Spaces:
Running
Running
File size: 29,842 Bytes
2c0c3ee 1329302 4713c08 2c0c3ee 3677719 2c0c3ee 1329302 4713c08 2c0c3ee 1329302 2c0c3ee 1329302 4713c08 bcdcf6e b24d9f9 2c0c3ee 1329302 2c0c3ee 1329302 4713c08 2c0c3ee 1329302 2c0c3ee 1329302 2c0c3ee 4713c08 1329302 a522119 1329302 4713c08 1329302 2c0c3ee 4713c08 2c0c3ee 4713c08 2c0c3ee 4713c08 1329302 4713c08 2c0c3ee 4713c08 1329302 4713c08 1329302 2c0c3ee 4713c08 2c0c3ee 4713c08 2c0c3ee fcbf3e4 1329302 4713c08 2c0c3ee 4713c08 1329302 2c0c3ee 1329302 4713c08 2c0c3ee 4713c08 2c0c3ee 4713c08 2c0c3ee 4713c08 2c0c3ee 4713c08 2c0c3ee 4713c08 2c0c3ee 4713c08 2c0c3ee 4713c08 2c0c3ee 4713c08 2c0c3ee 4713c08 1329302 4713c08 1329302 2c0c3ee 1329302 2c0c3ee 1329302 2c0c3ee 4713c08 2c0c3ee 4713c08 2c0c3ee 4713c08 2c0c3ee 4713c08 2c0c3ee 4713c08 2c0c3ee 4713c08 2c0c3ee 1329302 2c0c3ee 1329302 2c0c3ee 1329302 2c0c3ee 1329302 4713c08 1329302 4713c08 1329302 4713c08 1329302 4713c08 1329302 4713c08 1329302 4713c08 1329302 2c0c3ee 1329302 4713c08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
import streamlit as st
st.set_page_config(layout="wide")
for name in dir():
if not name.startswith('_'):
del globals()[name]
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import plotly.express as px
import random
import gc
@st.cache_resource
def init_conn():
scope = ['https://www.googleapis.com/auth/spreadsheets',
"https://www.googleapis.com/auth/drive"]
credentials = {
"type": "service_account",
"project_id": "model-sheets-connect",
"private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@model-sheets-connect.iam.gserviceaccount.com",
"client_id": "100369174533302798535",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
}
gc_con = gspread.service_account_from_dict(credentials)
return gc_con
gcservice_account = init_conn()
master_hold = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=853878325'
@st.cache_resource(ttl = 300)
def init_baselines():
sh = gcservice_account.open_by_url(master_hold)
worksheet = sh.worksheet('Betting Model Clean')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.replace('#DIV/0!', np.nan, inplace=True)
game_model = raw_display.dropna()
worksheet = sh.worksheet('DK_Build_Up')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.replace('', np.nan, inplace=True)
raw_display.rename(columns={"Name": "Player"}, inplace = True)
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Minutes', 'Points', 'Rebounds', 'Assists', 'Steals', 'Blocks', 'Turnovers']]
player_stats = raw_display[raw_display['Minutes'] > 0]
worksheet = sh.worksheet('Timestamp')
timestamp = worksheet.acell('A1').value
worksheet = sh.worksheet('Prop_Frame')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.replace('', np.nan, inplace=True)
prop_frame = raw_display.dropna()
return game_model, player_stats, prop_frame, timestamp
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
game_model, player_stats, prop_frame, timestamp = init_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
tab1, tab2, tab3, tab4 = st.tabs(["Game Betting Model", "Player Projections", "Player Prop Simulations", "Stat Specific Simulations"])
with tab1:
st.info(t_stamp)
if st.button("Reset Data", key='reset1'):
st.cache_data.clear()
game_model, player_stats, prop_frame, timestamp = init_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1')
team_frame = game_model
if line_var1 == 'Percentage':
team_frame = team_frame[['Team', 'Opp', 'Team Points', 'Opp Points', 'Proj Total', 'Proj Spread', 'Proj Winner', 'Win%']]
team_frame = team_frame.set_index('Team')
st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
if line_var1 == 'American':
team_frame = team_frame[['Team', 'Opp', 'Team Points', 'Opp Points', 'Proj Total', 'Proj Spread', 'Proj Winner', 'Odds Line']]
team_frame = team_frame.set_index('Team')
st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
st.download_button(
label="Export Team Model",
data=convert_df_to_csv(team_frame),
file_name='NBA_team_betting_export.csv',
mime='text/csv',
key='team_export',
)
with tab2:
st.info(t_stamp)
if st.button("Reset Data", key='reset2'):
st.cache_data.clear()
game_model, player_stats, prop_frame, timestamp = init_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
if split_var1 == 'Specific Teams':
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = player_stats['Team'].unique(), key='team_var1')
elif split_var1 == 'All':
team_var1 = player_stats.Team.values.tolist()
player_stats = player_stats[player_stats['Team'].isin(team_var1)]
player_stats_disp = player_stats.set_index('Player')
player_stats_disp = player_stats_disp.sort_values(by='Fantasy', ascending=False)
st.dataframe(player_stats_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
st.download_button(
label="Export Prop Model",
data=convert_df_to_csv(player_stats),
file_name='NBA_stats_export.csv',
mime='text/csv',
key='pitcher_prop_export',
)
with tab3:
st.info(t_stamp)
if st.button("Reset Data", key='reset4'):
st.cache_data.clear()
