Spaces:
Running
Running
File size: 24,186 Bytes
b81ce47 7815102 b81ce47 7815102 abc5e44 7815102 f8324a1 d660055 b81ce47 0b8948c b81ce47 7873711 8ae9d48 5845bd3 abc5e44 7815102 b81ce47 abc5e44 b81ce47 7815102 8ae9d48 f8324a1 8ae9d48 f8324a1 8ae9d48 f8324a1 b81ce47 f8324a1 5845bd3 f8324a1 5845bd3 f8324a1 463a75b 5845bd3 463a75b d660055 a6fd2c8 d660055 f8324a1 7815102 6a8e555 8122a29 7815102 8122a29 7815102 8122a29 7815102 8122a29 7815102 8122a29 7815102 8122a29 7815102 8122a29 7815102 8122a29 7815102 8122a29 7815102 958e2d1 8122a29 7815102 8122a29 7815102 8122a29 7815102 8122a29 7815102 8122a29 7815102 8122a29 7815102 6a8e555 7815102 8122a29 7815102 8122a29 7815102 8122a29 7815102 6a8e555 7815102 8122a29 7815102 8122a29 7815102 8122a29 7815102 8122a29 7815102 8122a29 7815102 8122a29 7815102 8122a29 7815102 8122a29 7815102 8122a29 7815102 958e2d1 7815102 8122a29 7815102 8122a29 7815102 8122a29 7815102 8122a29 7815102 8122a29 7815102 2e39e3e 6a8e555 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
import streamlit as st
import requests
import pandas as pd
from pandas import DataFrame
import numpy as np
import gspread
import pytz
from datetime import datetime
from datetime import date, timedelta
import time
st.set_page_config(layout="wide")
scope = ['https://www.googleapis.com/auth/spreadsheets',
"https://www.googleapis.com/auth/drive"]
credentials = {
"type": "service_account",
"project_id": "sheets-api-connect-378620",
"private_key_id": st.secrets['sheets_api_connect_pk'],
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
"client_id": "106625872877651920064",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}
gc = gspread.service_account_from_dict(credentials)
traderater = "https://www.fantasylife.com/api/projections/v1/nfl/ratemytrade/season/update"
ros_james_url = "https://www.fantasylife.com/api/projections/v1/nfl/james/ros/update"
dwain_url = "https://www.fantasylife.com/api/projections/v1/nfl/dwain/season/update"
freedman_url = "https://www.fantasylife.com/api/projections/v1/nfl/freedman/season/update"
agg_url = "https://www.fantasylife.com/api/projections/v1/nfl/aggregate/season/update"
weekly_dwain_url = "https://www.fantasylife.com/api/projections/v1/nfl/dwain/game/update"
weekly_freedman_url = "https://www.fantasylife.com/api/projections/v1/nfl/freedman/game/update"
weekly_agg_url = "https://www.fantasylife.com/api/projections/v1/nfl/aggregate/game/update"
dev_dwain_url = "https://fantasylife.dev.spotlightsportsb2b.com/api/projections/v1/nfl/dwain/season/update"
dev_freedman_url = "https://fantasylife.dev.spotlightsportsb2b.com/api/projections/v1/nfl/freedman/season/update"
dev_agg_url = "https://fantasylife.dev.spotlightsportsb2b.com/api/projections/v1/nfl/aggregate/season/update"
freedman_nfl_game_model = "https://www.fantasylife.com/api/projections/v1/nfl-odds/james/game/update"
thor_ncaaf_game_model = "https://www.fantasylife.com/api/projections/v1/ncaafb-odds/james/game/update"
NCAAF_model_url = st.secrets['NCAAF_model_url']
pff_url = st.secrets['pff_url']
headers = {
'Authorization': st.secrets['FL_Authorization'],
}
tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(['Season Long (Live Site)', 'Season Long (Dev Site)', 'Weekly', 'Game Model', 'Trade Rater', 'Rest of Season', 'NCAAF Script'])
with tab1:
with st.container():
col1, col2, col3 = st.columns([3, 3, 3])
with col1:
st.info("Update Dwain's LIVE SITE FantasyLife Season Long Projections")
if st.button("Dwain Projection Update (Live Seasonal)", key='reset1'):
response = requests.post(dwain_url, headers=headers)
if response.status_code == 200:
st.write("Uploading!")
