)
|
616 |
+
|
617 |
+
torchvision.io.write_video(
|
618 |
+
flows_mp4_path,
|
619 |
+
flow_RGB,
|
620 |
+
fps=20, video_codec='h264', options={'crf': '10'}
|
621 |
+
)
|
622 |
+
|
623 |
+
imageio.mimsave(outputs_path, np.uint8(output_RGB), fps=20, loop=0)
|
624 |
+
|
625 |
+
imageio.mimsave(flows_path, np.uint8(flow_RGB), fps=20, loop=0)
|
626 |
+
|
627 |
+
for f in range(output_RGB.shape[0]):
|
628 |
+
Image.fromarray(np.uint8(output_RGB[f])).save(os.path.join(outputs_frames_path, f'{str(f).zfill(3)}.png'))
|
629 |
+
Image.fromarray(np.uint8(flow_RGB[f])).save(os.path.join(flows_frames_path, f'{str(f).zfill(3)}.png'))
|
630 |
+
|
631 |
+
return hint_path, outputs_path, flows_path, outputs_mp4_path, flows_mp4_path
|
632 |
+
|
633 |
+
|
634 |
+
with gr.Blocks() as demo:
|
635 |
+
gr.Markdown("""<h1 align="center">MOFA-Video</h1><br>""")
|
636 |
+
|
637 |
+
gr.Markdown("""Official Gradio Demo for <a href='https://myniuuu.github.io/MOFA_Video'><b>MOFA-Video: Controllable Image Animation via Generative Motion Field Adaptions in Frozen Image-to-Video Diffusion Model</b></a>.<br>""")
|
638 |
+
|
639 |
+
gr.Markdown(
|
640 |
+
"""
|
641 |
+
During the inference, kindly follow these instructions:
|
642 |
+
<br>
|
643 |
+
1. Use the "Upload Image" button to upload an image. Avoid dragging the image directly into the window. <br>
|
644 |
+
2. Proceed to draw trajectories: <br>
|
645 |
+
2.1. Click "Add Trajectory" first, then select points on the "Add Trajectory Here" image. The first click sets the starting point. Click multiple points to create a non-linear trajectory. To add a new trajectory, click "Add Trajectory" again and select points on the image. Avoid clicking the "Add Trajectory" button multiple times without clicking points in the image to add the trajectory, as this can lead to errors. <br>
|
646 |
+
2.2. After adding each trajectory, an optical flow image will be displayed automatically. Use it as a reference to adjust the trajectory for desired effects (e.g., area, intensity). <br>
|
647 |
+
2.3. To delete the latest trajectory, click "Delete Last Trajectory." <br>
|
648 |
+
2.4. Choose the Control Scale in the bar. This determines the control intensity. Setting it to 0 means no control (pure generation result of SVD itself), while setting it to 1 results in the strongest control (which will not lead to good results in most cases because of twisting artifacts). A preset value of 0.6 is recommended for most cases. <br>
|
649 |
+
2.5. To use the motion brush for restraining the control area of the trajectory, click to add masks on the "Add Motion Brush Here" image. The motion brush restricts the optical flow area derived from the trajectory whose starting point is within the motion brush. The displayed optical flow image will change correspondingly. Adjust the motion brush radius using the "Motion Brush Radius" bar. <br>
|
650 |
+
3. Click the "Run" button to animate the image according to the path. <br>
|
651 |
+
"""
|
652 |
+
)
|
653 |
+
|
654 |
+
target_size = 512
|
655 |
+
DragNUWA_net = Drag("cuda:0", target_size, target_size, 25)
|
656 |
+
first_frame_path = gr.State()
|
657 |
+
tracking_points = gr.State([])
|
658 |
+
motion_brush_points = gr.State([])
|
659 |
+
motion_brush_mask = gr.State()
|
660 |
+
motion_brush_viz = gr.State()
|
661 |
+
inference_batch_size = gr.State(1)
|
662 |
+
|
663 |
+
def preprocess_image(image):
|
664 |
+
|
665 |
+
image_pil = image2pil(image.name)
|
666 |
+
raw_w, raw_h = image_pil.size
|
667 |
+
|
668 |
+
max_edge = min(raw_w, raw_h)
|
669 |
+
resize_ratio = target_size / max_edge
|
670 |
+
|
671 |
+
image_pil = image_pil.resize((round(raw_w * resize_ratio), round(raw_h * resize_ratio)), Image.BILINEAR)
|
672 |
+
|
673 |
+
new_w, new_h = image_pil.size
|
674 |
+
crop_w = new_w - (new_w % 64)
|
675 |
+
crop_h = new_h - (new_h % 64)
|
676 |
+
|
677 |
+
image_pil = transforms.CenterCrop((crop_h, crop_w))(image_pil.convert('RGB'))
|
678 |
+
|
679 |
+
DragNUWA_net.width = crop_w
|
680 |
+
DragNUWA_net.height = crop_h
|
681 |
+
|
682 |
+
id = str(time.time()).split('.')[0]
|
683 |
+
os.makedirs(os.path.join(output_dir_video, str(id)), exist_ok=True)
|
684 |
+
os.makedirs(os.path.join(output_dir_frame, str(id)), exist_ok=True)
|
685 |
+
|
686 |
+
first_frame_path = os.path.join(output_dir_video, str(id), f"{id}_input.png")
|
687 |
+
image_pil.save(first_frame_path)
|
688 |
+
|
689 |
+
return first_frame_path, first_frame_path, first_frame_path, gr.State([]), gr.State([]), np.zeros((crop_h, crop_w)), np.zeros((crop_h, crop_w, 4))
|
690 |
+
|
691 |
+
def add_drag(tracking_points):
|
692 |
+
if len(tracking_points.constructor_args['value']) != 0 and tracking_points.constructor_args['value'][-1] == []:
|
693 |
+
return tracking_points
|
694 |
+
tracking_points.constructor_args['value'].append([])
|
695 |
+
return tracking_points
|
696 |
+
|
697 |
+
def add_mask(motion_brush_points):
