Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pulp
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import random
|
5 |
+
import sys
|
6 |
+
import openpyxl
|
7 |
+
import re
|
8 |
+
import time
|
9 |
+
import streamlit as st
|
10 |
+
import matplotlib
|
11 |
+
from matplotlib.colors import LinearSegmentedColormap
|
12 |
+
from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode
|
13 |
+
import json
|
14 |
+
import requests
|
15 |
+
import gspread
|
16 |
+
import plotly.figure_factory as ff
|
17 |
+
|
18 |
+
scope = ['https://www.googleapis.com/auth/spreadsheets',
|
19 |
+
"https://www.googleapis.com/auth/drive"]
|
20 |
+
|
21 |
+
credentials = {
|
22 |
+
"type": "service_account",
|
23 |
+
"project_id": "sheets-api-connect-378620",
|
24 |
+
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
|
25 |
+
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
|
26 |
+
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
|
27 |
+
"client_id": "106625872877651920064",
|
28 |
+
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
29 |
+
"token_uri": "https://oauth2.googleapis.com/token",
|
30 |
+
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
31 |
+
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
|
32 |
+
}
|
33 |
+
|
34 |
+
gc = gspread.service_account_from_dict(credentials)
|
35 |
+
|
36 |
+
st.set_page_config(layout="wide")
|
37 |
+
|
38 |
+
roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}',
|
39 |
+
'120+%': '{:.2%}','10x%': '{:.2%}','11x%': '{:.2%}','12x%': '{:.2%}','Own': '{:.2%}','LevX': '{:.2%}'}
|
40 |
+
stat_format = {'Win%': '{:.2%}'}
|
41 |
+
|
42 |
+
game_betting_model = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=172632260'
|
43 |
+
props_overall = 'DK_NBA_Props'
|
44 |
+
player_overall = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=172632260'
|
45 |
+
points_overall = 'DK_Points_Props'
|
46 |
+
assists_overall = 'DK_Assists_Props'
|
47 |
+
rebounds_overall = 'DK_Rebounds_Props'
|
48 |
+
pa_overall = 'DK_PA_Props'
|
49 |
+
pr_overall = 'DK_PR_Props'
|
50 |
+
pra_overall = 'DK_PRA_Props'
|
51 |
+
|
52 |
+
@st.cache_data
|
53 |
+
def create_player_props(URL):
|
54 |
+
sh = gc.open_by_url(URL)
|
55 |
+
worksheet = sh.get_worksheet(8)
|
56 |
+
load_display = pd.DataFrame(worksheet.get_all_records())
|
57 |
+
overall_data = load_display[['Name', 'Position', 'Team', '3P', 'Points', 'Rebounds', 'Assists', 'Steals', 'Blocks']]
|
58 |
+
overall_data.rename(columns={"Name": "player"}, inplace = True)
|
59 |
+
overall_data['Points + Rebounds'] = overall_data['Points'] + overall_data['Rebounds']
|
60 |
+
overall_data['Points + Assists'] = overall_data['Points'] + overall_data['Assists']
|
61 |
+
overall_data['Points + Rebounds + Assists'] = overall_data['Points'] + overall_data['Rebounds'] + overall_data['Assists']
|
62 |
+
|
63 |
+
return overall_data
|
64 |
+
|
65 |
+
@st.cache_data
|
66 |
+
def load_game_betting(URL):
|
67 |
+
sh = gc.open_by_url(URL)
|
68 |
+
worksheet = sh.get_worksheet(1)
|