with col2:
st.info("Update Freedman's LIVE SITE FantasyLife Season Long Projections")
if st.button("Freedman Projection Update (Live Seasonal)", key='reset2'):
response = requests.post(freedman_url, headers=headers)
if response.status_code == 200:
st.write("Uploading!")
with col3:
st.info("Update the Aggregate LIVE SITE FantasyLife Season Long Projections")
if st.button("Aggregate Projection Update (Live Seasonal)", key='reset3'):
response = requests.post(agg_url, headers=headers)
if response.status_code == 200:
st.write("Uploading!")
with tab2:
with st.container():
col1, col2, col3 = st.columns([3, 3, 3])
with col1:
st.info("Update Dwain's DEV SITE FantasyLife Season Long Projections")
if st.button("Dwain Projection Update (Dev Seasonal)", key='reset4'):
response = requests.post(dev_dwain_url, headers=headers)
if response.status_code == 200:
st.write("Uploading!")
with col2:
st.info("Update Freedman's DEV SITE FantasyLife Season Long Projections")
if st.button("Freedman Projection Update (Dev Seasonal)", key='reset5'):
response = requests.post(dev_freedman_url, headers=headers)
if response.status_code == 200:
st.write("Uploading!")
with col3:
st.info("Update the Aggregate DEV SITE FantasyLife Season Long Projections")
if st.button("Aggregate Projection Update (Dev Seasonal)", key='reset6'):
response = requests.post(dev_agg_url, headers=headers)
if response.status_code == 200:
st.write("Uploading!")
with tab3:
with st.container():
col1, col2, col3 = st.columns([3, 3, 3])
with col1:
st.info("Update Dwain's FantasyLife Weekly Projections")
if st.button("Dwain Projection Update (Weekly)", key='reset7'):
response = requests.post(weekly_dwain_url, headers=headers)
if response.status_code == 200:
st.write("Uploading!")
with col2:
st.info("Update Freedman's FantasyLife Weekly Projections")
if st.button("Freedman Projection Update (Weekly)", key='reset8'):
response = requests.post(weekly_freedman_url, headers=headers)
if response.status_code == 200:
st.write("Uploading!")
with col3:
st.info("Update the Aggregate FantasyLife Weekly Projections")
if st.button("Aggregate Projection Update (Weekly)", key='reset9'):
response = requests.post(weekly_agg_url, headers=headers)
if response.status_code == 200:
st.write("Uploading!")
with tab4:
with st.container():
col1, col2, col3 = st.columns([3, 3, 3])
with col1:
st.info("Update Freedman NFL Game Model")
if st.button("Update Freedman NFL Game Model (Weekly)", key='reset10'):
response = requests.post(freedman_nfl_game_model, headers=headers)
if response.status_code == 200:
st.write("Uploading!")
with col2:
st.info("Update Thor NCCAF Game Model")
if st.button("Update Thor NCCAF Game Model (Weekly)", key='reset11'):
response = requests.post(thor_ncaaf_game_model, headers=headers)
if response.status_code == 200:
st.write("Uploading!")
with tab5:
with st.container():
col1, col2, col3 = st.columns([3, 3, 3])
with col1:
st.info("Update FantasyLife Trade Rater")
if st.button("Projection Update (Trade Rater)", key='reset12'):
response = requests.post(traderater, headers=headers)
if response.status_code == 200:
st.write("Uploading!")
with tab6:
with st.container():
col1, col2, col3 = st.columns([3, 3, 3])
with col1:
st.info("Update Rest of Season Projections")
if st.button("Rest of Season Update", key='reset13'):
response = requests.post(ros_james_url, headers=headers)
if response.status_code == 200:
st.write("Uploading!")
