File size: 29,842 Bytes
2c0c3ee
 
 
 
 
 
 
1329302
 
 
 
4713c08
2c0c3ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3677719
2c0c3ee
1329302
4713c08
2c0c3ee
1329302
2c0c3ee
1329302
4713c08
bcdcf6e
b24d9f9
 
2c0c3ee
 
 
1329302
2c0c3ee
1329302
4713c08
2c0c3ee
1329302
2c0c3ee
1329302
2c0c3ee
 
 
 
4713c08
1329302
a522119
1329302
 
4713c08
 
1329302
2c0c3ee
 
4713c08
 
 
2c0c3ee
 
 
4713c08
2c0c3ee
 
4713c08
 
1329302
4713c08
 
2c0c3ee
4713c08
 
1329302
 
 
4713c08
 
1329302
2c0c3ee
 
4713c08
 
2c0c3ee
4713c08
2c0c3ee
 
fcbf3e4
 
 
1329302
4713c08
2c0c3ee
 
4713c08
 
1329302
2c0c3ee
1329302
4713c08
 
 
2c0c3ee
 
4713c08
 
 
 
 
 
 
 
2c0c3ee
 
 
4713c08
 
2c0c3ee
 
 
 
 
 
 
4713c08
2c0c3ee
4713c08
2c0c3ee
 
 
 
 
 
 
 
 
4713c08
 
 
 
 
 
 
2c0c3ee
4713c08
 
 
 
 
 
 
 
2c0c3ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4713c08
 
2c0c3ee
 
 
4713c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c0c3ee
4713c08
1329302
4713c08
1329302
2c0c3ee
 
1329302
 
 
 
 
 
 
 
 
2c0c3ee
1329302
 
 
 
 
 
2c0c3ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4713c08
2c0c3ee
4713c08
 
 
 
 
 
2c0c3ee
 
4713c08
2c0c3ee
4713c08
 
 
 
 
 
2c0c3ee
 
4713c08
2c0c3ee
4713c08
 
 
 
 
 
2c0c3ee
 
 
 
 
 
 
 
 
 
 
1329302
 
 
 
 
2c0c3ee
1329302
 
 
2c0c3ee
 
 
 
 
 
 
 
 
 
 
 
 
 
1329302
 
2c0c3ee
 
 
1329302
 
 
 
 
 
4713c08
1329302
 
 
 
 
4713c08
1329302
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4713c08
1329302
4713c08
 
1329302
4713c08
1329302
 
4713c08
1329302
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c0c3ee
1329302
 
 
4713c08
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
import streamlit as st
st.set_page_config(layout="wide")

for name in dir():
    if not name.startswith('_'):
        del globals()[name]

import numpy as np
import pandas as pd
import streamlit as st
import gspread
import plotly.express as px
import random
import gc

@st.cache_resource
def init_conn():
        scope = ['https://www.googleapis.com/auth/spreadsheets',
        "https://www.googleapis.com/auth/drive"]

        credentials = {
          "type": "service_account",
          "project_id": "model-sheets-connect",
          "private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
          "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
          "client_email": "gspread-connection@model-sheets-connect.iam.gserviceaccount.com",
          "client_id": "100369174533302798535",
          "auth_uri": "https://accounts.google.com/o/oauth2/auth",
          "token_uri": "https://oauth2.googleapis.com/token",
          "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
          "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
        }

        gc_con = gspread.service_account_from_dict(credentials)
      
        return gc_con

gcservice_account = init_conn()

master_hold = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=853878325'

@st.cache_resource(ttl = 300)
def init_baselines():
    sh = gcservice_account.open_by_url(master_hold)
    worksheet = sh.worksheet('Betting Model Clean')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.replace('#DIV/0!', np.nan, inplace=True)
    game_model = raw_display.dropna()

    worksheet = sh.worksheet('DK_Build_Up')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.replace('', np.nan, inplace=True)
    raw_display.rename(columns={"Name": "Player"}, inplace = True)
    raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Minutes', 'Points', 'Rebounds', 'Assists', 'Steals', 'Blocks', 'Turnovers']]
    player_stats = raw_display[raw_display['Minutes'] > 0]
    
    worksheet = sh.worksheet('Timestamp')
    timestamp = worksheet.acell('A1').value

    worksheet = sh.worksheet('Prop_Frame')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.replace('', np.nan, inplace=True)
    prop_frame = raw_display.dropna()

    return game_model, player_stats, prop_frame, timestamp

def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

game_model, player_stats, prop_frame, timestamp = init_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"

tab1, tab2, tab3, tab4 = st.tabs(["Game Betting Model", "Player Projections", "Player Prop Simulations", "Stat Specific Simulations"])

