File size: 24,186 Bytes
b81ce47
 
7815102
 
 
 
 
 
 
 
b81ce47
 
 
7815102
 
 
 
 
 
abc5e44
7815102
 
 
 
 
 
 
 
 
 
 
f8324a1
 
d660055
 
b81ce47
 
 
 
0b8948c
b81ce47
 
 
7873711
 
 
8ae9d48
5845bd3
 
 
abc5e44
 
7815102
b81ce47
abc5e44
b81ce47
 
7815102
8ae9d48
f8324a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ae9d48
f8324a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ae9d48
f8324a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b81ce47
f8324a1
5845bd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8324a1
 
 
 
 
5845bd3
f8324a1
463a75b
 
 
5845bd3
463a75b
 
 
 
d660055
a6fd2c8
d660055
f8324a1
7815102
 
 
 
 
 
 
 
 
6a8e555
 
 
8122a29
7815102
 
 
 
8122a29
7815102
8122a29
 
 
 
 
 
 
7815102
 
 
8122a29
7815102
8122a29
7815102
 
 
8122a29
7815102
8122a29
7815102
 
 
 
8122a29
7815102
8122a29
7815102
 
 
958e2d1
8122a29
7815102
8122a29
7815102
 
 
8122a29
7815102
8122a29
7815102
 
 
 
8122a29
7815102
 
 
 
8122a29
7815102
6a8e555
 
7815102
 
 
 
 
 
 
 
 
 
 
8122a29
7815102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8122a29
7815102
 
 
 
8122a29
7815102
 
 
 
6a8e555
 
 
7815102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8122a29
7815102
 
 
8122a29
7815102
 
 
8122a29
7815102
 
 
8122a29
7815102
 
 
 
 
 
 
 
 
 
 
 
 
8122a29
 
 
 
 
7815102
 
 
 
8122a29
7815102
 
 
 
 
8122a29
7815102
 
 
 
8122a29
7815102
 
 
 
8122a29
7815102
 
 
 
 
958e2d1
 
7815102
8122a29
7815102
 
 
 
 
 
 
 
 
8122a29
7815102
 
8122a29
 
7815102
 
 
 
 
 
8122a29
7815102
 
 
 
 
 
8122a29
 
7815102
 
 
2e39e3e
 
6a8e555
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import streamlit as st
import requests
import pandas as pd
from pandas import DataFrame
import numpy as np
import gspread
import pytz
from datetime import datetime
from datetime import date, timedelta
import time

st.set_page_config(layout="wide")

scope = ['https://www.googleapis.com/auth/spreadsheets',
          "https://www.googleapis.com/auth/drive"]

credentials = {
  "type": "service_account",
  "project_id": "sheets-api-connect-378620",
  "private_key_id": st.secrets['sheets_api_connect_pk'],
  "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
  "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
  "client_id": "106625872877651920064",
  "auth_uri": "https://accounts.google.com/o/oauth2/auth",
  "token_uri": "https://oauth2.googleapis.com/token",
  "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
  "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}

gc = gspread.service_account_from_dict(credentials)

traderater = "https://www.fantasylife.com/api/projections/v1/nfl/ratemytrade/season/update"

ros_james_url = "https://www.fantasylife.com/api/projections/v1/nfl/james/ros/update"

dwain_url = "https://www.fantasylife.com/api/projections/v1/nfl/dwain/season/update"
freedman_url = "https://www.fantasylife.com/api/projections/v1/nfl/freedman/season/update"
agg_url = "https://www.fantasylife.com/api/projections/v1/nfl/aggregate/season/update"

weekly_dwain_url = "https://www.fantasylife.com/api/projections/v1/nfl/dwain/game/update"
weekly_freedman_url = "https://www.fantasylife.com/api/projections/v1/nfl/freedman/game/update"
weekly_agg_url = "https://www.fantasylife.com/api/projections/v1/nfl/aggregate/game/update"

dev_dwain_url = "https://fantasylife.dev.spotlightsportsb2b.com/api/projections/v1/nfl/dwain/season/update"
dev_freedman_url = "https://fantasylife.dev.spotlightsportsb2b.com/api/projections/v1/nfl/freedman/season/update"
dev_agg_url = "https://fantasylife.dev.spotlightsportsb2b.com/api/projections/v1/nfl/aggregate/season/update"

freedman_nfl_game_model = "https://www.fantasylife.com/api/projections/v1/nfl-odds/james/game/update"
thor_ncaaf_game_model = "https://www.fantasylife.com/api/projections/v1/ncaafb-odds/james/game/update"