with tab7:
with st.container():
col1, col2, col3 = st.columns([3, 3, 3])
with col1:
st.info("Update NCAAF schedule and ranks")
if st.button("Update NCAAF", key='reset14'):
st.write("Initiated")
sh = gc.open_by_url(sheet_url)
worksheet = sh.worksheet('ATLranks')
ranks_df = DataFrame(worksheet.get_all_records())
ranks_dict = dict(zip(ranks_df.Team, ranks_df.ATL))
conf_dict = dict(zip(ranks_df.Team, ranks_df.Conference))
time.sleep(.5)
worksheet = sh.worksheet('Injuries')
injuries_df = DataFrame(worksheet.get_all_records())
injuries_dict = dict(zip(injuries_df.Team, injuries_df.Team_Modifier))
time.sleep(.5)
worksheet = sh.worksheet('HFA')
hfa_df = DataFrame(worksheet.get_all_records())
hfa_dict = dict(zip(hfa_df.Team, hfa_df.HFA))
time.sleep(.5)
worksheet = sh.worksheet('Odds')
odds_df = DataFrame(worksheet.get_all_records())
odds_dict = dict(zip(odds_df.Point_Spread, odds_df.Favorite_Win_Chance))
time.sleep(.5)
worksheet = sh.worksheet('Acronyms')
acros_df = DataFrame(worksheet.get_all_records())
right_acro = acros_df['Team'].tolist()
wrong_acro = acros_df['Acro'].tolist()
time.sleep(.5)
worksheet = sh.worksheet('Add games')
add_games_df = DataFrame(worksheet.get_all_records())
add_games_df.replace('', np.nan, inplace=True)
neutral_dict = dict(zip(add_games_df.game_id, add_games_df.Neutral))
time.sleep(.5)
worksheet = sh.worksheet('Completed games')
comp_games_df = DataFrame(worksheet.get_all_records())
comp_games_df.replace('', np.nan, inplace=True)
time.sleep(.5)
worksheet = sh.worksheet('LY_scoring')
lyscore_df = DataFrame(worksheet.get_all_records())
for checkVar in range(len(wrong_acro)):
lyscore_df['Team'] = lyscore_df['Team'].replace(wrong_acro, right_acro)
PFA_dict = dict(zip(lyscore_df.Team, lyscore_df.PF_G_adj))
PAA_dict = dict(zip(lyscore_df.Team, lyscore_df.PA_G_adj))
# Send a GET request to the API
response = requests.get(url)
st.write("retreiving PFF data")
# Check if the request was successful
if response.status_code == 200:
# Parse the JSON content
data = response.json()
# Extract the "weeks" object
weeks = data.get('weeks', [])
# Initialize an empty list to store game data
games_list = []
team_list = []
# Iterate over each week and its games
for week in weeks:
week_number = week.get('week')
for game in week.get('games', []):
# Add week number to the game dictionary
game['week'] = week_number
away_franchise = game.get('away_franchise', {})
away_franchise_groups = away_franchise.get('groups', {})
away_conf = away_franchise_groups[0]['name']
home_franchise = game.get('home_franchise', {})
home_franchise_groups = home_franchise.get('groups', {})
home_conf = home_franchise_groups[0]['name']
# Flatten the away and home franchise data
game_data = {
'game_id': game.get('external_game_id'),
'Day': game.get('kickoff_date'),
'CST': game.get('kickoff_raw'),
'away_id': away_franchise.get('abbreviation'),
'Away': away_franchise.get('city'),
'home_id': home_franchise.get('abbreviation'),
'Home': home_franchise.get('city')
}
home_data = {
'team': home_franchise.get('city'),
'conf': home_conf
}
away_data = {
'team': away_franchise.get('city'),
'conf': away_conf
}
merged_data = game_data | game
team_data = home_data | away_data
games_list.append(merged_data)
team_list.append(home_data)
team_list.append(away_data)
# Create a DataFrame from the games list
df = pd.DataFrame(games_list)
team_df = pd.DataFrame(team_list)
team_df = team_df.drop_duplicates(subset=['team', 'conf'])
# Display the DataFrame
print(df)
