Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -176,56 +176,62 @@ with tab7:
|
|
176 |
|
177 |
st.write("Initiated")
|
178 |
|
179 |
-
sh = gc.open_by_url(
|
180 |
worksheet = sh.worksheet('ATLranks')
|
181 |
ranks_df = DataFrame(worksheet.get_all_records())
|
182 |
ranks_dict = dict(zip(ranks_df.Team, ranks_df.ATL))
|
183 |
conf_dict = dict(zip(ranks_df.Team, ranks_df.Conference))
|
184 |
-
|
185 |
time.sleep(.5)
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
worksheet = sh.worksheet('HFA')
|
188 |
hfa_df = DataFrame(worksheet.get_all_records())
|
189 |
hfa_dict = dict(zip(hfa_df.Team, hfa_df.HFA))
|
190 |
-
|
191 |
time.sleep(.5)
|
192 |
-
|
193 |
worksheet = sh.worksheet('Odds')
|
194 |
odds_df = DataFrame(worksheet.get_all_records())
|
195 |
odds_dict = dict(zip(odds_df.Point_Spread, odds_df.Favorite_Win_Chance))
|
196 |
-
|
197 |
time.sleep(.5)
|
198 |
-
|
199 |
worksheet = sh.worksheet('Acronyms')
|
200 |
acros_df = DataFrame(worksheet.get_all_records())
|
201 |
right_acro = acros_df['Team'].tolist()
|
202 |
wrong_acro = acros_df['Acro'].tolist()
|
203 |
-
|
204 |
time.sleep(.5)
|
205 |
-
|
206 |
worksheet = sh.worksheet('Add games')
|
207 |
add_games_df = DataFrame(worksheet.get_all_records())
|
208 |
add_games_df.replace('', np.nan, inplace=True)
|
209 |
neutral_dict = dict(zip(add_games_df.game_id, add_games_df.Neutral))
|
210 |
-
|
211 |
time.sleep(.5)
|
212 |
-
|
213 |
worksheet = sh.worksheet('Completed games')
|
214 |
comp_games_df = DataFrame(worksheet.get_all_records())
|
215 |
comp_games_df.replace('', np.nan, inplace=True)
|
216 |
-
|
217 |
time.sleep(.5)
|
218 |
-
|
219 |
worksheet = sh.worksheet('LY_scoring')
|
220 |
lyscore_df = DataFrame(worksheet.get_all_records())
|
221 |
for checkVar in range(len(wrong_acro)):
|
222 |
lyscore_df['Team'] = lyscore_df['Team'].replace(wrong_acro, right_acro)
|
223 |
-
|
224 |
PFA_dict = dict(zip(lyscore_df.Team, lyscore_df.PF_G_adj))
|
225 |
PAA_dict = dict(zip(lyscore_df.Team, lyscore_df.PA_G_adj))
|
226 |
|
227 |
# Send a GET request to the API
|
228 |
-
response = requests.get(
|
229 |
|
230 |
st.write("retreiving PFF data")
|
231 |
|
@@ -240,7 +246,7 @@ with tab7:
|
|
240 |
# Initialize an empty list to store game data
|
241 |
games_list = []
|
242 |
team_list = []
|
243 |
-
|
244 |
# Iterate over each week and its games
|
245 |
for week in weeks:
|
246 |
week_number = week.get('week')
|
@@ -280,12 +286,12 @@ with tab7:
|
|
280 |
games_list.append(merged_data)
|
281 |
team_list.append(home_data)
|
282 |
team_list.append(away_data)
|
283 |
-
|
284 |
# Create a DataFrame from the games list
|
285 |
df = pd.DataFrame(games_list)
|
286 |
team_df = pd.DataFrame(team_list)
|
287 |
team_df = team_df.drop_duplicates(subset=['team', 'conf'])
|
288 |
-
|
289 |
# Display the DataFrame
|
290 |