69 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
70 |
+
|
71 |
+
return raw_display
|
72 |
+
|
73 |
+
@st.cache_data
|
74 |
+
def load_props(URL):
|
75 |
+
sh = gc.open(URL)
|
76 |
+
worksheet = sh.get_worksheet(0)
|
77 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
78 |
+
raw_display.rename(columns={"player": "Player"}, inplace = True)
|
79 |
+
|
80 |
+
return raw_display
|
81 |
+
|
82 |
+
@st.cache_data
|
83 |
+
def load_player_baselines(URL):
|
84 |
+
sh = gc.open(URL)
|
85 |
+
worksheet = sh.get_worksheet(0)
|
86 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
87 |
+
|
88 |
+
return raw_display
|
89 |
+
|
90 |
+
@st.cache_data
|
91 |
+
def load_stat_specific(URL):
|
92 |
+
sh = gc.open(URL)
|
93 |
+
worksheet = sh.get_worksheet(0)
|
94 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
95 |
+
raw_display.rename(columns={"player": "Player"}, inplace = True)
|
96 |
+
raw_display = raw_display.drop(columns=['Model Probability', 'short%', 'mid%', 'long%', 's_weighted%', 'm_weighted%', 'l_weighted%', 'weighted prob%'])
|
97 |
+
|
98 |
+
return raw_display
|
99 |
+
|
100 |
+
team_frame = load_game_betting(game_betting_model)
|
101 |
+
props_frame = create_player_props(player_overall)
|
102 |
+
|
103 |
+
tab1, tab2, tab3, tab4 = st.tabs(["Game Betting Model", "Player Prop Baselines", "Stat Specific Props Projections", "Player Prop Simulations"])
|
104 |
+
|
105 |
+
def convert_df_to_csv(df):
|
106 |
+
return df.to_csv().encode('utf-8')
|
107 |
+
|
108 |
+
with tab1:
|
109 |
+
if st.button("Reset Data/Load Data", key='reset1'):
|
110 |
+
# Clear values from *all* all in-memory and on-disk data caches:
|
111 |
+
# i.e. clear values from both square and cube
|
112 |
+
st.cache_data.clear()
|
113 |
+
st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
114 |
+
st.download_button(
|
115 |
+
label="Export Projections",
|
116 |
+
data=convert_df_to_csv(team_frame),
|
117 |
+
file_name='NBA_DFS_team_frame.csv',
|
118 |
+
mime='text/csv',
|
119 |
+
key='team_frame',
|
120 |
+
)
|
121 |
+
|
122 |
+
with tab2:
|
123 |
+
if st.button("Reset Data/Load Data", key='reset2'):
|
124 |
+
# Clear values from *all* all in-memory and on-disk data caches:
|
125 |
+
# i.e. clear values from both square and cube
|
126 |
+
st.cache_data.clear()
|
127 |
+
team_var1 = st.multiselect('View specific team?', options = props_frame['Team'].unique(), key = 'prop_teamvar')
|
128 |
+
if team_var1:
|
129 |
+
props_frame = props_frame[props_frame['Team'].isin(team_var1)]
|
130 |
+
props_frame = props_frame.set_index('player')
|
131 |
+
st.dataframe(props_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
132 |
+
st.download_button(
|
133 |
+
label="Export Projections",
|
134 |
+
data=convert_df_to_csv(props_frame),
|
135 |
+
file_name='NBA_DFS_props_frame.csv',
|
136 |
+
mime='text/csv',
|
137 |
+
key='props_frame',
|
138 |
+
)
|
139 |
+
|
140 |
+
with tab3:
|
141 |
+
st.write("The Stat specific models are currently not accurate due to an API issue. Apoligies!")