|
698 |
+
motion_brush_points.constructor_args['value'].append([])
|
699 |
+
return motion_brush_points
|
700 |
+
|
701 |
+
def delete_last_drag(tracking_points, first_frame_path, motion_brush_mask):
|
702 |
+
if len(tracking_points.constructor_args['value']) > 0:
|
703 |
+
tracking_points.constructor_args['value'].pop()
|
704 |
+
transparent_background = Image.open(first_frame_path).convert('RGBA')
|
705 |
+
w, h = transparent_background.size
|
706 |
+
transparent_layer = np.zeros((h, w, 4))
|
707 |
+
for track in tracking_points.constructor_args['value']:
|
708 |
+
if len(track) > 1:
|
709 |
+
for i in range(len(track)-1):
|
710 |
+
start_point = track[i]
|
711 |
+
end_point = track[i+1]
|
712 |
+
vx = end_point[0] - start_point[0]
|
713 |
+
vy = end_point[1] - start_point[1]
|
714 |
+
arrow_length = np.sqrt(vx**2 + vy**2)
|
715 |
+
if i == len(track)-2:
|
716 |
+
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
|
717 |
+
else:
|
718 |
+
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
|
719 |
+
else:
|
720 |
+
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
|
721 |
+
|
722 |
+
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
|
723 |
+
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
|
724 |
+
|
725 |
+
viz_flow = DragNUWA_net.get_cmp_flow_from_tracking_points(tracking_points, motion_brush_mask, first_frame_path)
|
726 |
+
|
727 |
+
return tracking_points, trajectory_map, viz_flow
|
728 |
+
|
729 |
+
def add_motion_brushes(motion_brush_points, motion_brush_mask, transparent_layer, first_frame_path, radius, tracking_points, evt: gr.SelectData):
|
730 |
+
|
731 |
+
transparent_background = Image.open(first_frame_path).convert('RGBA')
|
732 |
+
w, h = transparent_background.size
|
733 |
+
|
734 |
+
motion_points = motion_brush_points.constructor_args['value']
|
735 |
+
motion_points.append(evt.index)
|
736 |
+
|
737 |
+
x, y = evt.index
|
738 |
+
|
739 |
+
cv2.circle(motion_brush_mask, (x, y), radius, 255, -1)
|
740 |
+
cv2.circle(transparent_layer, (x, y), radius, (0, 0, 255, 255), -1)
|
741 |
+
|
742 |
+
transparent_layer_pil = Image.fromarray(transparent_layer.astype(np.uint8))
|
743 |
+
motion_map = Image.alpha_composite(transparent_background, transparent_layer_pil)
|
744 |
+
|
745 |
+
viz_flow = DragNUWA_net.get_cmp_flow_from_tracking_points(tracking_points, motion_brush_mask, first_frame_path)
|
746 |
+
|
747 |
+
return motion_brush_mask, transparent_layer, motion_map, viz_flow
|
748 |
+
|
749 |
+
def add_tracking_points(tracking_points, first_frame_path, motion_brush_mask, evt: gr.SelectData):
|
750 |
+
|
751 |
+
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
|
752 |
+
|
753 |
+
if len(tracking_points.constructor_args['value']) == 0:
|
754 |
+
tracking_points.constructor_args['value'].append([])
|
755 |
+
|
756 |
+
tracking_points.constructor_args['value'][-1].append(evt.index)
|
757 |
+
|
758 |
+
# print(tracking_points.constructor_args['value'])
|
759 |
+
|
760 |
+
transparent_background = Image.open(first_frame_path).convert('RGBA')
|
761 |
+
w, h = transparent_background.size
|
762 |
+
transparent_layer = np.zeros((h, w, 4))
|
763 |
+
for track in tracking_points.constructor_args['value']:
|
764 |
+
if len(track) > 1:
|
765 |
+
for i in range(len(track)-1):
|
766 |
+
start_point = track[i]
|
767 |
+
end_point = track[i+1]
|
768 |
+
vx = end_point[0] - start_point[0]
|
769 |
+
vy = end_point[1] - start_point[1]
|
770 |
+
arrow_length = np.sqrt(vx**2 + vy**2)
|
771 |
+
if i == len(track)-2:
|
772 |
+
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
|
773 |
+
else:
|
774 |
+
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
|
775 |
+
else:
|
776 |
+
cv2.circle(transparent_layer, tuple(track[0]), 3, (255, 0, 0, 255), -1)
|
777 |
+
|
778 |
+
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
|
779 |
+
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
|
780 |
+
|
781 |
+
viz_flow = DragNUWA_net.get_cmp_flow_from_tracking_points(tracking_points, motion_brush_mask, first_frame_path)
|
782 |
+
|
783 |
+
return tracking_points, trajectory_map, viz_flow
|
784 |
+
|
785 |
+
with gr.Row():
|
786 |
+
with gr.Column(scale=2):
|
787 |
+
image_upload_button = gr.UploadButton(label="Upload Image",file_types=["image"])
|
788 |
+
add_drag_button = gr.Button(value="Add Trajectory")
|
789 |
+
run_button = gr.Button(value="Run")
|
790 |
+
delete_last_drag_button = gr.Button(value="Delete Last Trajectory")
|
791 |
+
brush_radius = gr.Slider(label='Motion Brush Radius',
|
792 |
+
minimum=1,
|
793 |
+
maximum=100,
|
794 |
+
step=1,
|
795 |
+
value=10)
|
796 |
+
ctrl_scale = gr.Slider(label='Control Scale',
|
797 |
+
minimum=0,
|
798 |
+
maximum=1.,
|
799 |
+
step=0.01,
|
800 |
+
value=0.6)
|
801 |
+
|
802 |
+
with gr.Column(scale=5):
|
803 |
+
input_image = gr.Image(label="Add Trajectory Here",
|
804 |
+
interactive=True)
|
805 |
+
with gr.Column(scale=5):