with tab1:
    st.info(t_stamp)
    if st.button("Reset Data", key='reset1'):
              st.cache_data.clear()
              game_model, player_stats, prop_frame, timestamp = init_baselines()
              t_stamp = f"Last Update: " + str(timestamp) + f" CST"
    line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1')
    team_frame = game_model
    if line_var1 == 'Percentage':
        team_frame = team_frame[['Team', 'Opp', 'Team Points', 'Opp Points', 'Proj Total', 'Proj Spread', 'Proj Winner', 'Win%']]
        team_frame = team_frame.set_index('Team')
        st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
    if line_var1 == 'American':
        team_frame = team_frame[['Team', 'Opp', 'Team Points', 'Opp Points', 'Proj Total', 'Proj Spread', 'Proj Winner', 'Odds Line']]
        team_frame = team_frame.set_index('Team')
        st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
    
    st.download_button(
        label="Export Team Model",
        data=convert_df_to_csv(team_frame),
        file_name='NBA_team_betting_export.csv',
        mime='text/csv',
        key='team_export',
    )

with tab2:
    st.info(t_stamp)
    if st.button("Reset Data", key='reset2'):
              st.cache_data.clear()
              game_model, player_stats, prop_frame, timestamp = init_baselines()
              t_stamp = f"Last Update: " + str(timestamp) + f" CST"
    split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
    if split_var1 == 'Specific Teams':
        team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = player_stats['Team'].unique(), key='team_var1')
    elif split_var1 == 'All':
        team_var1 = player_stats.Team.values.tolist()
    player_stats = player_stats[player_stats['Team'].isin(team_var1)]
    player_stats_disp = player_stats.set_index('Player')
    player_stats_disp = player_stats_disp.sort_values(by='Fantasy', ascending=False)
    st.dataframe(player_stats_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
    st.download_button(
        label="Export Prop Model",
        data=convert_df_to_csv(player_stats),
        file_name='NBA_stats_export.csv',
        mime='text/csv',
        key='pitcher_prop_export',
    )
    
with tab3:
    st.info(t_stamp)
    if st.button("Reset Data", key='reset4'):
              st.cache_data.clear()
              game_model, player_stats, prop_frame, timestamp = init_baselines()
              t_stamp = f"Last Update: " + str(timestamp) + f" CST"
    col1, col2 = st.columns([1, 5])
    
    with col2:
        df_hold_container = st.empty()
        info_hold_container = st.empty()
        plot_hold_container = st.empty()
    
    with col1:
        player_check = st.selectbox('Select player to simulate props', options = player_stats['Player'].unique())
        prop_type_var = st.selectbox('Select type of prop to simulate', options = ['points', 'rebounds', 'assists', 'blocks', 'steals',
                                                                                   'PRA', 'points+rebounds', 'points+assists', 'rebounds+assists'])

        ou_var = st.selectbox('Select wether it is an over or under', options = ['Over', 'Under'])
        if prop_type_var == 'points':
            prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 50.5, value = 15.5, step = .5)
        elif prop_type_var == 'rebounds':
            prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 25.5, value = 5.5, step = .5)
        elif prop_type_var == 'assists':
            prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 25.5, value = 5.5, step = .5)
        elif prop_type_var == 'blocks':
            prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
        elif prop_type_var == 'steals':
            prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
        elif prop_type_var == 'PRA':
            prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 65.5, value = 20.5, step = .5)
        elif prop_type_var == 'points+rebounds':
            prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 45.5, value = 10.5, step = .5)
        elif prop_type_var == 'points+assists':
            prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 45.5, value = 10.5, step = .5)
        elif prop_type_var == 'rebounds+assists':
            prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 45.5, value = 10.5, step = .5)
        line_var = st.number_input('Type in the line on the prop (i.e. -120)', min_value = -1500, max_value = 1500, value = -150, step = 1)
        line_var = line_var + 1

        if st.button('Simulate Prop'):
            with col2:
                   
                    with df_hold_container.container():

                        df = player_stats

                        total_sims = 5000

                        df.replace("", 0, inplace=True)

                        player_var = df.loc[df['Player'] == player_check]
                        player_var = player_var.reset_index()

                        if prop_type_var == 'points':
                            df['Median'] = df['Points']
                        elif prop_type_var == 'rebounds':
                            df['Median'] = df['Rebounds']
                        elif prop_type_var == 'assists':
                            df['Median'] = df['Assists']
                        elif prop_type_var == 'blocks':
                            df['Median'] = df['Blocks']
                        elif prop_type_var == 'steals':
                            df['Median'] = df['Steals']
                        elif prop_type_var == 'PRA':
                            df['Median'] = df['Points'] + df['Rebounds'] + df['Assists']
                        elif prop_type_var == 'points+rebounds':
                            df['Median'] = df['Points'] + df['Rebounds']
                        elif prop_type_var == 'points+assists':
                            df['Median'] = df['Points'] + df['Assists']
                        elif prop_type_var == 'rebounds+assists':
                            df['Median'] = df['Assists'] + df['Rebounds']