NCAAF_model_url = st.secrets['NCAAF_model_url']
pff_url = st.secrets['pff_url']

headers = {
    'Authorization': st.secrets['FL_Authorization'],
}

tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(['Season Long (Live Site)', 'Season Long (Dev Site)', 'Weekly', 'Game Model', 'Trade Rater', 'Rest of Season', 'NCAAF Script'])

with tab1:
    with st.container():
        col1, col2, col3 = st.columns([3, 3, 3])
        
        with col1:
            st.info("Update Dwain's LIVE SITE FantasyLife Season Long Projections")
            if st.button("Dwain Projection Update (Live Seasonal)", key='reset1'):
                  response = requests.post(dwain_url, headers=headers)
                  if response.status_code == 200:
                      st.write("Uploading!")
        with col2:
            st.info("Update Freedman's LIVE SITE FantasyLife Season Long Projections")
            if st.button("Freedman Projection Update (Live Seasonal)", key='reset2'):
                  response = requests.post(freedman_url, headers=headers)
                  if response.status_code == 200:
                      st.write("Uploading!")
        with col3:
            st.info("Update the Aggregate LIVE SITE FantasyLife Season Long Projections")
            if st.button("Aggregate Projection Update (Live Seasonal)", key='reset3'):
                  response = requests.post(agg_url, headers=headers)
                  if response.status_code == 200:
                      st.write("Uploading!")

with tab2:
    with st.container():
        col1, col2, col3 = st.columns([3, 3, 3])
    
        with col1:
            st.info("Update Dwain's DEV SITE FantasyLife Season Long Projections")
            if st.button("Dwain Projection Update (Dev Seasonal)", key='reset4'):
                  response = requests.post(dev_dwain_url, headers=headers)
                  if response.status_code == 200:
                      st.write("Uploading!")
        with col2:
            st.info("Update Freedman's DEV SITE FantasyLife Season Long Projections")
            if st.button("Freedman Projection Update (Dev Seasonal)", key='reset5'):
                  response = requests.post(dev_freedman_url, headers=headers)
                  if response.status_code == 200:
                      st.write("Uploading!")
        with col3:
            st.info("Update the Aggregate DEV SITE FantasyLife Season Long Projections")
            if st.button("Aggregate Projection Update (Dev Seasonal)", key='reset6'):
                  response = requests.post(dev_agg_url, headers=headers)
                  if response.status_code == 200:
                      st.write("Uploading!")

with tab3:
    with st.container():
        col1, col2, col3 = st.columns([3, 3, 3])
    
        with col1:
            st.info("Update Dwain's FantasyLife Weekly Projections")
            if st.button("Dwain Projection Update (Weekly)", key='reset7'):
                  response = requests.post(weekly_dwain_url, headers=headers)
                  if response.status_code == 200:
                      st.write("Uploading!")
        with col2:
            st.info("Update Freedman's FantasyLife Weekly Projections")
            if st.button("Freedman Projection Update (Weekly)", key='reset8'):
                  response = requests.post(weekly_freedman_url, headers=headers)
                  if response.status_code == 200:
                      st.write("Uploading!")
        with col3:
            st.info("Update the Aggregate FantasyLife Weekly Projections")
            if st.button("Aggregate Projection Update (Weekly)", key='reset9'):
                  response = requests.post(weekly_agg_url, headers=headers)
                  if response.status_code == 200:
                      st.write("Uploading!")