|
806 |
+
input_image_mask = gr.Image(label="Add Motion Brush Here",
|
807 |
+
interactive=True)
|
808 |
+
|
809 |
+
with gr.Row():
|
810 |
+
with gr.Column(scale=6):
|
811 |
+
viz_flow = gr.Image(label="Visualized Flow")
|
812 |
+
with gr.Column(scale=6):
|
813 |
+
hint_image = gr.Image(label="Visualized Hint Image")
|
814 |
+
with gr.Row():
|
815 |
+
with gr.Column(scale=6):
|
816 |
+
output_video = gr.Image(label="Output Video")
|
817 |
+
with gr.Column(scale=6):
|
818 |
+
output_flow = gr.Image(label="Output Flow")
|
819 |
+
|
820 |
+
with gr.Row():
|
821 |
+
with gr.Column(scale=6):
|
822 |
+
output_video_mp4 = gr.Video(label="Output Video mp4")
|
823 |
+
with gr.Column(scale=6):
|
824 |
+
output_flow_mp4 = gr.Video(label="Output Flow mp4")
|
825 |
+
|
826 |
+
image_upload_button.upload(preprocess_image, image_upload_button, [input_image, input_image_mask, first_frame_path, tracking_points, motion_brush_points, motion_brush_mask, motion_brush_viz])
|
827 |
+
|
828 |
+
add_drag_button.click(add_drag, tracking_points, tracking_points)
|
829 |
+
|
830 |
+
delete_last_drag_button.click(delete_last_drag, [tracking_points, first_frame_path, motion_brush_mask], [tracking_points, input_image, viz_flow])
|
831 |
+
|
832 |
+
input_image.select(add_tracking_points, [tracking_points, first_frame_path, motion_brush_mask], [tracking_points, input_image, viz_flow])
|
833 |
+
|
834 |
+
input_image_mask.select(add_motion_brushes, [motion_brush_points, motion_brush_mask, motion_brush_viz, first_frame_path, brush_radius, tracking_points], [motion_brush_mask, motion_brush_viz, input_image_mask, viz_flow])
|
835 |
+
|
836 |
+
run_button.click(DragNUWA_net.run, [first_frame_path, tracking_points, inference_batch_size, motion_brush_mask, motion_brush_viz, ctrl_scale], [hint_image, output_video, output_flow, output_video_mp4, output_flow_mp4])
|
837 |
+
|
838 |
+
demo.launch(server_name="127.0.0.1", debug=True, server_port=9080)
|
ckpts/controlnet/config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "FlowControlNet",
|
3 |
+
"_diffusers_version": "0.25.1",
|
4 |
+
"_name_or_path": "/apdcephfs_cq10/share_1290939/myniu/svd_controlnet/svdxt11_featureflow_forward_avg_256256_stride4/unimatch_512384/checkpoint-100000/controlnet",
|
5 |
+
"addition_time_embed_dim": 256,
|
6 |
+
"block_out_channels": [
|
7 |
+
320,
|
8 |
+
640,
|
9 |
+
1280,
|
10 |
+
1280
|
11 |
+
],
|
12 |
+
"conditioning_channels": 3,
|
13 |
+
"conditioning_embedding_out_channels": [
|
14 |
+
16,
|
15 |
+
32,
|
16 |
+
96,
|
17 |
+
256
|
18 |
+
],
|
19 |
+
"cross_attention_dim": 1024,
|
20 |
+
"down_block_types": [
|
21 |
+
"CrossAttnDownBlockSpatioTemporal",
|
22 |
+
"CrossAttnDownBlockSpatioTemporal",
|
23 |
+
"CrossAttnDownBlockSpatioTemporal",
|
24 |
+
"DownBlockSpatioTemporal"
|
25 |
+
],
|
26 |
+
"in_channels": 8,
|
27 |
+
"layers_per_block": 2,
|
28 |
+
"num_attention_heads": [
|
29 |
+
5,
|
30 |
+
10,
|
31 |
+
10,
|
32 |
+
20
|
33 |
+
],
|
34 |
+
"num_frames": 25,
|
35 |
+
"out_channels": 4,
|
36 |
+
"projection_class_embeddings_input_dim": 768,
|
37 |
+
"sample_size": null,
|
38 |
+
"transformer_layers_per_block": 1,
|
39 |
+
"up_block_types": [
|
40 |
+
"UpBlockSpatioTemporal",
|
41 |
+
"CrossAttnUpBlockSpatioTemporal",
|
42 |
+
"CrossAttnUpBlockSpatioTemporal",
|
43 |
+
"CrossAttnUpBlockSpatioTemporal"
|
44 |
+
]
|
45 |
+
}
|
ckpts/controlnet/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1303192a1e72d071e15e7eb37fd1ea15f6424aaf2cd6b6b1e1bb3b1e9e75d37e
|
3 |
+
size 2777345452
|
models/cmp/experiments/rep_learning/alexnet_yfcc+youtube_voc_16gpu_140k/config.yaml
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
arch: CMP
|
3 |
+
total_iter: 140000
|
4 |
+
lr_steps: [80000, 120000]
|
5 |
+
lr_mults: [0.1, 0.1]
|
6 |
+
lr: 0.1
|
7 |
+
optim: SGD
|
8 |
+
warmup_lr: []
|
9 |
+
warmup_steps: []
|
10 |
+
module:
|
11 |
+
arch: CMP
|
12 |
+
image_encoder: alexnet_fcn_32x
|
13 |
+
sparse_encoder: shallownet32x
|
14 |
+
flow_decoder: MotionDecoderPlain
|
15 |
+
skip_layer: False
|
16 |
+
img_enc_dim: 256
|
17 |
+
sparse_enc_dim: 16
|
18 |
+
output_dim: 198
|
19 |
+
decoder_combo: [1,2,4]
|
20 |
+
pretrained_image_encoder: False
|
21 |
+
flow_criterion: "DiscreteLoss"
|
22 |
+
nbins: 99
|
23 |
+
fmax: 50
|
24 |
+
data:
|
25 |
+
workers: 2
|
26 |
+
batch_size: 12
|
27 |
+
batch_size_test: 1
|
28 |
+
data_mean: [123.675, 116.28, 103.53] # RGB
|
29 |
+
data_div: [58.395, 57.12, 57.375]
|
30 |
+
short_size: 416
|
31 |
+
crop_size: [384, 384]
|
32 |
+
sample_strategy: ['grid', 'watershed']
|
33 |
+
sample_bg_ratio: 0.000025
|
34 |
+
nms_ks: 81
|
35 |
+
max_num_guide: 150
|
36 |
+
|
37 |
+
flow_file_type: "jpg"
|
38 |
+
image_flow_aug:
|
39 |
+
flip: False
|
40 |
+
flow_aug:
|
41 |
+
reverse: False
|
42 |
+
scale: False
|
43 |
+
rotate: False
|
44 |
+
train_source:
|
45 |
+
- data/yfcc/lists/train.txt
|
46 |
+
- data/youtube9000/lists/train.txt
|