else:
print(f"Failed to retrieve data. HTTP Status code: {response.status_code}")
st.write("Cleaning data")
df_raw = df[['pff_week', 'game_id', 'away_id', 'home_id', 'Away', 'Home', 'point_spread', 'over_under', 'Day', 'CST']]
df_raw['conf_game'] = np.nan
df_raw['Away_ATL'] = np.nan
df_raw['Home_ATL'] = np.nan
df_raw['Home Spread'] = np.nan
df_raw['Proj Total'] = np.nan
df_raw['Neutral'] = np.nan
df_raw['Notes'] = np.nan
df_raw['over_under'].fillna("", inplace=True)
df_raw['over_under'] = pd.to_numeric(df_raw['over_under'], errors='coerce')
df_raw = df_raw[['pff_week', 'game_id', 'away_id', 'home_id', 'Away', 'Home', 'conf_game', 'Away_ATL', 'Home_ATL', 'point_spread', 'Home Spread', 'over_under', 'Proj Total', 'Day', 'CST', 'Neutral', 'Notes']]
add_games_merge = add_games_df
comp_games_merge = comp_games_df
conf_adj = dict(zip(add_games_merge['game_id'], add_games_merge['conf_game']))
df_merge_1 = pd.concat([add_games_merge, df_raw])
df_cleaned = pd.concat([comp_games_merge, df_merge_1])
df_cleaned = df_cleaned[['pff_week', 'game_id', 'away_id', 'home_id', 'Away', 'Home', 'point_spread', 'over_under', 'Day', 'CST']]
df_cleaned = df_cleaned.drop_duplicates(subset=['game_id'])
def cond_away_PFA(row, df):
mask = (df['Away_ATL'] >= row['Away_ATL'] - 5) & (df['Away_ATL'] <= row['Away_ATL'] + 5)
return df.loc[mask, 'Away_PFA'].mean()
def cond_home_PFA(row, df):
mask = (df['Home_ATL'] >= row['Home_ATL'] - 5) & (df['Home_ATL'] <= row['Home_ATL'] + 5)
return df.loc[mask, 'Home_PFA'].mean()
def cond_away_PAA(row, df):
mask = (df['Away_ATL'] >= row['Away_ATL'] - 5) & (df['Away_ATL'] <= row['Away_ATL'] + 5)
return df.loc[mask, 'Away_PAA'].mean()
def cond_home_PAA(row, df):
mask = (df['Home_ATL'] >= row['Home_ATL'] - 5) & (df['Home_ATL'] <= row['Home_ATL'] + 5)
return df.loc[mask, 'Home_PAA'].mean()
for checkVar in range(len(wrong_acro)):
df_cleaned['Away'] = df_cleaned['Away'].replace(wrong_acro, right_acro)
df_cleaned['Home'] = df_cleaned['Home'].replace(wrong_acro, right_acro)
df_cleaned['Away_conf'] = df_cleaned['Away'].map(conf_dict)
df_cleaned['Home_conf'] = df_cleaned['Home'].map(conf_dict)
df_cleaned['conf_game_var'] = np.where((df_cleaned['Away_conf'] == df_cleaned['Home_conf']), 1, 0)
df_cleaned['conf_game'] = df_cleaned.apply(lambda row: conf_adj.get(row['game_id'], row['conf_game_var']), axis=1)
df_cleaned['Away_ATL'] = df_cleaned['Away'].map(ranks_dict)
df_cleaned['Home_ATL'] = df_cleaned['Home'].map(ranks_dict)
df_cleaned['Away_inj'] = df_cleaned['Away'].map(injuries_dict)
df_cleaned['Home_inj'] = df_cleaned['Home'].map(injuries_dict)
df_cleaned['Away_inj'] = df_cleaned['Away_inj'].replace(['', np.nan], 0)
df_cleaned['Home_inj'] = df_cleaned['Home_inj'].replace(['', np.nan], 0)
df_cleaned['inj_mod'] = df_cleaned['Away_inj'] - df_cleaned['Home_inj']
df_cleaned['Away_PFA'] = df_cleaned['Away'].map(PFA_dict)
df_cleaned['Home_PFA'] = df_cleaned['Home'].map(PFA_dict)
df_cleaned['Away_PAA'] = df_cleaned['Away'].map(PAA_dict)
df_cleaned['Home_PAA'] = df_cleaned['Home'].map(PAA_dict)
# Apply the function to each row in the DataFrame
df_cleaned['cond_away_PFA'] = df_cleaned.apply(lambda row: cond_away_PFA(row, df_cleaned), axis=1)
df_cleaned['cond_home_PFA'] = df_cleaned.apply(lambda row: cond_home_PFA(row, df_cleaned), axis=1)
df_cleaned['cond_away_PAA'] = df_cleaned.apply(lambda row: cond_away_PAA(row, df_cleaned), axis=1)
df_cleaned['cond_home_PAA'] = df_cleaned.apply(lambda row: cond_home_PAA(row, df_cleaned), axis=1)