game_model, player_stats, prop_frame, timestamp = init_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
col1, col2 = st.columns([1, 5])
with col2:
df_hold_container = st.empty()
info_hold_container = st.empty()
plot_hold_container = st.empty()
with col1:
player_check = st.selectbox('Select player to simulate props', options = player_stats['Player'].unique())
prop_type_var = st.selectbox('Select type of prop to simulate', options = ['points', 'rebounds', 'assists', 'blocks', 'steals',
'PRA', 'points+rebounds', 'points+assists', 'rebounds+assists'])
ou_var = st.selectbox('Select wether it is an over or under', options = ['Over', 'Under'])
if prop_type_var == 'points':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 50.5, value = 15.5, step = .5)
elif prop_type_var == 'rebounds':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 25.5, value = 5.5, step = .5)
elif prop_type_var == 'assists':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 25.5, value = 5.5, step = .5)
elif prop_type_var == 'blocks':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
elif prop_type_var == 'steals':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
elif prop_type_var == 'PRA':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 65.5, value = 20.5, step = .5)
elif prop_type_var == 'points+rebounds':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 45.5, value = 10.5, step = .5)
elif prop_type_var == 'points+assists':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 45.5, value = 10.5, step = .5)
elif prop_type_var == 'rebounds+assists':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 45.5, value = 10.5, step = .5)
line_var = st.number_input('Type in the line on the prop (i.e. -120)', min_value = -1500, max_value = 1500, value = -150, step = 1)
line_var = line_var + 1
if st.button('Simulate Prop'):
with col2:
with df_hold_container.container():
df = player_stats
total_sims = 5000
df.replace("", 0, inplace=True)
player_var = df.loc[df['Player'] == player_check]
player_var = player_var.reset_index()
if prop_type_var == 'points':
df['Median'] = df['Points']
elif prop_type_var == 'rebounds':
df['Median'] = df['Rebounds']
elif prop_type_var == 'assists':
df['Median'] = df['Assists']
elif prop_type_var == 'blocks':
df['Median'] = df['Blocks']
elif prop_type_var == 'steals':
df['Median'] = df['Steals']
elif prop_type_var == 'PRA':
df['Median'] = df['Points'] + df['Rebounds'] + df['Assists']
elif prop_type_var == 'points+rebounds':
df['Median'] = df['Points'] + df['Rebounds']
elif prop_type_var == 'points+assists':
df['Median'] = df['Points'] + df['Assists']
elif prop_type_var == 'rebounds+assists':
df['Median'] = df['Assists'] + df['Rebounds']
flex_file = df
flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes'] * .25)
flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes'] * .25)
flex_file['STD'] = (flex_file['Median']/4)
flex_file = flex_file[['Player', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file
overall_file = flex_file
salary_file = flex_file
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
overall_file.astype('int').dtypes
players_only = hold_file[['Player']]
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
players_only['10%'] = overall_file.quantile(0.1, axis=1)
players_only['90%'] = overall_file.quantile(0.9, axis=1)
if ou_var == 'Over':
players_only['beat_prop'] = overall_file[overall_file > prop_var].count(axis=1)/float(total_sims)
elif ou_var == 'Under':
players_only['beat_prop'] = (overall_file[overall_file < prop_var].count(axis=1)/float(total_sims))
players_only['implied_odds'] = np.where(line_var <= 0, (-(line_var)/((-(line_var))+100)), 100/(line_var+100))
players_only['Player'] = hold_file[['Player']]
final_outcomes = players_only[['Player', '10%', 'Mean_Outcome', '90%', 'implied_odds', 'beat_prop']]
final_outcomes['Bet?'] = np.where(final_outcomes['beat_prop'] - final_outcomes['implied_odds'] >= .10, "Bet", "No Bet")
final_outcomes = final_outcomes.loc[final_outcomes['Player'] == player_check]
player_outcomes = player_outcomes.loc[player_outcomes['Player'] == player_check]
player_outcomes = player_outcomes.drop(columns=['Player']).transpose()
player_outcomes = player_outcomes.reset_index()
player_outcomes.columns = ['Instance', 'Outcome']
x1 = player_outcomes.Outcome.to_numpy()
print(x1)
hist_data = [x1]
group_labels = ['player outcomes']
fig = px.histogram(
player_outcomes, x='Outcome')
fig.add_vline(x=prop_var, line_dash="dash", line_color="green")
with df_hold_container:
df_hold_container = st.empty()
format_dict = {'10%': '{:.2f}', 'Mean_Outcome': '{:.2f}','90%': '{:.2f}', 'beat_prop': '{:.2%}','implied_odds': '{:.2%}'}
st.dataframe(final_outcomes.style.format(format_dict), use_container_width = True)
with info_hold_container:
st.info('The Y-axis is the percent of times in simulations that the player reaches certain thresholds, while the X-axis is the threshold to be met. The Green dotted line is the prop you entered. You can hover over any spot and see the percent to reach that mark.')