47 |
+
val_source:
|
48 |
+
- data/yfcc/lists/val.txt
|
49 |
+
memcached: False
|
50 |
+
trainer:
|
51 |
+
initial_val: True
|
52 |
+
print_freq: 100
|
53 |
+
val_freq: 10000
|
54 |
+
save_freq: 10000
|
55 |
+
val_iter: -1
|
56 |
+
val_disp_start_iter: 0
|
57 |
+
val_disp_end_iter: 16
|
58 |
+
loss_record: ['loss_flow']
|
59 |
+
tensorboard: False
|
models/cmp/experiments/rep_learning/alexnet_yfcc+youtube_voc_16gpu_140k/resume.sh
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
python -m torch.distributed.launch --nproc_per_node=8 \
|
4 |
+
--nnodes=2 --node_rank=$1 \
|
5 |
+
--master_addr="192.168.1.1" main.py \
|
6 |
+
--config $work_path/config.yaml --launcher pytorch \
|
7 |
+
--load-iter 10000 \
|
8 |
+
--resume
|
models/cmp/experiments/rep_learning/alexnet_yfcc+youtube_voc_16gpu_140k/resume_slurm.sh
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
partition=$1
|
4 |
+
GLOG_vmodule=MemcachedClient=-1 srun --mpi=pmi2 -p $partition -n16 \
|
5 |
+
--gres=gpu:8 --ntasks-per-node=8 \
|
6 |
+
python -u main.py \
|
7 |
+
--config $work_path/config.yaml --launcher slurm \
|
8 |
+
--load-iter 10000 \
|
9 |
+
--resume
|
models/cmp/experiments/rep_learning/alexnet_yfcc+youtube_voc_16gpu_140k/train.sh
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
python -m torch.distributed.launch --nproc_per_node=8 \
|
4 |
+
--nnodes=2 --node_rank=$1 \
|
5 |
+
--master_addr="192.168.1.1" main.py \
|
6 |
+
--config $work_path/config.yaml --launcher pytorch
|
models/cmp/experiments/rep_learning/alexnet_yfcc+youtube_voc_16gpu_140k/train_slurm.sh
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
partition=$1
|
4 |
+
GLOG_vmodule=MemcachedClient=-1 srun --mpi=pmi2 -p $partition -n16 \
|
5 |
+
--gres=gpu:8 --ntasks-per-node=8 \
|
6 |
+
python -u main.py \
|
7 |
+
--config $work_path/config.yaml --launcher slurm
|
models/cmp/experiments/rep_learning/alexnet_yfcc+youtube_voc_16gpu_140k/validate.sh
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
python -m torch.distributed.launch --nproc_per_node=8 main.py \
|
4 |
+
--config $work_path/config.yaml --launcher pytorch \
|
5 |
+
--load-iter 70000 \
|
6 |
+
--validate
|
models/cmp/experiments/rep_learning/alexnet_yfcc+youtube_voc_16gpu_140k/validate_slurm.sh
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
partition=$1
|
4 |
+
GLOG_vmodule=MemcachedClient=-1 srun --mpi=pmi2 -p $partition -n8 \
|
5 |
+
--gres=gpu:8 --ntasks-per-node=8 \
|
6 |
+
python -u main.py --config $work_path/config.yaml --launcher slurm \
|
7 |
+
--load-iter 70000 \
|
8 |
+
--validate
|
models/cmp/experiments/rep_learning/alexnet_yfcc_voc_16gpu_70k/config.yaml
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
arch: CMP
|
3 |
+
total_iter: 70000
|
4 |
+
lr_steps: [40000, 60000]
|
5 |
+
lr_mults: [0.1, 0.1]
|
6 |
+
lr: 0.1
|
7 |
+
optim: SGD
|
8 |
+
warmup_lr: []
|
9 |
+
warmup_steps: []
|
10 |
+
module:
|
11 |
+
arch: CMP
|
12 |
+
image_encoder: alexnet_fcn_32x
|
13 |
+
sparse_encoder: shallownet32x
|
14 |
+
flow_decoder: MotionDecoderPlain
|
15 |
+
skip_layer: False
|
16 |
+
img_enc_dim: 256
|
17 |
+
sparse_enc_dim: 16
|
18 |
+
output_dim: 198
|
19 |
+
decoder_combo: [1,2,4]
|
20 |
+
pretrained_image_encoder: False
|
21 |
+
flow_criterion: "DiscreteLoss"
|
22 |
+
nbins: 99
|
23 |
+
fmax: 50
|
24 |
+
data:
|
25 |
+
workers: 2
|
26 |
+
batch_size: 12
|
27 |
+
batch_size_test: 1
|
28 |
+
data_mean: [123.675, 116.28, 103.53] # RGB
|
29 |
+
data_div: [58.395, 57.12, 57.375]
|
30 |
+
short_size: 416
|
31 |
+
crop_size: [384, 384]
|
32 |
+
sample_strategy: ['grid', 'watershed']
|
33 |
+
sample_bg_ratio: 0.00015625
|
34 |
+
nms_ks: 41
|
35 |
+
max_num_guide: 150
|
36 |
+
|
37 |
+
flow_file_type: "jpg"
|
38 |
+
image_flow_aug:
|
39 |
+
flip: False
|
40 |
+
flow_aug:
|
41 |
+
reverse: False
|
42 |
+
scale: False
|
43 |
+
rotate: False
|
44 |
+
train_source:
|
45 |
+
- data/yfcc/lists/train.txt
|
46 |
+
val_source:
|
47 |
+
- data/yfcc/lists/val.txt
|
48 |
+
memcached: False
|
49 |
+
trainer:
|
50 |
+
initial_val: True
|
51 |
+
print_freq: 100
|
52 |
+
val_freq: 10000
|
53 |
+
save_freq: 10000
|
54 |
+
val_iter: -1
|
55 |
+
val_disp_start_iter: 0
|
56 |
+
val_disp_end_iter: 16
|
57 |
+
loss_record: ['loss_flow']
|
58 |
+
tensorboard: False
|
models/cmp/experiments/rep_learning/alexnet_yfcc_voc_16gpu_70k/resume.sh
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
python -m torch.distributed.launch --nproc_per_node=8 \
|
4 |
+
--nnodes=2 --node_rank=$1 \
|
5 |
+
--master_addr="192.168.1.1" main.py \
|
6 |
+
--config $work_path/config.yaml --launcher pytorch \
|
7 |
+
--load-iter 10000 \
|
8 |
+
--resume
|
models/cmp/experiments/rep_learning/alexnet_yfcc_voc_16gpu_70k/resume_slurm.sh
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
partition=$1
|
4 |
+
GLOG_vmodule=MemcachedClient=-1 srun --mpi=pmi2 -p $partition -n16 \
|
5 |
+
--gres=gpu:8 --ntasks-per-node=8 \
|
6 |
+
python -u main.py \