print(df)
|
291 |
else:
|
@@ -311,19 +317,19 @@ with tab7:
|
|
311 |
df_cleaned = pd.concat([comp_games_merge, df_merge_1])
|
312 |
df_cleaned = df_cleaned[['pff_week', 'game_id', 'away_id', 'home_id', 'Away', 'Home', 'point_spread', 'over_under', 'Day', 'CST']]
|
313 |
df_cleaned = df_cleaned.drop_duplicates(subset=['game_id'])
|
314 |
-
|
315 |
def cond_away_PFA(row, df):
|
316 |
mask = (df['Away_ATL'] >= row['Away_ATL'] - 5) & (df['Away_ATL'] <= row['Away_ATL'] + 5)
|
317 |
return df.loc[mask, 'Away_PFA'].mean()
|
318 |
-
|
319 |
def cond_home_PFA(row, df):
|
320 |
mask = (df['Home_ATL'] >= row['Home_ATL'] - 5) & (df['Home_ATL'] <= row['Home_ATL'] + 5)
|
321 |
return df.loc[mask, 'Home_PFA'].mean()
|
322 |
-
|
323 |
def cond_away_PAA(row, df):
|
324 |
mask = (df['Away_ATL'] >= row['Away_ATL'] - 5) & (df['Away_ATL'] <= row['Away_ATL'] + 5)
|
325 |
return df.loc[mask, 'Away_PAA'].mean()
|
326 |
-
|
327 |
def cond_home_PAA(row, df):
|
328 |
mask = (df['Home_ATL'] >= row['Home_ATL'] - 5) & (df['Home_ATL'] <= row['Home_ATL'] + 5)
|
329 |
return df.loc[mask, 'Home_PAA'].mean()
|
@@ -337,27 +343,32 @@ with tab7:
|
|
337 |
df_cleaned['conf_game'] = df_cleaned.apply(lambda row: conf_adj.get(row['game_id'], row['conf_game_var']), axis=1)
|
338 |
df_cleaned['Away_ATL'] = df_cleaned['Away'].map(ranks_dict)
|
339 |
df_cleaned['Home_ATL'] = df_cleaned['Home'].map(ranks_dict)
|
|
|
|
|
|
|
|
|
|
|
340 |
df_cleaned['Away_PFA'] = df_cleaned['Away'].map(PFA_dict)
|
341 |
df_cleaned['Home_PFA'] = df_cleaned['Home'].map(PFA_dict)
|
342 |
df_cleaned['Away_PAA'] = df_cleaned['Away'].map(PAA_dict)
|
343 |
df_cleaned['Home_PAA'] = df_cleaned['Home'].map(PAA_dict)
|
344 |
-
|
345 |
# Apply the function to each row in the DataFrame
|
346 |
df_cleaned['cond_away_PFA'] = df_cleaned.apply(lambda row: cond_away_PFA(row, df_cleaned), axis=1)
|
347 |
df_cleaned['cond_home_PFA'] = df_cleaned.apply(lambda row: cond_home_PFA(row, df_cleaned), axis=1)
|
348 |
df_cleaned['cond_away_PAA'] = df_cleaned.apply(lambda row: cond_away_PAA(row, df_cleaned), axis=1)
|
349 |
df_cleaned['cond_home_PAA'] = df_cleaned.apply(lambda row: cond_home_PAA(row, df_cleaned), axis=1)
|
350 |
-
|
351 |
df_cleaned['cond_away_PFA'] = np.where((df_cleaned['Away_ATL'] <= 0), 18, df_cleaned['cond_away_PFA'])
|
352 |
df_cleaned['cond_away_PAA'] = np.where((df_cleaned['Away_ATL'] <= 0), 36, df_cleaned['cond_away_PAA'])
|
353 |
df_cleaned['cond_home_PFA'] = np.where((df_cleaned['Home_ATL'] <= 0), 18, df_cleaned['cond_home_PFA'])
|
354 |
df_cleaned['cond_home_PAA'] = np.where((df_cleaned['Home_ATL'] <= 0), 36, df_cleaned['cond_home_PAA'])
|
355 |
-
|
356 |
df_cleaned['Away_PFA'] = df_cleaned['Away_PFA'].fillna(df_cleaned['cond_away_PFA'])
|
357 |
df_cleaned['Away_PAA'] = df_cleaned['Away_PAA'].fillna(df_cleaned['cond_away_PAA'])