with tab4:
    with st.container():
        col1, col2, col3 = st.columns([3, 3, 3])
    
        with col1:
            st.info("Update Freedman NFL Game Model")
            if st.button("Update Freedman NFL Game Model (Weekly)", key='reset10'):
                  response = requests.post(freedman_nfl_game_model, headers=headers)
                  if response.status_code == 200:
                      st.write("Uploading!")

        with col2:
            st.info("Update Thor NCCAF Game Model")
            if st.button("Update Thor NCCAF Game Model (Weekly)", key='reset11'):
                  response = requests.post(thor_ncaaf_game_model, headers=headers)
                  if response.status_code == 200:
                      st.write("Uploading!")

with tab5:
    with st.container():
        col1, col2, col3 = st.columns([3, 3, 3])
    
        with col1:
            st.info("Update FantasyLife Trade Rater")
            if st.button("Projection Update (Trade Rater)", key='reset12'):
                  response = requests.post(traderater, headers=headers)
                  if response.status_code == 200:
                      st.write("Uploading!")

with tab6:
    with st.container():
        col1, col2, col3 = st.columns([3, 3, 3])
    
        with col1:
            st.info("Update Rest of Season Projections")
            if st.button("Rest of Season Update", key='reset13'):
                  response = requests.post(ros_james_url, headers=headers)
                  if response.status_code == 200:
                      st.write("Uploading!")

with tab7:
    with st.container():
        col1, col2, col3 = st.columns([3, 3, 3])
    
        with col1:
            st.info("Update NCAAF schedule and ranks")
            if st.button("Update NCAAF", key='reset14'):

                st.write("Initiated")

                sh = gc.open_by_url(sheet_url)
                worksheet = sh.worksheet('ATLranks')
                ranks_df = DataFrame(worksheet.get_all_records())
                ranks_dict = dict(zip(ranks_df.Team, ranks_df.ATL))
                conf_dict = dict(zip(ranks_df.Team, ranks_df.Conference))
                
                time.sleep(.5)
                
                worksheet = sh.worksheet('Injuries')
                injuries_df = DataFrame(worksheet.get_all_records())
                injuries_dict = dict(zip(injuries_df.Team, injuries_df.Team_Modifier))
                
                time.sleep(.5)
                
                worksheet = sh.worksheet('HFA')
                hfa_df = DataFrame(worksheet.get_all_records())
                hfa_dict = dict(zip(hfa_df.Team, hfa_df.HFA))
                
                time.sleep(.5)
                
                worksheet = sh.worksheet('Odds')
                odds_df = DataFrame(worksheet.get_all_records())
                odds_dict = dict(zip(odds_df.Point_Spread, odds_df.Favorite_Win_Chance))
                
                time.sleep(.5)
                
                worksheet = sh.worksheet('Acronyms')
                acros_df = DataFrame(worksheet.get_all_records())
                right_acro = acros_df['Team'].tolist()
                wrong_acro = acros_df['Acro'].tolist()
                
                time.sleep(.5)
                
                worksheet = sh.worksheet('Add games')
                add_games_df = DataFrame(worksheet.get_all_records())
                add_games_df.replace('', np.nan, inplace=True)
                neutral_dict = dict(zip(add_games_df.game_id, add_games_df.Neutral))
                
                time.sleep(.5)
                
                worksheet = sh.worksheet('Completed games')
                comp_games_df = DataFrame(worksheet.get_all_records())
                comp_games_df.replace('', np.nan, inplace=True)
                
                time.sleep(.5)
                
                worksheet = sh.worksheet('LY_scoring')
                lyscore_df = DataFrame(worksheet.get_all_records())
                for checkVar in range(len(wrong_acro)):
                    lyscore_df['Team'] = lyscore_df['Team'].replace(wrong_acro, right_acro)
                
                PFA_dict = dict(zip(lyscore_df.Team, lyscore_df.PF_G_adj))
                PAA_dict = dict(zip(lyscore_df.Team, lyscore_df.PA_G_adj))

                # Send a GET request to the API
                response = requests.get(url)

                st.write("retreiving PFF data")