|
7 |
+
--config $work_path/config.yaml --launcher slurm \
|
8 |
+
--load-iter 10000 \
|
9 |
+
--resume
|
models/cmp/experiments/rep_learning/alexnet_yfcc_voc_16gpu_70k/train.sh
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
python -m torch.distributed.launch --nproc_per_node=8 \
|
4 |
+
--nnodes=2 --node_rank=$1 \
|
5 |
+
--master_addr="192.168.1.1" main.py \
|
6 |
+
--config $work_path/config.yaml --launcher pytorch
|
models/cmp/experiments/rep_learning/alexnet_yfcc_voc_16gpu_70k/train_slurm.sh
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
partition=$1
|
4 |
+
GLOG_vmodule=MemcachedClient=-1 srun --mpi=pmi2 -p $partition -n16 \
|
5 |
+
--gres=gpu:8 --ntasks-per-node=8 \
|
6 |
+
python -u main.py \
|
7 |
+
--config $work_path/config.yaml --launcher slurm
|
models/cmp/experiments/rep_learning/alexnet_yfcc_voc_16gpu_70k/validate.sh
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
python -m torch.distributed.launch --nproc_per_node=8 main.py \
|
4 |
+
--config $work_path/config.yaml --launcher pytorch \
|
5 |
+
--load-iter 70000 \
|
6 |
+
--validate
|
models/cmp/experiments/rep_learning/alexnet_yfcc_voc_16gpu_70k/validate_slurm.sh
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
partition=$1
|
4 |
+
GLOG_vmodule=MemcachedClient=-1 srun --mpi=pmi2 -p $partition -n8 \
|
5 |
+
--gres=gpu:8 --ntasks-per-node=8 \
|
6 |
+
python -u main.py --config $work_path/config.yaml --launcher slurm \
|
7 |
+
--load-iter 70000 \
|
8 |
+
--validate
|
models/cmp/experiments/rep_learning/alexnet_yfcc_voc_8gpu_140k/config.yaml
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
arch: CMP
|
3 |
+
total_iter: 140000
|
4 |
+
lr_steps: [80000, 120000]
|
5 |
+
lr_mults: [0.1, 0.1]
|
6 |
+
lr: 0.1
|
7 |
+
optim: SGD
|
8 |
+
warmup_lr: []
|
9 |
+
warmup_steps: []
|
10 |
+
module:
|
11 |
+
arch: CMP
|
12 |
+
image_encoder: alexnet_fcn_32x
|
13 |
+
sparse_encoder: shallownet32x
|
14 |
+
flow_decoder: MotionDecoderPlain
|
15 |
+
skip_layer: False
|
16 |
+
img_enc_dim: 256
|
17 |
+
sparse_enc_dim: 16
|
18 |
+
output_dim: 198
|
19 |
+
decoder_combo: [1,2,4]
|
20 |
+
pretrained_image_encoder: False
|
21 |
+
flow_criterion: "DiscreteLoss"
|
22 |
+
nbins: 99
|
23 |
+
fmax: 50
|
24 |
+
data:
|
25 |
+
workers: 2
|
26 |
+
batch_size: 12
|
27 |
+
batch_size_test: 1
|
28 |
+
data_mean: [123.675, 116.28, 103.53] # RGB
|
29 |
+
data_div: [58.395, 57.12, 57.375]
|
30 |
+
short_size: 416
|
31 |
+
crop_size: [384, 384]
|
32 |
+
sample_strategy: ['grid', 'watershed']
|
33 |
+
sample_bg_ratio: 0.00015625
|
34 |
+
nms_ks: 41
|
35 |
+
max_num_guide: 150
|
36 |
+
|
37 |
+
flow_file_type: "jpg"
|
38 |
+
image_flow_aug:
|
39 |
+
flip: False
|
40 |
+
flow_aug:
|
41 |
+
reverse: False
|
42 |
+
scale: False
|
43 |
+
rotate: False
|
44 |
+
train_source:
|
45 |
+
- data/yfcc/lists/train.txt
|
46 |
+
val_source:
|
47 |
+
- data/yfcc/lists/val.txt
|
48 |
+
memcached: False
|
49 |
+
trainer:
|
50 |
+
initial_val: True
|
51 |
+
print_freq: 100
|
52 |
+
val_freq: 10000
|
53 |
+
save_freq: 10000
|
54 |
+
val_iter: -1
|
55 |
+
val_disp_start_iter: 0
|
56 |
+
val_disp_end_iter: 16
|
57 |
+
loss_record: ['loss_flow']
|
58 |
+
tensorboard: False
|
models/cmp/experiments/rep_learning/alexnet_yfcc_voc_8gpu_140k/resume.sh
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
python -m torch.distributed.launch --nproc_per_node=8 main.py \
|
4 |
+
--config $work_path/config.yaml --launcher pytorch \
|
5 |
+
--load-iter 10000 \
|
6 |
+
--resume
|
models/cmp/experiments/rep_learning/alexnet_yfcc_voc_8gpu_140k/resume_slurm.sh
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
partition=$1
|
4 |
+
GLOG_vmodule=MemcachedClient=-1 srun --mpi=pmi2 -p $partition -n8 \
|
5 |
+
--gres=gpu:8 --ntasks-per-node=8 \
|
6 |
+
python -u main.py \
|
7 |
+
--config $work_path/config.yaml --launcher slurm \
|
8 |
+
--load-iter 10000 \
|
9 |
+
--resume
|
models/cmp/experiments/rep_learning/alexnet_yfcc_voc_8gpu_140k/train.sh
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
python -m torch.distributed.launch --nproc_per_node=8 main.py \
|
4 |
+
--config $work_path/config.yaml --launcher pytorch
|
models/cmp/experiments/rep_learning/alexnet_yfcc_voc_8gpu_140k/train_slurm.sh
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
partition=$1
|
4 |
+
GLOG_vmodule=MemcachedClient=-1 srun --mpi=pmi2 -p $partition -n8 \
|
5 |
+
--gres=gpu:8 --ntasks-per-node=8 \
|
6 |
+
python -u main.py \
|
7 |
+
--config $work_path/config.yaml --launcher slurm
|
models/cmp/experiments/rep_learning/alexnet_yfcc_voc_8gpu_140k/validate.sh
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
python -m torch.distributed.launch --nproc_per_node=8 main.py \
|
4 |
+
--config $work_path/config.yaml --launcher pytorch \
|
5 |
+
--load-iter 70000 \
|
6 |
+
--validate
|
models/cmp/experiments/rep_learning/alexnet_yfcc_voc_8gpu_140k/validate_slurm.sh
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