|
142 |
+
st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
|
143 |
+
if st.button("Reset Data/Load Data", key='reset3'):
|
144 |
+
# Clear values from *all* all in-memory and on-disk data caches:
|
145 |
+
# i.e. clear values from both square and cube
|
146 |
+
st.cache_data.clear()
|
147 |
+
col1, col2 = st.columns([1, 5])
|
148 |
+
|
149 |
+
with col2:
|
150 |
+
df_hold_container = st.empty()
|
151 |
+
info_hold_container = st.empty()
|
152 |
+
plot_hold_container = st.empty()
|
153 |
+
export_container = st.empty()
|
154 |
+
|
155 |
+
with col1:
|
156 |
+
prop_type_var = st.selectbox('Select prop category', options = ['Points', 'Assists', 'Rebounds', 'Points + Assists', 'Points + Rebounds', 'Points + Rebounds + Assists'])
|
157 |
+
|
158 |
+
if st.button('Simulate Prop Category'):
|
159 |
+
with col2:
|
160 |
+
|
161 |
+
with st.spinner('Wait for it...'):
|
162 |
+
|
163 |
+
with df_hold_container.container():
|
164 |
+
|
165 |
+
if prop_type_var == "Points":
|
166 |
+
player_df = load_stat_specific(points_overall)
|
167 |
+
prop_df = load_props(props_overall)
|
168 |
+
prop_df = prop_df[['Player', 'points', 'over_points_line', 'under_points_line']]
|
169 |
+
prop_df = prop_df.loc[prop_df['points'] > 0]
|
170 |
+
prop_df['Over'] = np.where(prop_df['over_points_line'] < 0, (-(prop_df['over_points_line'])/((-(prop_df['over_points_line']))+100)), 100/(prop_df['over_points_line']+100))
|
171 |
+
prop_df['Under'] = np.where(prop_df['under_points_line'] < 0, (-(prop_df['under_points_line'])/((-(prop_df['under_points_line']))+100)), 100/(prop_df['under_points_line']+100))
|
172 |
+
prop_df.rename(columns={"points": "Prop"}, inplace = True)
|
173 |
+
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
174 |
+
df.rename(columns={"weighted%": "weighted"}, inplace = True)
|
175 |
+
elif prop_type_var == "Assists":
|
176 |
+
player_df = load_stat_specific(assists_overall)
|
177 |
+
prop_df = load_props(props_overall)
|
178 |
+
prop_df = prop_df[['Player', 'assists', 'over_assists_line', 'under_assists_line']]
|
179 |
+
prop_df = prop_df.loc[prop_df['assists'] > 0]
|
180 |
+
prop_df['Over'] = np.where(prop_df['over_assists_line'] < 0, (-(prop_df['over_assists_line'])/((-(prop_df['over_assists_line']))+100)), 100/(prop_df['over_assists_line']+100))
|
181 |
+
prop_df['Under'] = np.where(prop_df['under_assists_line'] < 0, (-(prop_df['under_assists_line'])/((-(prop_df['under_assists_line']))+100)), 100/(prop_df['under_assists_line']+100))
|
182 |
+
prop_df.rename(columns={"assists": "Prop"}, inplace = True)
|
183 |
+
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
184 |
+
df.rename(columns={"weighted%": "weighted"}, inplace = True)
|
185 |
+
elif prop_type_var == "Rebounds":
|
186 |
+
player_df = load_stat_specific(rebounds_overall)
|
187 |
+
prop_df = load_props(props_overall)
|
188 |
+
prop_df = prop_df[['Player', 'rebounds', 'over_rebounds_line', 'under_rebounds_line']]
|
189 |
+
prop_df = prop_df.loc[prop_df['rebounds'] > 0]
|
190 |
+
prop_df['Over'] = np.where(prop_df['over_rebounds_line'] < 0, (-(prop_df['over_rebounds_line'])/((-(prop_df['over_rebounds_line']))+100)), 100/(prop_df['over_rebounds_line']+100))
|
191 |
+
prop_df['Under'] = np.where(prop_df['under_rebounds_line'] < 0, (-(prop_df['under_rebounds_line'])/((-(prop_df['under_rebounds_line']))+100)), 100/(prop_df['under_rebounds_line']+100))
|
192 |
+
prop_df.rename(columns={"rebounds": "Prop"}, inplace = True)
|
193 |
+
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
194 |
+
df.rename(columns={"weighted%": "weighted"}, inplace = True)
|
195 |
+
elif prop_type_var == "Points + Assists":
|
196 |
+
player_df = load_stat_specific(pa_overall)
|
197 |
+
prop_df = load_props(props_overall)
|
198 |
+