                # Check if the request was successful
                if response.status_code == 200:
                    # Parse the JSON content
                    data = response.json()
                    
                    # Extract the "weeks" object
                    weeks = data.get('weeks', [])
                    
                    # Initialize an empty list to store game data
                    games_list = []
                    team_list = []
                
                    # Iterate over each week and its games
                    for week in weeks:
                        week_number = week.get('week')
                        for game in week.get('games', []):
                            # Add week number to the game dictionary
                            game['week'] = week_number
                            away_franchise = game.get('away_franchise', {})
                            away_franchise_groups = away_franchise.get('groups', {})
                            away_conf = away_franchise_groups[0]['name']
                            home_franchise = game.get('home_franchise', {})
                            home_franchise_groups = home_franchise.get('groups', {})
                            home_conf = home_franchise_groups[0]['name']
                            
                            # Flatten the away and home franchise data
                            game_data = {
                                'game_id': game.get('external_game_id'),
                                'Day': game.get('kickoff_date'),
                                'CST': game.get('kickoff_raw'),
                                'away_id': away_franchise.get('abbreviation'),
                                'Away': away_franchise.get('city'),
                                'home_id': home_franchise.get('abbreviation'),
                                'Home': home_franchise.get('city')
                            }
                            
                            home_data = {
                                'team': home_franchise.get('city'),
                                'conf': home_conf
                            }
                            
                            away_data = {
                                'team': away_franchise.get('city'),
                                'conf': away_conf
                            }
                            
                            merged_data = game_data | game
                            team_data = home_data | away_data
                            games_list.append(merged_data)
                            team_list.append(home_data)
                            team_list.append(away_data)
                
                    # Create a DataFrame from the games list
                    df = pd.DataFrame(games_list)
                    team_df = pd.DataFrame(team_list)
                    team_df = team_df.drop_duplicates(subset=['team', 'conf'])
                
                    # Display the DataFrame
                    print(df)
                else:
                    print(f"Failed to retrieve data. HTTP Status code: {response.status_code}")
                

                st.write("Cleaning data")
                df_raw = df[['pff_week', 'game_id', 'away_id', 'home_id', 'Away', 'Home', 'point_spread', 'over_under', 'Day', 'CST']]
                df_raw['conf_game'] = np.nan
                df_raw['Away_ATL'] = np.nan
                df_raw['Home_ATL'] = np.nan
                df_raw['Home Spread'] = np.nan
                df_raw['Proj Total'] = np.nan
                df_raw['Neutral'] = np.nan
                df_raw['Notes'] = np.nan
                df_raw['over_under'].fillna("", inplace=True)
                df_raw['over_under'] = pd.to_numeric(df_raw['over_under'], errors='coerce')
                df_raw = df_raw[['pff_week', 'game_id', 'away_id', 'home_id', 'Away', 'Home', 'conf_game', 'Away_ATL', 'Home_ATL', 'point_spread', 'Home Spread', 'over_under', 'Proj Total', 'Day', 'CST', 'Neutral', 'Notes']]
                add_games_merge = add_games_df
                comp_games_merge = comp_games_df
                conf_adj = dict(zip(add_games_merge['game_id'], add_games_merge['conf_game']))
                df_merge_1 = pd.concat([add_games_merge, df_raw])
                df_cleaned = pd.concat([comp_games_merge, df_merge_1])
                df_cleaned = df_cleaned[['pff_week', 'game_id', 'away_id', 'home_id', 'Away', 'Home', 'point_spread', 'over_under', 'Day', 'CST']]
                df_cleaned = df_cleaned.drop_duplicates(subset=['game_id'])
                
                def cond_away_PFA(row, df):
                    mask = (df['Away_ATL'] >= row['Away_ATL'] - 5) & (df['Away_ATL'] <= row['Away_ATL'] + 5)
                    return df.loc[mask, 'Away_PFA'].mean()
                
                def cond_home_PFA(row, df):
                    mask = (df['Home_ATL'] >= row['Home_ATL'] - 5) & (df['Home_ATL'] <= row['Home_ATL'] + 5)
                    return df.loc[mask, 'Home_PFA'].mean()
                