partition=$1
|
4 |
+
GLOG_vmodule=MemcachedClient=-1 srun --mpi=pmi2 -p $partition -n8 \
|
5 |
+
--gres=gpu:8 --ntasks-per-node=8 \
|
6 |
+
python -u main.py --config $work_path/config.yaml --launcher slurm \
|
7 |
+
--load-iter 70000 \
|
8 |
+
--validate
|
models/cmp/experiments/rep_learning/resnet50_yfcc+youtube+vip+mpii_lip_16gpu_70k/config.yaml
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
arch: CMP
|
3 |
+
total_iter: 70000
|
4 |
+
lr_steps: [40000, 60000]
|
5 |
+
lr_mults: [0.1, 0.1]
|
6 |
+
lr: 0.1
|
7 |
+
optim: SGD
|
8 |
+
warmup_lr: []
|
9 |
+
warmup_steps: []
|
10 |
+
module:
|
11 |
+
arch: CMP
|
12 |
+
image_encoder: resnet50
|
13 |
+
sparse_encoder: shallownet8x
|
14 |
+
flow_decoder: MotionDecoderPlain
|
15 |
+
skip_layer: False
|
16 |
+
img_enc_dim: 256
|
17 |
+
sparse_enc_dim: 16
|
18 |
+
output_dim: 198
|
19 |
+
decoder_combo: [1,2,4]
|
20 |
+
pretrained_image_encoder: False
|
21 |
+
flow_criterion: "DiscreteLoss"
|
22 |
+
nbins: 99
|
23 |
+
fmax: 50
|
24 |
+
data:
|
25 |
+
workers: 2
|
26 |
+
batch_size: 10
|
27 |
+
batch_size_test: 1
|
28 |
+
data_mean: [123.675, 116.28, 103.53] # RGB
|
29 |
+
data_div: [58.395, 57.12, 57.375]
|
30 |
+
short_size: 416
|
31 |
+
crop_size: [320, 320]
|
32 |
+
sample_strategy: ['grid', 'watershed']
|
33 |
+
sample_bg_ratio: 0.00015625
|
34 |
+
nms_ks: 15
|
35 |
+
max_num_guide: -1
|
36 |
+
|
37 |
+
flow_file_type: "jpg"
|
38 |
+
image_flow_aug:
|
39 |
+
flip: False
|
40 |
+
flow_aug:
|
41 |
+
reverse: False
|
42 |
+
scale: False
|
43 |
+
rotate: False
|
44 |
+
train_source:
|
45 |
+
- data/yfcc/lists/train.txt
|
46 |
+
- data/youtube9000/lists/train.txt
|
47 |
+
- data/VIP/lists/train.txt
|
48 |
+
- data/MPII/lists/train.txt
|
49 |
+
val_source:
|
50 |
+
- data/yfcc/lists/val.txt
|
51 |
+
memcached: False
|
52 |
+
trainer:
|
53 |
+
initial_val: True
|
54 |
+
print_freq: 100
|
55 |
+
val_freq: 10000
|
56 |
+
save_freq: 10000
|
57 |
+
val_iter: -1
|
58 |
+
val_disp_start_iter: 0
|
59 |
+
val_disp_end_iter: 16
|
60 |
+
loss_record: ['loss_flow']
|
61 |
+
tensorboard: False
|
models/cmp/experiments/rep_learning/resnet50_yfcc+youtube+vip+mpii_lip_16gpu_70k/resume.sh
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
python -m torch.distributed.launch --nproc_per_node=8 \
|
4 |
+
--nnodes=2 --node_rank=$1 \
|
5 |
+
--master_addr="192.168.1.1" main.py \
|
6 |
+
--config $work_path/config.yaml --launcher pytorch \
|
7 |
+
--load-iter 10000 \
|
8 |
+
--resume
|
models/cmp/experiments/rep_learning/resnet50_yfcc+youtube+vip+mpii_lip_16gpu_70k/resume_slurm.sh
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
partition=$1
|
4 |
+
GLOG_vmodule=MemcachedClient=-1 srun --mpi=pmi2 -p $partition -n16 \
|
5 |
+
--gres=gpu:8 --ntasks-per-node=8 \
|
6 |
+
python -u main.py \
|
7 |
+
--config $work_path/config.yaml --launcher slurm \
|
8 |
+
--load-iter 10000 \
|
9 |
+
--resume
|
models/cmp/experiments/rep_learning/resnet50_yfcc+youtube+vip+mpii_lip_16gpu_70k/train.sh
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
python -m torch.distributed.launch --nproc_per_node=8 \
|
4 |
+
--nnodes=2 --node_rank=$1 \
|
5 |
+
--master_addr="192.168.1.1" main.py \
|
6 |
+
--config $work_path/config.yaml --launcher pytorch
|
models/cmp/experiments/rep_learning/resnet50_yfcc+youtube+vip+mpii_lip_16gpu_70k/train_slurm.sh
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
partition=$1
|
4 |
+
GLOG_vmodule=MemcachedClient=-1 srun --mpi=pmi2 -p $partition -n16 \
|
5 |
+
--gres=gpu:8 --ntasks-per-node=8 \
|
6 |
+
python -u main.py \
|
7 |
+
--config $work_path/config.yaml --launcher slurm
|
models/cmp/experiments/rep_learning/resnet50_yfcc+youtube+vip+mpii_lip_16gpu_70k/validate.sh
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
python -m torch.distributed.launch --nproc_per_node=8 main.py \
|
4 |
+
--config $work_path/config.yaml --launcher pytorch \
|
5 |
+
--load-iter 70000 \
|
6 |
+
--validate
|
models/cmp/experiments/rep_learning/resnet50_yfcc+youtube+vip+mpii_lip_16gpu_70k/validate_slurm.sh
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
partition=$1
|
4 |
+
GLOG_vmodule=MemcachedClient=-1 srun --mpi=pmi2 -p $partition -n8 \
|
5 |
+
--gres=gpu:8 --ntasks-per-node=8 \
|
6 |
+
python -u main.py --config $work_path/config.yaml --launcher slurm \
|
7 |
+
--load-iter 70000 \
|
8 |
+
--validate
|
models/cmp/experiments/rep_learning/resnet50_yfcc_coco_16gpu_42k/config.yaml
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
arch: CMP
|
3 |
+
total_iter: 42000
|
4 |
+
lr_steps: [24000, 36000]
|
5 |
+
lr_mults: [0.1, 0.1]
|
6 |
+
lr: 0.1
|
7 |
+
optim: SGD
|
8 |
+
warmup_lr: []
|
9 |
+
warmup_steps: []
|
10 |
+
module:
|
11 |
+
arch: CMP
|
12 |
+
image_encoder: resnet50
|
13 |
+
sparse_encoder: shallownet8x
|
14 |
+
flow_decoder: MotionDecoderPlain
|
15 |
+
skip_layer: False
|
16 |
+
img_enc_dim: 256
|
17 |
+
sparse_enc_dim: 16
|
18 |
+
output_dim: 198