|
358 |
df_cleaned['Home_PFA'] = df_cleaned['Home_PFA'].fillna(df_cleaned['cond_home_PFA'])
|
359 |
df_cleaned['Home_PAA'] = df_cleaned['Home_PAA'].fillna(df_cleaned['cond_home_PAA'])
|
360 |
-
|
361 |
df_cleaned['Away_PFA_adj'] = (df_cleaned['Away_PFA'] * .75 + df_cleaned['Home_PAA'] * .25)
|
362 |
df_cleaned['Home_PFA_adj'] = (df_cleaned['Home_PFA'] * .75 + df_cleaned['Away_PAA'] * .25)
|
363 |
df_cleaned['Away_PFA_cond'] = (df_cleaned['cond_away_PFA'] * .75 + df_cleaned['cond_home_PAA'] * .25)
|
@@ -366,7 +377,7 @@ with tab7:
|
|
366 |
df_cleaned['Neutral'] = df_cleaned['game_id'].map(neutral_dict)
|
367 |
df_cleaned['HFA'] = np.where(df_cleaned['Neutral'] == 1, 0, df_cleaned['Home'].map(hfa_dict))
|
368 |
df_cleaned['Neutral'] = np.nan
|
369 |
-
df_cleaned['Home Spread'] = ((df_cleaned['Home_ATL'] - df_cleaned['Away_ATL']) + df_cleaned['HFA']) * -1
|
370 |
df_cleaned['Win Prob'] = df_cleaned['Home Spread'].map(odds_dict)
|
371 |
df_cleaned['Spread Adj'] = np.nan
|
372 |
df_cleaned['Final Spread'] = np.nan
|
@@ -376,32 +387,29 @@ with tab7:
|
|
376 |
df_cleaned['Total Adj'] = np.nan
|
377 |
df_cleaned['Final Total'] = np.nan
|
378 |
df_cleaned['Notes'] = np.nan
|
379 |
-
|
380 |
export_df_1 = df_cleaned[['pff_week', 'game_id', 'away_id', 'home_id', 'Away', 'Home', 'conf_game', 'Away_ATL', 'Home_ATL', 'point_spread', 'Home Spread',
|
381 |
'over_under', 'Proj Total (adj)', 'Day', 'CST', 'Neutral', 'Notes']]
|
382 |
-
|
383 |
-
|
384 |
export_df_1.rename(columns={"pff_week": "week", "point_spread": "Vegas Spread", "over_under": "Vegas Total", "Proj Total (adj)": "Proj Total"}, inplace = True)
|
385 |
export_df_2 = add_games_df
|
386 |
export_df = export_df_1
|
387 |
export_df['week'] = pd.to_numeric(export_df['week'], errors='coerce')
|
388 |
export_df = export_df.drop_duplicates(subset=['week', 'Away', 'Home'])
|
389 |
export_df = export_df.sort_values(by='week', ascending=True)
|
390 |
-
|
391 |
export_df['Vegas Spread'] = pd.to_numeric(export_df['Vegas Spread'], errors='coerce')
|
392 |
export_df['Vegas Total'] = pd.to_numeric(export_df['Vegas Total'], errors='coerce')
|
393 |
export_df['Proj Total'] = pd.to_numeric(export_df['Proj Total'], errors='coerce')
|
394 |
export_df['Home Spread'] = pd.to_numeric(export_df['Home Spread'], errors='coerce')
|
395 |
export_df.replace([np.nan, np.inf, -np.inf], '', inplace=True)
|
396 |
export_df = export_df.drop_duplicates(subset=['week', 'away_id', 'home_id'])
|
397 |
-
|
398 |
-
sh = gc.open_by_url(
|
399 |
worksheet = sh.worksheet('Master_sched')
|
400 |
worksheet.batch_clear(['A:P'])
|
401 |
worksheet.update([export_df.columns.values.tolist()] + export_df.values.tolist())
|
402 |
-
|
403 |
-
|
404 |
st.write("Uploaded Master Schedule")
|
405 |
|
406 |
-
|
407 |
st.write("Finished NCAAF Script!")