                def cond_away_PAA(row, df):
                    mask = (df['Away_ATL'] >= row['Away_ATL'] - 5) & (df['Away_ATL'] <= row['Away_ATL'] + 5)
                    return df.loc[mask, 'Away_PAA'].mean()
                
                def cond_home_PAA(row, df):
                    mask = (df['Home_ATL'] >= row['Home_ATL'] - 5) & (df['Home_ATL'] <= row['Home_ATL'] + 5)
                    return df.loc[mask, 'Home_PAA'].mean()

                for checkVar in range(len(wrong_acro)):
                    df_cleaned['Away'] = df_cleaned['Away'].replace(wrong_acro, right_acro)
                    df_cleaned['Home'] = df_cleaned['Home'].replace(wrong_acro, right_acro)
                df_cleaned['Away_conf'] = df_cleaned['Away'].map(conf_dict)
                df_cleaned['Home_conf'] = df_cleaned['Home'].map(conf_dict)
                df_cleaned['conf_game_var'] = np.where((df_cleaned['Away_conf'] == df_cleaned['Home_conf']), 1, 0)
                df_cleaned['conf_game'] = df_cleaned.apply(lambda row: conf_adj.get(row['game_id'], row['conf_game_var']), axis=1)
                df_cleaned['Away_ATL'] = df_cleaned['Away'].map(ranks_dict)
                df_cleaned['Home_ATL'] = df_cleaned['Home'].map(ranks_dict)
                df_cleaned['Away_inj'] = df_cleaned['Away'].map(injuries_dict)
                df_cleaned['Home_inj'] = df_cleaned['Home'].map(injuries_dict)
                df_cleaned['Away_inj'] = df_cleaned['Away_inj'].replace(['', np.nan], 0)
                df_cleaned['Home_inj'] = df_cleaned['Home_inj'].replace(['', np.nan], 0)
                df_cleaned['inj_mod'] = df_cleaned['Away_inj'] - df_cleaned['Home_inj']
                df_cleaned['Away_PFA'] = df_cleaned['Away'].map(PFA_dict)
                df_cleaned['Home_PFA'] = df_cleaned['Home'].map(PFA_dict)
                df_cleaned['Away_PAA'] = df_cleaned['Away'].map(PAA_dict)
                df_cleaned['Home_PAA'] = df_cleaned['Home'].map(PAA_dict)
                
                # Apply the function to each row in the DataFrame
                df_cleaned['cond_away_PFA'] = df_cleaned.apply(lambda row: cond_away_PFA(row, df_cleaned), axis=1)
                df_cleaned['cond_home_PFA'] = df_cleaned.apply(lambda row: cond_home_PFA(row, df_cleaned), axis=1)
                df_cleaned['cond_away_PAA'] = df_cleaned.apply(lambda row: cond_away_PAA(row, df_cleaned), axis=1)
                df_cleaned['cond_home_PAA'] = df_cleaned.apply(lambda row: cond_home_PAA(row, df_cleaned), axis=1)
                
                df_cleaned['cond_away_PFA'] = np.where((df_cleaned['Away_ATL'] <= 0), 18, df_cleaned['cond_away_PFA'])
                df_cleaned['cond_away_PAA'] = np.where((df_cleaned['Away_ATL'] <= 0), 36, df_cleaned['cond_away_PAA'])
                df_cleaned['cond_home_PFA'] = np.where((df_cleaned['Home_ATL'] <= 0), 18, df_cleaned['cond_home_PFA'])
                df_cleaned['cond_home_PAA'] = np.where((df_cleaned['Home_ATL'] <= 0), 36, df_cleaned['cond_home_PAA'])
                
                df_cleaned['Away_PFA'] = df_cleaned['Away_PFA'].fillna(df_cleaned['cond_away_PFA'])
                df_cleaned['Away_PAA'] = df_cleaned['Away_PAA'].fillna(df_cleaned['cond_away_PAA'])
                df_cleaned['Home_PFA'] = df_cleaned['Home_PFA'].fillna(df_cleaned['cond_home_PFA'])
                df_cleaned['Home_PAA'] = df_cleaned['Home_PAA'].fillna(df_cleaned['cond_home_PAA'])
                