|
19 |
+
decoder_combo: [1,2,4]
|
20 |
+
pretrained_image_encoder: False
|
21 |
+
flow_criterion: "DiscreteLoss"
|
22 |
+
nbins: 99
|
23 |
+
fmax: 50
|
24 |
+
data:
|
25 |
+
workers: 2
|
26 |
+
batch_size: 16
|
27 |
+
batch_size_test: 1
|
28 |
+
data_mean: [123.675, 116.28, 103.53] # RGB
|
29 |
+
data_div: [58.395, 57.12, 57.375]
|
30 |
+
short_size: 333
|
31 |
+
crop_size: [256, 256]
|
32 |
+
sample_strategy: ['grid', 'watershed']
|
33 |
+
sample_bg_ratio: 0.00005632
|
34 |
+
nms_ks: 49
|
35 |
+
max_num_guide: -1
|
36 |
+
|
37 |
+
flow_file_type: "jpg"
|
38 |
+
image_flow_aug:
|
39 |
+
flip: False
|
40 |
+
flow_aug:
|
41 |
+
reverse: False
|
42 |
+
scale: False
|
43 |
+
rotate: False
|
44 |
+
train_source:
|
45 |
+
- data/yfcc/lists/train.txt
|
46 |
+
val_source:
|
47 |
+
- data/yfcc/lists/val.txt
|
48 |
+
memcached: False
|
49 |
+
trainer:
|
50 |
+
initial_val: True
|
51 |
+
print_freq: 100
|
52 |
+
val_freq: 10000
|
53 |
+
save_freq: 10000
|
54 |
+
val_iter: -1
|
55 |
+
val_disp_start_iter: 0
|
56 |
+
val_disp_end_iter: 16
|
57 |
+
loss_record: ['loss_flow']
|
58 |
+
tensorboard: False
|
models/cmp/experiments/rep_learning/resnet50_yfcc_coco_16gpu_42k/resume.sh
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
python -m torch.distributed.launch --nproc_per_node=8 \
|
4 |
+
--nnodes=2 --node_rank=$1 \
|
5 |
+
--master_addr="192.168.1.1" main.py \
|
6 |
+
--config $work_path/config.yaml --launcher pytorch \
|
7 |
+
--load-iter 10000 \
|
8 |
+
--resume
|
models/cmp/experiments/rep_learning/resnet50_yfcc_coco_16gpu_42k/resume_slurm.sh
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
partition=$1
|
4 |
+
GLOG_vmodule=MemcachedClient=-1 srun --mpi=pmi2 -p $partition -n16 \
|
5 |
+
--gres=gpu:8 --ntasks-per-node=8 \
|
6 |
+
python -u main.py \
|
7 |
+
--config $work_path/config.yaml --launcher slurm \
|
8 |
+
--load-iter 10000 \
|
9 |
+
--resume
|
models/cmp/experiments/rep_learning/resnet50_yfcc_coco_16gpu_42k/train.sh
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
python -m torch.distributed.launch --nproc_per_node=8 \
|
4 |
+
--nnodes=2 --node_rank=$1 \
|
5 |
+
--master_addr="192.168.1.1" main.py \
|
6 |
+
--config $work_path/config.yaml --launcher pytorch
|
models/cmp/experiments/rep_learning/resnet50_yfcc_coco_16gpu_42k/train_slurm.sh
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
partition=$1
|
4 |
+
GLOG_vmodule=MemcachedClient=-1 srun --mpi=pmi2 -p $partition -n16 \
|
5 |
+
--gres=gpu:8 --ntasks-per-node=8 \
|
6 |
+
python -u main.py \
|
7 |
+
--config $work_path/config.yaml --launcher slurm
|
models/cmp/experiments/rep_learning/resnet50_yfcc_coco_16gpu_42k/validate.sh
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
python -m torch.distributed.launch --nproc_per_node=8 main.py \
|
4 |
+
--config $work_path/config.yaml --launcher pytorch \
|
5 |
+
--load-iter 70000 \
|
6 |
+
--validate
|
models/cmp/experiments/rep_learning/resnet50_yfcc_coco_16gpu_42k/validate_slurm.sh
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
partition=$1
|
4 |
+
GLOG_vmodule=MemcachedClient=-1 srun --mpi=pmi2 -p $partition -n8 \
|
5 |
+
--gres=gpu:8 --ntasks-per-node=8 \
|
6 |
+
python -u main.py --config $work_path/config.yaml --launcher slurm \
|
7 |
+
--load-iter 70000 \
|
8 |
+
--validate
|
models/cmp/experiments/rep_learning/resnet50_yfcc_voc_16gpu_42k/config.yaml
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
arch: CMP
|
3 |
+
total_iter: 42000
|
4 |
+
lr_steps: [24000, 36000]
|
5 |
+
lr_mults: [0.1, 0.1]
|
6 |
+
lr: 0.1
|
7 |
+
optim: SGD
|
8 |
+
warmup_lr: []
|
9 |
+
warmup_steps: []
|
10 |
+
module:
|
11 |
+
arch: CMP
|
12 |
+
image_encoder: resnet50
|
13 |
+
sparse_encoder: shallownet8x
|
14 |
+
flow_decoder: MotionDecoderPlain
|
15 |
+
skip_layer: False
|
16 |
+
img_enc_dim: 256
|
17 |
+
sparse_enc_dim: 16
|
18 |
+
output_dim: 198
|
19 |
+
decoder_combo: [1,2,4]
|
20 |
+
pretrained_image_encoder: False
|
21 |
+
flow_criterion: "DiscreteLoss"
|
22 |
+
nbins: 99
|
23 |
+
fmax: 50
|
24 |
+
data:
|
25 |
+
workers: 2
|
26 |
+
batch_size: 10
|
27 |
+
batch_size_test: 1
|
28 |
+
data_mean: [123.675, 116.28, 103.53] # RGB
|
29 |
+
data_div: [58.395, 57.12, 57.375]
|
30 |
+
short_size: 416
|
31 |
+
crop_size: [320, 320]
|
32 |
+
sample_strategy: ['grid', 'watershed']
|
33 |
+
sample_bg_ratio: 0.00003629
|
34 |
+
nms_ks: 67
|
35 |
+
max_num_guide: -1
|
36 |
+
|
37 |
+
flow_file_type: "jpg"
|
38 |
+
image_flow_aug:
|
39 |
+
flip: False
|
40 |
+
flow_aug:
|
41 |
+
reverse: False
|
42 |
+
scale: False
|
43 |
+
rotate: False
|
44 |
+
train_source:
|
45 |
+
- data/yfcc/lists/train.txt
|
46 |
+
val_source:
|
47 |
+
- data/yfcc/lists/val.txt
|
48 |
+
memcached: False
|
49 |
+
trainer:
|
50 |
+
initial_val: True
|
51 |
+
print_freq: 100
|
52 |
+
val_freq: 10000
|
53 |
+
save_freq: 10000
|
54 |
+
val_iter: -1
|
55 |
+
val_disp_start_iter: 0
|
56 |
+
val_disp_end_iter: 16
|
57 |
+