|
|
|
176 |
|
177 |
st.write("Initiated")
|
178 |
|
179 |
+
sh = gc.open_by_url(sheet_url)
|
180 |
worksheet = sh.worksheet('ATLranks')
|
181 |
ranks_df = DataFrame(worksheet.get_all_records())
|
182 |
ranks_dict = dict(zip(ranks_df.Team, ranks_df.ATL))
|
183 |
conf_dict = dict(zip(ranks_df.Team, ranks_df.Conference))
|
184 |
+
|
185 |
time.sleep(.5)
|
186 |
+
|
187 |
+
worksheet = sh.worksheet('Injuries')
|
188 |
+
injuries_df = DataFrame(worksheet.get_all_records())
|
189 |
+
injuries_dict = dict(zip(injuries_df.Team, injuries_df.Team_Modifier))
|
190 |
+
|
191 |
+
time.sleep(.5)
|
192 |
+
|
193 |
worksheet = sh.worksheet('HFA')
|
194 |
hfa_df = DataFrame(worksheet.get_all_records())
|
195 |
hfa_dict = dict(zip(hfa_df.Team, hfa_df.HFA))
|
196 |
+
|
197 |
time.sleep(.5)
|
198 |
+
|
199 |
worksheet = sh.worksheet('Odds')
|
200 |
odds_df = DataFrame(worksheet.get_all_records())
|
201 |
odds_dict = dict(zip(odds_df.Point_Spread, odds_df.Favorite_Win_Chance))
|
202 |
+
|
203 |
time.sleep(.5)
|
204 |
+
|
205 |
worksheet = sh.worksheet('Acronyms')
|
206 |
acros_df = DataFrame(worksheet.get_all_records())
|
207 |
right_acro = acros_df['Team'].tolist()
|
208 |
wrong_acro = acros_df['Acro'].tolist()
|
209 |
+
|
210 |
time.sleep(.5)
|
211 |
+
|
212 |
worksheet = sh.worksheet('Add games')
|
213 |
add_games_df = DataFrame(worksheet.get_all_records())
|
214 |
add_games_df.replace('', np.nan, inplace=True)
|
215 |
neutral_dict = dict(zip(add_games_df.game_id, add_games_df.Neutral))
|
216 |
+
|
217 |
time.sleep(.5)
|
218 |
+
|
219 |
worksheet = sh.worksheet('Completed games')
|
220 |
comp_games_df = DataFrame(worksheet.get_all_records())
|
221 |
comp_games_df.replace('', np.nan, inplace=True)
|
222 |
+
|
223 |
time.sleep(.5)
|
224 |
+
|
225 |
worksheet = sh.worksheet('LY_scoring')
|
226 |
lyscore_df = DataFrame(worksheet.get_all_records())
|
227 |
for checkVar in range(len(wrong_acro)):
|
228 |
lyscore_df['Team'] = lyscore_df['Team'].replace(wrong_acro, right_acro)
|
229 |
+
|
230 |
PFA_dict = dict(zip(lyscore_df.Team, lyscore_df.PF_G_adj))
|
231 |
PAA_dict = dict(zip(lyscore_df.Team, lyscore_df.PA_G_adj))
|
232 |
|
233 |
# Send a GET request to the API
|
234 |
+
response = requests.get(url)
|
235 |
|
236 |
st.write("retreiving PFF data")
|
237 |
|
|
|
246 |
# Initialize an empty list to store game data
|
247 |
games_list = []
|
248 |
team_list = []
|
249 |
+
|
250 |
# Iterate over each week and its games
|
251 |
for week in weeks:
|
252 |
week_number = week.get('week')
|
|
|
286 |
games_list.append(merged_data)
|
287 |
team_list.append(home_data)
|
288 |
team_list.append(away_data)
|
289 |
+
|
290 |
# Create a DataFrame from the games list
|
291 |
df = pd.DataFrame(games_list)
|
292 |
team_df = pd.DataFrame(team_list)
|
293 |
team_df = team_df.drop_duplicates(subset=['team', 'conf'])
|
294 |
+
|
295 |
# Display the DataFrame
|
296 |
print(df)
|
297 |
else:
|
|
|
317 |