                df_cleaned['Away_PFA_adj'] = (df_cleaned['Away_PFA'] * .75 + df_cleaned['Home_PAA'] * .25)
                df_cleaned['Home_PFA_adj'] = (df_cleaned['Home_PFA'] * .75 + df_cleaned['Away_PAA'] * .25)
                df_cleaned['Away_PFA_cond'] = (df_cleaned['cond_away_PFA'] * .75 + df_cleaned['cond_home_PAA'] * .25)
                df_cleaned['Home_PFA_cond'] = (df_cleaned['cond_home_PFA'] * .75 + df_cleaned['cond_away_PAA'] * .25)

                df_cleaned['Neutral'] = df_cleaned['game_id'].map(neutral_dict)
                df_cleaned['HFA'] = np.where(df_cleaned['Neutral'] == 1, 0, df_cleaned['Home'].map(hfa_dict))
                df_cleaned['Neutral'] = np.nan
                df_cleaned['Home Spread'] = (((df_cleaned['Home_ATL'] - df_cleaned['Away_ATL']) + df_cleaned['HFA']) * -1) + df_cleaned['inj_mod']
                df_cleaned['Win Prob'] = df_cleaned['Home Spread'].map(odds_dict)
                df_cleaned['Spread Adj'] = np.nan
                df_cleaned['Final Spread'] = np.nan
                df_cleaned['Proj Total'] = df_cleaned['Away_PFA_adj'] + df_cleaned['Home_PFA_adj']
                df_cleaned['Proj Total (adj)'] = np.where(df_cleaned['over_under'] != np.nan, (df_cleaned['over_under'] * .66 + df_cleaned['Proj Total'] * .34), df_cleaned['Proj Total'])
                df_cleaned['Proj Total (adj)'] = df_cleaned['Proj Total (adj)'].fillna(df_cleaned['Proj Total'])
                df_cleaned['Total Adj'] = np.nan
                df_cleaned['Final Total'] = np.nan
                df_cleaned['Notes'] = np.nan
                
                export_df_1 = df_cleaned[['pff_week', 'game_id', 'away_id', 'home_id', 'Away', 'Home', 'conf_game', 'Away_ATL', 'Home_ATL', 'point_spread', 'Home Spread',
                                        'over_under', 'Proj Total (adj)', 'Day', 'CST', 'Neutral', 'Notes']]
                
                
                export_df_1.rename(columns={"pff_week": "week", "point_spread": "Vegas Spread", "over_under": "Vegas Total", "Proj Total (adj)": "Proj Total"}, inplace = True)
                export_df_2 = add_games_df
                export_df = export_df_1
                export_df['week'] = pd.to_numeric(export_df['week'], errors='coerce')
                export_df = export_df.drop_duplicates(subset=['week', 'Away', 'Home'])
                export_df = export_df.sort_values(by='week', ascending=True)
                
                export_df['Vegas Spread'] = pd.to_numeric(export_df['Vegas Spread'], errors='coerce')
                export_df['Vegas Total'] = pd.to_numeric(export_df['Vegas Total'], errors='coerce')
                export_df['Proj Total'] = pd.to_numeric(export_df['Proj Total'], errors='coerce')
                export_df['Home Spread'] = pd.to_numeric(export_df['Home Spread'], errors='coerce')
                export_df.replace([np.nan, np.inf, -np.inf], '', inplace=True)
                export_df = export_df.drop_duplicates(subset=['week', 'away_id', 'home_id'])
                
                sh = gc.open_by_url(sheet_url)
                worksheet = sh.worksheet('Master_sched')
                worksheet.batch_clear(['A:P'])
                worksheet.update([export_df.columns.values.tolist()] + export_df.values.tolist())
                st.write("Uploaded Master Schedule")
                
                st.write("Finished NCAAF Script!")