prop_df = prop_df[['Player', 'points_assists', 'over_points_assists_line', 'under_points_assists_line']]
|
199 |
+
prop_df = prop_df.loc[prop_df['points_assists'] > 0]
|
200 |
+
prop_df['Over'] = np.where(prop_df['over_points_assists_line'] < 0, (-(prop_df['over_points_assists_line'])/((-(prop_df['over_points_assists_line']))+100)), 100/(prop_df['over_points_assists_line']+100))
|
201 |
+
prop_df['Under'] = np.where(prop_df['under_points_assists_line'] < 0, (-(prop_df['under_points_assists_line'])/((-(prop_df['under_points_assists_line']))+100)), 100/(prop_df['under_points_assists_line']+100))
|
202 |
+
prop_df.rename(columns={"points_assists": "Prop"}, inplace = True)
|
203 |
+
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
204 |
+
df.rename(columns={"weighted%": "weighted"}, inplace = True)
|
205 |
+
elif prop_type_var == "Points + Rebounds":
|
206 |
+
player_df = load_stat_specific(pr_overall)
|
207 |
+
prop_df = load_props(props_overall)
|
208 |
+
prop_df = prop_df[['Player', 'points_rebounds', 'over_points_rebounds_line', 'under_points_rebounds_line']]
|
209 |
+
prop_df = prop_df.loc[prop_df['points_rebounds'] > 0]
|
210 |
+
prop_df['Over'] = np.where(prop_df['over_points_rebounds_line'] < 0, (-(prop_df['over_points_rebounds_line'])/((-(prop_df['over_points_rebounds_line']))+100)), 100/(prop_df['over_points_rebounds_line']+100))
|
211 |
+
prop_df['Under'] = np.where(prop_df['under_points_rebounds_line'] < 0, (-(prop_df['under_points_rebounds_line'])/((-(prop_df['under_points_rebounds_line']))+100)), 100/(prop_df['under_points_rebounds_line']+100))
|
212 |
+
prop_df.rename(columns={"points_rebounds": "Prop"}, inplace = True)
|
213 |
+
prop_df = prop_df[['Player', 'Prop', 'Over', 'Under']]
|
214 |
+
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
215 |
+
df.rename(columns={"weighted%": "weighted"}, inplace = True)
|
216 |
+
elif prop_type_var == "Points + Rebounds + Assists":
|
217 |
+
player_df = load_stat_specific(pra_overall)
|
218 |
+
prop_df = load_props(props_overall)
|
219 |
+
prop_df = prop_df[['Player', 'points_rebounds_assists', 'over_points_rebounds_assists_line', 'under_points_rebounds_assists_line']]
|
220 |
+
prop_df = prop_df.loc[prop_df['points_rebounds_assists'] > 0]
|
221 |
+
prop_df['Over'] = np.where(prop_df['over_points_rebounds_assists_line'] < 0, (-(prop_df['over_points_rebounds_assists_line'])/((-(prop_df['over_points_rebounds_assists_line']))+100)), 100/(prop_df['over_points_rebounds_assists_line']+100))
|
222 |
+
prop_df['Under'] = np.where(prop_df['under_points_rebounds_assists_line'] < 0, (-(prop_df['under_points_rebounds_assists_line'])/((-(prop_df['under_points_rebounds_assists_line']))+100)), 100/(prop_df['under_points_rebounds_assists_line']+100))
|
223 |
+
prop_df.rename(columns={"points_rebounds_assists": "Prop"}, inplace = True)
|
224 |
+
prop_df = prop_df[['Player', 'Prop', 'Over', 'Under']]
|
225 |
+
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
226 |
+
df.rename(columns={"weighted%": "weighted"}, inplace = True)
|
227 |
+
|
228 |
+
prop_dict = dict(zip(df.Player, df.Prop))
|
229 |
+
over_dict = dict(zip(df.Player, df.Over))
|
230 |
+
under_dict = dict(zip(df.Player, df.Under))
|
231 |
+
weighted_dict = dict(zip(df.Player, df.weighted))
|
232 |
+
|
233 |
+
total_sims = 1000
|
234 |
+
|
235 |
+
df.replace("", 0, inplace=True)
|
236 |
+
|
237 |
+
if prop_type_var == "Points":
|
238 |
+
df['Median'] = df['Points']
|
239 |
+
elif prop_type_var == "Assists":
|
240 |
+
df['Median'] = df['Assists']
|
241 |
+
elif prop_type_var == "Rebounds":
|
242 |
+
df['Median'] = df['Rebounds']
|
243 |
+
elif prop_type_var == "Points + Assists":
|
244 |
+
df['Median'] = df['Points + Assists']
|
245 |
+
elif prop_type_var == "Points + Rebounds":
|
246 |
+
df['Median'] = df['Points + Rebounds']