loss_record: ['loss_flow']
|
58 |
+
tensorboard: False
|
models/cmp/experiments/rep_learning/resnet50_yfcc_voc_16gpu_42k/resume.sh
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
python -m torch.distributed.launch --nproc_per_node=8 \
|
4 |
+
--nnodes=2 --node_rank=$1 \
|
5 |
+
--master_addr="192.168.1.1" main.py \
|
6 |
+
--config $work_path/config.yaml --launcher pytorch \
|
7 |
+
--load-iter 10000 \
|
8 |
+
--resume
|
models/cmp/experiments/rep_learning/resnet50_yfcc_voc_16gpu_42k/resume_slurm.sh
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
partition=$1
|
4 |
+
GLOG_vmodule=MemcachedClient=-1 srun --mpi=pmi2 -p $partition -n16 \
|
5 |
+
--gres=gpu:8 --ntasks-per-node=8 \
|
6 |
+
python -u main.py \
|
7 |
+
--config $work_path/config.yaml --launcher slurm \
|
8 |
+
--load-iter 10000 \
|
9 |
+
--resume
|
models/cmp/experiments/rep_learning/resnet50_yfcc_voc_16gpu_42k/train.sh
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
python -m torch.distributed.launch --nproc_per_node=8 \
|
4 |
+
--nnodes=2 --node_rank=$1 \
|
5 |
+
--master_addr="192.168.1.1" main.py \
|
6 |
+
--config $work_path/config.yaml --launcher pytorch
|
models/cmp/experiments/rep_learning/resnet50_yfcc_voc_16gpu_42k/train_slurm.sh
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
partition=$1
|
4 |
+
GLOG_vmodule=MemcachedClient=-1 srun --mpi=pmi2 -p $partition -n16 \
|
5 |
+
--gres=gpu:8 --ntasks-per-node=8 \
|
6 |
+
python -u main.py \
|
7 |
+
--config $work_path/config.yaml --launcher slurm
|
models/cmp/experiments/rep_learning/resnet50_yfcc_voc_16gpu_42k/validate.sh
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
python -m torch.distributed.launch --nproc_per_node=8 main.py \
|
4 |
+
--config $work_path/config.yaml --launcher pytorch \
|
5 |
+
--load-iter 70000 \
|
6 |
+
--validate
|
models/cmp/experiments/rep_learning/resnet50_yfcc_voc_16gpu_42k/validate_slurm.sh
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
partition=$1
|
4 |
+
GLOG_vmodule=MemcachedClient=-1 srun --mpi=pmi2 -p $partition -n8 \
|
5 |
+
--gres=gpu:8 --ntasks-per-node=8 \
|
6 |
+
python -u main.py --config $work_path/config.yaml --launcher slurm \
|
7 |
+
--load-iter 70000 \
|
8 |
+
--validate
|
models/cmp/experiments/semiauto_annot/resnet50_vip+mpii_liteflow/checkpoints/ckpt_iter_42000.pth.tar
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd3a385e227c29f89b5c7c6f4c89d356f6022fa7fcfc71ab1bd40e9833048dd6
|
3 |
+
size 228465722
|
models/cmp/experiments/semiauto_annot/resnet50_vip+mpii_liteflow/config.yaml
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
arch: CMP
|
3 |
+
total_iter: 42000
|
4 |
+
lr_steps: [24000, 36000]
|
5 |
+
lr_mults: [0.1, 0.1]
|
6 |
+
lr: 0.1
|
7 |
+
optim: SGD
|
8 |
+
warmup_lr: []
|
9 |
+
warmup_steps: []
|
10 |
+
module:
|
11 |
+
arch: CMP
|
12 |
+
image_encoder: resnet50
|
13 |
+
sparse_encoder: shallownet8x
|
14 |
+
flow_decoder: MotionDecoderSkipLayer
|
15 |
+
skip_layer: True
|
16 |
+
img_enc_dim: 256
|
17 |
+
sparse_enc_dim: 16
|
18 |
+
output_dim: 198
|
19 |
+
decoder_combo: [1,2,4]
|
20 |
+
pretrained_image_encoder: False
|
21 |
+
flow_criterion: "DiscreteLoss"
|
22 |
+
nbins: 99
|
23 |
+
fmax: 50
|
24 |
+
data:
|
25 |
+
workers: 2
|
26 |
+
batch_size: 8
|
27 |
+
batch_size_test: 1
|
28 |
+
data_mean: [123.675, 116.28, 103.53] # RGB
|
29 |
+
data_div: [58.395, 57.12, 57.375]
|
30 |
+
short_size: 416
|
31 |
+
crop_size: [384, 384]
|
32 |
+
sample_strategy: ['grid', 'watershed']
|
33 |
+
sample_bg_ratio: 5.74e-5
|
34 |
+
nms_ks: 41
|
35 |
+
max_num_guide: -1
|
36 |
+
|
37 |
+
flow_file_type: "jpg"
|
38 |
+
image_flow_aug:
|
39 |
+
flip: False
|
40 |
+
flow_aug:
|
41 |
+
reverse: False
|
42 |
+
scale: False
|
43 |
+
rotate: False
|
44 |
+
train_source:
|
45 |
+
- data/VIP/lists/train.txt
|
46 |
+
- data/MPII/lists/train.txt
|
47 |
+
val_source:
|
48 |
+
- data/VIP/lists/randval.txt
|
49 |
+
memcached: False
|
50 |
+
trainer:
|
51 |
+
initial_val: True
|
52 |
+
print_freq: 100
|
53 |
+
val_freq: 5000
|
54 |
+
save_freq: 5000
|
55 |
+
val_iter: -1
|
56 |
+
val_disp_start_iter: 0
|
57 |
+
val_disp_end_iter: 16
|
58 |
+
loss_record: ['loss_flow']
|
59 |
+
tensorboard: True
|
models/cmp/experiments/semiauto_annot/resnet50_vip+mpii_liteflow/resume.sh
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
python -m torch.distributed.launch --nproc_per_node=8 main.py \
|
4 |
+
--config $work_path/config.yaml --launcher pytorch \
|
5 |
+
--load-iter 10000 \
|
6 |
+
--resume
|
models/cmp/experiments/semiauto_annot/resnet50_vip+mpii_liteflow/resume_slurm.sh
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
work_path=$(dirname $0)
|
3 |
+
partition=$1
|
4 |
+
GLOG_vmodule=MemcachedClient=-1 srun --mpi=pmi2 -p $partition -n8 \
|
5 |
+
--gres=gpu:8 --ntasks-per-node=8 \
|
6 |
+
python -u main.py \
|
7 |
+
--config $work_path/config.yaml --launcher slurm \
|
8 |
+
--load-iter 10000 \
|
9 |
+
--resume
|