                        flex_file = df
                        flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes'] * .25)
                        flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes'] * .25)
                        flex_file['STD'] = (flex_file['Median']/4)
                        flex_file = flex_file[['Player', 'Floor', 'Median', 'Ceiling', 'STD']]

                        hold_file = flex_file
                        overall_file = flex_file
                        salary_file = flex_file

                        overall_players = overall_file[['Player']]

                        for x in range(0,total_sims):
                            overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])

                        overall_file=overall_file.drop(['Player', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
                        overall_file.astype('int').dtypes

                        players_only = hold_file[['Player']]

                        player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)

                        players_only['Mean_Outcome'] = overall_file.mean(axis=1)
                        players_only['10%'] = overall_file.quantile(0.1, axis=1)
                        players_only['90%'] = overall_file.quantile(0.9, axis=1)
                        if ou_var == 'Over':
                            players_only['beat_prop'] = overall_file[overall_file > prop_var].count(axis=1)/float(total_sims)
                        elif ou_var == 'Under':
                            players_only['beat_prop'] = (overall_file[overall_file < prop_var].count(axis=1)/float(total_sims))

                        players_only['implied_odds'] = np.where(line_var <= 0, (-(line_var)/((-(line_var))+100)), 100/(line_var+100))

                        players_only['Player'] = hold_file[['Player']]

                        final_outcomes = players_only[['Player', '10%', 'Mean_Outcome', '90%', 'implied_odds', 'beat_prop']]
                        final_outcomes['Bet?'] = np.where(final_outcomes['beat_prop'] - final_outcomes['implied_odds'] >= .10, "Bet", "No Bet")
                        final_outcomes = final_outcomes.loc[final_outcomes['Player'] == player_check]
                        player_outcomes = player_outcomes.loc[player_outcomes['Player'] == player_check]
                        player_outcomes = player_outcomes.drop(columns=['Player']).transpose()
                        player_outcomes = player_outcomes.reset_index()
                        player_outcomes.columns = ['Instance', 'Outcome']

                        x1 = player_outcomes.Outcome.to_numpy()

                        print(x1)

                        hist_data = [x1]

                        group_labels = ['player outcomes']

                        fig = px.histogram(
                                player_outcomes, x='Outcome')
                        fig.add_vline(x=prop_var, line_dash="dash", line_color="green")

                        with df_hold_container:
                            df_hold_container = st.empty()
                            format_dict = {'10%': '{:.2f}', 'Mean_Outcome': '{:.2f}','90%': '{:.2f}', 'beat_prop': '{:.2%}','implied_odds': '{:.2%}'}
                            st.dataframe(final_outcomes.style.format(format_dict), use_container_width = True)

                        with info_hold_container:
                            st.info('The Y-axis is the percent of times in simulations that the player reaches certain thresholds, while the X-axis is the threshold to be met. The Green dotted line is the prop you entered. You can hover over any spot and see the percent to reach that mark.')

                        with plot_hold_container:
                            st.dataframe(player_outcomes, use_container_width = True)
                            plot_hold_container = st.empty()
                            st.plotly_chart(fig, use_container_width=True)

with tab4:
    st.info(t_stamp)
    st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
    if st.button("Reset Data/Load Data", key='reset5'):
              st.cache_data.clear()
              game_model, player_stats, prop_frame, timestamp = init_baselines()
              t_stamp = f"Last Update: " + str(timestamp) + f" CST"
    col1, col2 = st.columns([1, 5])
    
    with col2:
        df_hold_container = st.empty()
        info_hold_container = st.empty()
        plot_hold_container = st.empty()
        export_container = st.empty()
    
    with col1:
        prop_type_var = st.selectbox('Select prop category', options = ['points', 'rebounds', 'assists', 'PRA', 'points+rebounds', 'points+assists', 'rebounds+assists'])

        if st.button('Simulate Prop Category'):
            with col2:
                   
                    with df_hold_container.container():