|
247 |
+
elif prop_type_var == "Points + Rebounds + Assists":
|
248 |
+
df['Median'] = df['Points + Rebounds + Assists']
|
249 |
+
|
250 |
+
flex_file = df
|
251 |
+
flex_file['Floor'] = flex_file['Median'] * .20
|
252 |
+
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * .20)
|
253 |
+
flex_file['STD'] = (flex_file['Median'] / 4)
|
254 |
+
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
255 |
+
flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
|
256 |
+
|
257 |
+
hold_file = flex_file
|
258 |
+
overall_file = flex_file
|
259 |
+
prop_file = flex_file
|
260 |
+
|
261 |
+
overall_players = overall_file[['Player']]
|
262 |
+
|
263 |
+
for x in range(0,total_sims):
|
264 |
+
prop_file[x] = prop_file['Prop']
|
265 |
+
|
266 |
+
prop_file = prop_file.drop(['Player', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
267 |
+
prop_file.astype('int').dtypes
|
268 |
+
|
269 |
+
for x in range(0,total_sims):
|
270 |
+
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
271 |
+
|
272 |
+
overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
273 |
+
overall_file.astype('int').dtypes
|
274 |
+
|
275 |
+
players_only = hold_file[['Player']]
|
276 |
+
|
277 |
+
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
|
278 |
+
|
279 |
+
prop_check = (overall_file - prop_file)
|
280 |
+
|
281 |
+
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
|
282 |
+
players_only['Weighted_over'] = players_only['Player'].map(weighted_dict)
|
283 |
+
players_only['Weighted_under'] = 1 - players_only['Player'].map(weighted_dict)
|
284 |
+
players_only['10%'] = overall_file.quantile(0.1, axis=1)
|
285 |
+
players_only['90%'] = overall_file.quantile(0.9, axis=1)
|
286 |
+
players_only['Over'] = prop_check[prop_check >= 1].count(axis=1)/float(total_sims)
|
287 |
+
players_only['Imp Over'] = players_only['Player'].map(over_dict)
|
288 |
+
players_only['Over%'] = players_only[["Over", "Weighted_over", "Imp Over"]].mean(axis=1)
|
289 |
+
players_only['Under'] = prop_check[prop_check < 1].count(axis=1)/float(total_sims)
|
290 |
+
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
291 |
+
players_only['Under%'] = players_only[["Under", "Weighted_under", "Imp Under"]].mean(axis=1)
|
292 |
+
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
293 |
+
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
294 |
+
players_only['prop_threshold'] = np.where(.25 - players_only['Prop_avg'] < .10, .10, .25 - players_only['Prop_avg'])
|
295 |
+
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
|
296 |
+
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
|
297 |
+
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
|
298 |
+
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
|
299 |
+
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
|
300 |
+
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
|
301 |
+
players_only['Edge'] = players_only['Bet_check']
|
302 |
+
|
303 |
+
players_only['Player'] = hold_file[['Player']]
|
304 |
+
|
305 |
+
final_outcomes = players_only[['Player', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
|
306 |
+
|
307 |
+
final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
|
308 |
+
|
309 |
+
final_outcomes = final_outcomes.set_index('Player')
|
310 |
+
|
311 |
+
with df_hold_container:
|
312 |
+
df_hold_container = st.empty()
|
313 |
+
st.dataframe(final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
314 |
+
with export_container:
|
315 |
+
export_container = st.empty()
|
316 |
+
st.download_button(
|
317 |
+
label="Export Projections",
|
318 |
+
data=convert_df_to_csv(final_outcomes),
|
319 |
+
file_name='NBA_DFS_prop_proj.csv',
|
320 |
+
mime='text/csv',
|
321 |
+
key='prop_proj',
|
322 |
+
)
|
323 |
+
with tab4:
|
324 |
+
st.info('Coming soon!')
|