with plot_hold_container:
st.dataframe(player_outcomes, use_container_width = True)
plot_hold_container = st.empty()
st.plotly_chart(fig, use_container_width=True)
with tab4:
st.info(t_stamp)
st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
if st.button("Reset Data/Load Data", key='reset5'):
st.cache_data.clear()
game_model, player_stats, prop_frame, timestamp = init_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
col1, col2 = st.columns([1, 5])
with col2:
df_hold_container = st.empty()
info_hold_container = st.empty()
plot_hold_container = st.empty()
export_container = st.empty()
with col1:
prop_type_var = st.selectbox('Select prop category', options = ['points', 'rebounds', 'assists', 'PRA', 'points+rebounds', 'points+assists', 'rebounds+assists'])
if st.button('Simulate Prop Category'):
with col2:
with df_hold_container.container():
if prop_type_var == "points":
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
prop_df = prop_df.loc[prop_df['prop_type'] == 'points']
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
st.table(prop_df)
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
elif prop_type_var == "rebounds":
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
prop_df = prop_df.loc[prop_df['prop_type'] == 'rebounds']
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
st.table(prop_df)
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
elif prop_type_var == "assists":
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
prop_df = prop_df.loc[prop_df['prop_type'] == 'assists']
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
st.table(prop_df)
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
elif prop_type_var == "PRA":
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
prop_df = prop_df.loc[prop_df['prop_type'] == 'PRA']
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
st.table(prop_df)
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
elif prop_type_var == "points+rebounds":
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
prop_df = prop_df.loc[prop_df['prop_type'] == 'points+rebounds']
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
st.table(prop_df)
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
elif prop_type_var == "points+assists":
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
prop_df = prop_df.loc[prop_df['prop_type'] == 'points+assists']
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
st.table(prop_df)
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
elif prop_type_var == "rebounds+assists":
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
prop_df = prop_df.loc[prop_df['prop_type'] == 'rebounds+assists']
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
st.table(prop_df)
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
prop_dict = dict(zip(df.Player, df.Prop))
over_dict = dict(zip(df.Player, df.Over))
under_dict = dict(zip(df.Player, df.Under))
total_sims = 5000
df.replace("", 0, inplace=True)
if prop_type_var == 'points':
df['Median'] = df['Points']
elif prop_type_var == 'rebounds':
df['Median'] = df['Rebounds']
elif prop_type_var == 'assists':
df['Median'] = df['Assists']
elif prop_type_var == 'PRA':
df['Median'] = df['Points'] + df['Rebounds'] + df['Assists']
elif prop_type_var == 'points+rebounds':
df['Median'] = df['Points'] + df['Rebounds']
elif prop_type_var == 'points+assists':
df['Median'] = df['Points'] + df['Assists']
elif prop_type_var == 'rebounds+assists':
df['Median'] = df['Assists'] + df['Rebounds']
flex_file = df
flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes'] * .25)
flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes'] * .25)
flex_file['STD'] = (flex_file['Median']/4)
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file
overall_file = flex_file
prop_file = flex_file
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
prop_file[x] = prop_file['Prop']
prop_file = prop_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
players_only = hold_file[['Player']]
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
prop_check = (overall_file - prop_file)
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
players_only['10%'] = overall_file.quantile(0.1, axis=1)
players_only['90%'] = overall_file.quantile(0.9, axis=1)
players_only['Over'] = prop_check[prop_check > 0].count(axis=1)/float(total_sims)
players_only['Imp Over'] = players_only['Player'].map(over_dict)
players_only['Over%'] = players_only[["Over", "Imp Over"]].mean(axis=1)
players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
players_only['Imp Under'] = players_only['Player'].map(under_dict)
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
players_only['Prop'] = players_only['Player'].map(prop_dict)
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
players_only['prop_threshold'] = .10
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
players_only['Edge'] = players_only['Bet_check']
players_only['Player'] = hold_file[['Player']]
final_outcomes = players_only[['Player', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
final_outcomes = final_outcomes.set_index('Player')
with df_hold_container:
df_hold_container = st.empty()
st.dataframe(final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with export_container:
export_container = st.empty()
st.download_button(
label="Export Projections",
data=convert_df_to_csv(final_outcomes),
file_name='Nba_prop_proj.csv',
mime='text/csv',
key='prop_proj',
)
|