df_cleaned['cond_away_PFA'] = np.where((df_cleaned['Away_ATL'] <= 0), 18, df_cleaned['cond_away_PFA'])
df_cleaned['cond_away_PAA'] = np.where((df_cleaned['Away_ATL'] <= 0), 36, df_cleaned['cond_away_PAA'])
df_cleaned['cond_home_PFA'] = np.where((df_cleaned['Home_ATL'] <= 0), 18, df_cleaned['cond_home_PFA'])
df_cleaned['cond_home_PAA'] = np.where((df_cleaned['Home_ATL'] <= 0), 36, df_cleaned['cond_home_PAA'])
df_cleaned['Away_PFA'] = df_cleaned['Away_PFA'].fillna(df_cleaned['cond_away_PFA'])
df_cleaned['Away_PAA'] = df_cleaned['Away_PAA'].fillna(df_cleaned['cond_away_PAA'])
df_cleaned['Home_PFA'] = df_cleaned['Home_PFA'].fillna(df_cleaned['cond_home_PFA'])
df_cleaned['Home_PAA'] = df_cleaned['Home_PAA'].fillna(df_cleaned['cond_home_PAA'])
df_cleaned['Away_PFA_adj'] = (df_cleaned['Away_PFA'] * .75 + df_cleaned['Home_PAA'] * .25)
df_cleaned['Home_PFA_adj'] = (df_cleaned['Home_PFA'] * .75 + df_cleaned['Away_PAA'] * .25)
df_cleaned['Away_PFA_cond'] = (df_cleaned['cond_away_PFA'] * .75 + df_cleaned['cond_home_PAA'] * .25)
df_cleaned['Home_PFA_cond'] = (df_cleaned['cond_home_PFA'] * .75 + df_cleaned['cond_away_PAA'] * .25)
df_cleaned['Neutral'] = df_cleaned['game_id'].map(neutral_dict)
df_cleaned['HFA'] = np.where(df_cleaned['Neutral'] == 1, 0, df_cleaned['Home'].map(hfa_dict))
df_cleaned['Neutral'] = np.nan
df_cleaned['Home Spread'] = (((df_cleaned['Home_ATL'] - df_cleaned['Away_ATL']) + df_cleaned['HFA']) * -1) + df_cleaned['inj_mod']
df_cleaned['Win Prob'] = df_cleaned['Home Spread'].map(odds_dict)
df_cleaned['Spread Adj'] = np.nan
df_cleaned['Final Spread'] = np.nan
df_cleaned['Proj Total'] = df_cleaned['Away_PFA_adj'] + df_cleaned['Home_PFA_adj']
df_cleaned['Proj Total (adj)'] = np.where(df_cleaned['over_under'] != np.nan, (df_cleaned['over_under'] * .66 + df_cleaned['Proj Total'] * .34), df_cleaned['Proj Total'])
df_cleaned['Proj Total (adj)'] = df_cleaned['Proj Total (adj)'].fillna(df_cleaned['Proj Total'])
df_cleaned['Total Adj'] = np.nan
df_cleaned['Final Total'] = np.nan
df_cleaned['Notes'] = np.nan
export_df_1 = df_cleaned[['pff_week', 'game_id', 'away_id', 'home_id', 'Away', 'Home', 'conf_game', 'Away_ATL', 'Home_ATL', 'point_spread', 'Home Spread',
'over_under', 'Proj Total (adj)', 'Day', 'CST', 'Neutral', 'Notes']]
export_df_1.rename(columns={"pff_week": "week", "point_spread": "Vegas Spread", "over_under": "Vegas Total", "Proj Total (adj)": "Proj Total"}, inplace = True)
export_df_2 = add_games_df
export_df = export_df_1
export_df['week'] = pd.to_numeric(export_df['week'], errors='coerce')
export_df = export_df.drop_duplicates(subset=['week', 'Away', 'Home'])
export_df = export_df.sort_values(by='week', ascending=True)
export_df['Vegas Spread'] = pd.to_numeric(export_df['Vegas Spread'], errors='coerce')
export_df['Vegas Total'] = pd.to_numeric(export_df['Vegas Total'], errors='coerce')
export_df['Proj Total'] = pd.to_numeric(export_df['Proj Total'], errors='coerce')
export_df['Home Spread'] = pd.to_numeric(export_df['Home Spread'], errors='coerce')
export_df.replace([np.nan, np.inf, -np.inf], '', inplace=True)
export_df = export_df.drop_duplicates(subset=['week', 'away_id', 'home_id'])
sh = gc.open_by_url(sheet_url)
worksheet = sh.worksheet('Master_sched')
worksheet.batch_clear(['A:P'])
worksheet.update([export_df.columns.values.tolist()] + export_df.values.tolist())
st.write("Uploaded Master Schedule")
st.write("Finished NCAAF Script!") |