                        if prop_type_var == "points":
                            prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
                            prop_df = prop_df.loc[prop_df['prop_type'] == 'points']
                            prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
                            prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
                            prop_df = prop_df.loc[prop_df['Prop'] != 0]
                            st.table(prop_df)
                            prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
                            prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
                            df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
                        elif prop_type_var == "rebounds":
                            prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
                            prop_df = prop_df.loc[prop_df['prop_type'] == 'rebounds']
                            prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
                            prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
                            prop_df = prop_df.loc[prop_df['Prop'] != 0]
                            st.table(prop_df)
                            prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
                            prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
                            df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
                        elif prop_type_var == "assists":
                            prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
                            prop_df = prop_df.loc[prop_df['prop_type'] == 'assists']
                            prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
                            prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
                            prop_df = prop_df.loc[prop_df['Prop'] != 0]
                            st.table(prop_df)
                            prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
                            prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
                            df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
                        elif prop_type_var == "PRA":
                            prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
                            prop_df = prop_df.loc[prop_df['prop_type'] == 'PRA']
                            prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
                            prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
                            prop_df = prop_df.loc[prop_df['Prop'] != 0]
                            st.table(prop_df)
                            prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
                            prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
                            df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
                        elif prop_type_var == "points+rebounds":
                            prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
                            prop_df = prop_df.loc[prop_df['prop_type'] == 'points+rebounds']
                            prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
                            prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
                            prop_df = prop_df.loc[prop_df['Prop'] != 0]
                            st.table(prop_df)
                            prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
                            prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
                            df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
                        elif prop_type_var == "points+assists":
                            prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
                            prop_df = prop_df.loc[prop_df['prop_type'] == 'points+assists']
                            prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
                            prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
                            prop_df = prop_df.loc[prop_df['Prop'] != 0]
                            st.table(prop_df)
                            prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
                            prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
                            df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
                        elif prop_type_var == "rebounds+assists":
                            prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
                            prop_df = prop_df.loc[prop_df['prop_type'] == 'rebounds+assists']
                            prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
                            prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
                            prop_df = prop_df.loc[prop_df['Prop'] != 0]
                            st.table(prop_df)
                            prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
                            prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
                            df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
                        
                        prop_dict = dict(zip(df.Player, df.Prop))
                        over_dict = dict(zip(df.Player, df.Over))
                        under_dict = dict(zip(df.Player, df.Under))
                        
                        total_sims = 5000

                        df.replace("", 0, inplace=True)

                        if prop_type_var == 'points':
                            df['Median'] = df['Points']
                        elif prop_type_var == 'rebounds':
                            df['Median'] = df['Rebounds']
                        elif prop_type_var == 'assists':
                            df['Median'] = df['Assists']
                        elif prop_type_var == 'PRA':
                            df['Median'] = df['Points'] + df['Rebounds'] + df['Assists']
                        elif prop_type_var == 'points+rebounds':
                            df['Median'] = df['Points'] + df['Rebounds']
                        elif prop_type_var == 'points+assists':
                            df['Median'] = df['Points'] + df['Assists']
                        elif prop_type_var == 'rebounds+assists':
                            df['Median'] = df['Assists'] + df['Rebounds']

                        flex_file = df
                        flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes'] * .25)
                        flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes'] * .25)
                        flex_file['STD'] = (flex_file['Median']/4)
                        flex_file['Prop'] = flex_file['Player'].map(prop_dict)
                        flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]

                        hold_file = flex_file
                        overall_file = flex_file
                        prop_file = flex_file
                              
                        overall_players = overall_file[['Player']]

                        for x in range(0,total_sims):    
                            prop_file[x] = prop_file['Prop']

                        prop_file = prop_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)

                        for x in range(0,total_sims):
                            overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])

                        overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)

                        players_only = hold_file[['Player']]

                        player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)

                        prop_check = (overall_file - prop_file)

                        players_only['Mean_Outcome'] = overall_file.mean(axis=1)
                        players_only['10%'] = overall_file.quantile(0.1, axis=1)
                        players_only['90%'] = overall_file.quantile(0.9, axis=1)
                        players_only['Over'] = prop_check[prop_check > 0].count(axis=1)/float(total_sims)
                        players_only['Imp Over'] = players_only['Player'].map(over_dict)
                        players_only['Over%'] = players_only[["Over", "Imp Over"]].mean(axis=1)
                        players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
                        players_only['Imp Under'] = players_only['Player'].map(under_dict)
                        players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
                        players_only['Prop'] = players_only['Player'].map(prop_dict)
                        players_only['Prop_avg'] = players_only['Prop'].mean() / 100
                        players_only['prop_threshold'] = .10
                        players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
                        players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
                        players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
                        players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
                        players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
                        players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
                        players_only['Edge'] = players_only['Bet_check']

                        players_only['Player'] = hold_file[['Player']]

                        final_outcomes = players_only[['Player', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
                        
                        final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
                    
                        final_outcomes = final_outcomes.set_index('Player')

                        with df_hold_container:
                            df_hold_container = st.empty()
                            st.dataframe(final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
                        with export_container:
                            export_container = st.empty()
                            st.download_button(
                                label="Export Projections",
                                data=convert_df_to_csv(final_outcomes),
                                file_name='Nba_prop_proj.csv',
                                mime='text/csv',
                                key='prop_proj',
                            )