df_cleaned = pd.concat([comp_games_merge, df_merge_1])
|
318 |
df_cleaned = df_cleaned[['pff_week', 'game_id', 'away_id', 'home_id', 'Away', 'Home', 'point_spread', 'over_under', 'Day', 'CST']]
|
319 |
df_cleaned = df_cleaned.drop_duplicates(subset=['game_id'])
|
320 |
+
|
321 |
def cond_away_PFA(row, df):
|
322 |
mask = (df['Away_ATL'] >= row['Away_ATL'] - 5) & (df['Away_ATL'] <= row['Away_ATL'] + 5)
|
323 |
return df.loc[mask, 'Away_PFA'].mean()
|
324 |
+
|
325 |
def cond_home_PFA(row, df):
|
326 |
mask = (df['Home_ATL'] >= row['Home_ATL'] - 5) & (df['Home_ATL'] <= row['Home_ATL'] + 5)
|
327 |
return df.loc[mask, 'Home_PFA'].mean()
|
328 |
+
|
329 |
def cond_away_PAA(row, df):
|
330 |
mask = (df['Away_ATL'] >= row['Away_ATL'] - 5) & (df['Away_ATL'] <= row['Away_ATL'] + 5)
|
331 |
return df.loc[mask, 'Away_PAA'].mean()
|
332 |
+
|
333 |
def cond_home_PAA(row, df):
|
334 |
mask = (df['Home_ATL'] >= row['Home_ATL'] - 5) & (df['Home_ATL'] <= row['Home_ATL'] + 5)
|
335 |
return df.loc[mask, 'Home_PAA'].mean()
|
|
|
343 |
df_cleaned['conf_game'] = df_cleaned.apply(lambda row: conf_adj.get(row['game_id'], row['conf_game_var']), axis=1)
|
344 |
df_cleaned['Away_ATL'] = df_cleaned['Away'].map(ranks_dict)
|
345 |
df_cleaned['Home_ATL'] = df_cleaned['Home'].map(ranks_dict)
|
346 |
+
df_cleaned['Away_inj'] = df_cleaned['Away'].map(injuries_dict)
|
347 |
+
df_cleaned['Home_inj'] = df_cleaned['Home'].map(injuries_dict)
|
348 |
+
df_cleaned['Away_inj'] = df_cleaned['Away_inj'].replace(['', np.nan], 0)
|
349 |
+
df_cleaned['Home_inj'] = df_cleaned['Home_inj'].replace(['', np.nan], 0)
|
350 |
+
df_cleaned['inj_mod'] = df_cleaned['Away_inj'] - df_cleaned['Home_inj']
|
351 |
df_cleaned['Away_PFA'] = df_cleaned['Away'].map(PFA_dict)
|
352 |
df_cleaned['Home_PFA'] = df_cleaned['Home'].map(PFA_dict)
|
353 |
df_cleaned['Away_PAA'] = df_cleaned['Away'].map(PAA_dict)
|
354 |
df_cleaned['Home_PAA'] = df_cleaned['Home'].map(PAA_dict)
|
355 |
+
|
356 |
# Apply the function to each row in the DataFrame
|
357 |
df_cleaned['cond_away_PFA'] = df_cleaned.apply(lambda row: cond_away_PFA(row, df_cleaned), axis=1)
|
358 |
df_cleaned['cond_home_PFA'] = df_cleaned.apply(lambda row: cond_home_PFA(row, df_cleaned), axis=1)
|
359 |
df_cleaned['cond_away_PAA'] = df_cleaned.apply(lambda row: cond_away_PAA(row, df_cleaned), axis=1)
|
360 |
df_cleaned['cond_home_PAA'] = df_cleaned.apply(lambda row: cond_home_PAA(row, df_cleaned), axis=1)
|
361 |
+
|
362 |
df_cleaned['cond_away_PFA'] = np.where((df_cleaned['Away_ATL'] <= 0), 18, df_cleaned['cond_away_PFA'])
|
363 |
df_cleaned['cond_away_PAA'] = np.where((df_cleaned['Away_ATL'] <= 0), 36, df_cleaned['cond_away_PAA'])
|
364 |
df_cleaned['cond_home_PFA'] = np.where((df_cleaned['Home_ATL'] <= 0), 18, df_cleaned['cond_home_PFA'])
|
365 |
df_cleaned['cond_home_PAA'] = np.where((df_cleaned['Home_ATL'] <= 0), 36, df_cleaned['cond_home_PAA'])
|
366 |
+
|
367 |
df_cleaned['Away_PFA'] = df_cleaned['Away_PFA'].fillna(df_cleaned['cond_away_PFA'])
|
368 |
df_cleaned['Away_PAA'] = df_cleaned['Away_PAA'].fillna(df_cleaned['cond_away_PAA'])
|
369 |
df_cleaned['Home_PFA'] = df_cleaned['Home_PFA'].fillna(df_cleaned['cond_home_PFA'])
|
370 |
df_cleaned['Home_PAA'] = df_cleaned['Home_PAA'].fillna(df_cleaned['cond_home_PAA'])
|
371 |
+
|
372 |
df_cleaned['Away_PFA_adj'] = (df_cleaned['Away_PFA'] * .75 + df_cleaned['Home_PAA'] * .25)
|
373 |
df_cleaned['Home_PFA_adj'] = (df_cleaned['Home_PFA'] * .75 + df_cleaned['Away_PAA'] * .25)
|
374 |
df_cleaned['Away_PFA_cond'] = (df_cleaned['cond_away_PFA'] * .75 + df_cleaned['cond_home_PAA'] * .25)
|
|
|
377 |
df_cleaned['Neutral'] = df_cleaned['game_id'].map(neutral_dict)
|
378 |
df_cleaned['HFA'] = np.where(df_cleaned['Neutral'] == 1, 0, df_cleaned['Home'].map(hfa_dict))
|
379 |
df_cleaned['Neutral'] = np.nan
|
380 |
+
df_cleaned['Home Spread'] = (((df_cleaned['Home_ATL'] - df_cleaned['Away_ATL']) + df_cleaned['HFA']) * -1) + df_cleaned['inj_mod']
|
381 |
df_cleaned['Win Prob'] = df_cleaned['Home Spread'].map(odds_dict)
|
382 |
df_cleaned['Spread Adj'] = np.nan
|
383 |
df_cleaned['Final Spread'] = np.nan
|
|
|
387 |
df_cleaned['Total Adj'] = np.nan
|
388 |
df_cleaned['Final Total'] = np.nan
|
389 |
df_cleaned['Notes'] = np.nan
|
390 |
+
|
391 |
export_df_1 = df_cleaned[['pff_week', 'game_id', 'away_id', 'home_id', 'Away', 'Home', 'conf_game', 'Away_ATL', 'Home_ATL', 'point_spread', 'Home Spread',
|
392 |
'over_under', 'Proj Total (adj)', 'Day', 'CST', 'Neutral', 'Notes']]
|
393 |
+
|
394 |
+
|
395 |
export_df_1.rename(columns={"pff_week": "week", "point_spread": "Vegas Spread", "over_under": "Vegas Total", "Proj Total (adj)": "Proj Total"}, inplace = True)
|
396 |
export_df_2 = add_games_df
|
397 |
export_df = export_df_1
|
398 |
export_df['week'] = pd.to_numeric(export_df['week'], errors='coerce')
|
399 |
export_df = export_df.drop_duplicates(subset=['week', 'Away', 'Home'])
|
400 |
export_df = export_df.sort_values(by='week', ascending=True)
|
401 |
+
|
402 |
export_df['Vegas Spread'] = pd.to_numeric(export_df['Vegas Spread'], errors='coerce')
|
403 |
export_df['Vegas Total'] = pd.to_numeric(export_df['Vegas Total'], errors='coerce')
|
404 |
export_df['Proj Total'] = pd.to_numeric(export_df['Proj Total'], errors='coerce')
|
405 |
export_df['Home Spread'] = pd.to_numeric(export_df['Home Spread'], errors='coerce')
|
406 |
export_df.replace([np.nan, np.inf, -np.inf], '', inplace=True)
|
407 |
export_df = export_df.drop_duplicates(subset=['week', 'away_id', 'home_id'])
|
408 |
+
|
409 |
+
sh = gc.open_by_url(sheet_url)
|
410 |
worksheet = sh.worksheet('Master_sched')
|
411 |
worksheet.batch_clear(['A:P'])
|
412 |
worksheet.update([export_df.columns.values.tolist()] + export_df.values.tolist())
|
|
|
|
|
413 |
st.write("Uploaded Master Schedule")
|
414 |
|
|
|
415 |
st.write("Finished NCAAF Script!")
|