Spaces:
Running
Running
File size: 13,821 Bytes
b423965 b7d46fc b423965 366744c b423965 366744c b423965 366744c b423965 366744c 05a4d6b 366744c b423965 366744c b423965 366744c b423965 366744c b423965 366744c b423965 c7cfa00 738b0a3 b423965 366744c 05a4d6b 366744c b423965 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
import pulp
import numpy as np
import pandas as pd
import streamlit as st
import gspread
scope = ['https://www.googleapis.com/auth/spreadsheets',
"https://www.googleapis.com/auth/drive"]
credentials = {
"type": "service_account",
"project_id": "sheets-api-connect-378620",
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
"client_id": "106625872877651920064",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}
gc = gspread.service_account_from_dict(credentials)
st.set_page_config(layout="wide")
roo_format = {'Win%': '{:.2%}', 'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}',
'60+%': '{:.2%}','5x%': '{:.2%}','6x%': '{:.2%}','7x%': '{:.2%}','Own': '{:.2%}', 'Cpt_Own': '{:.2%}','LevX': '{:.2%}'}
stat_format = {'Odds%': '{:.2%}'}
table_format = {'Odds': '{:.2%}'}
csgo_overall = 'CSGO_Overall_Proj'
csgo_rpl = 'CSGO_RPL_Proj'
csgo_neutral = 'CSGO_Neutral_Proj'
csgo_wins = 'CSGO_Win_Proj'
csgo_losses = 'CSGO_Loss_Proj'
overall_odds = 'https://docs.google.com/spreadsheets/d/1aLVN4izjSuqZGRyz73Kip6U1q3rubh6v9GrckgEqbfs/edit?pli=1#gid=1545712013'
RPL_odds = 'https://docs.google.com/spreadsheets/d/1aLVN4izjSuqZGRyz73Kip6U1q3rubh6v9GrckgEqbfs/edit?pli=1#gid=1545712013'
csgo_bo1 = 'https://docs.google.com/spreadsheets/d/1aLVN4izjSuqZGRyz73Kip6U1q3rubh6v9GrckgEqbfs/edit?pli=1#gid=1545712013'
two_map = 'https://docs.google.com/spreadsheets/d/1aLVN4izjSuqZGRyz73Kip6U1q3rubh6v9GrckgEqbfs/edit?pli=1#gid=1545712013'
csgo_bo3 = 'https://docs.google.com/spreadsheets/d/1aLVN4izjSuqZGRyz73Kip6U1q3rubh6v9GrckgEqbfs/edit?pli=1#gid=1545712013'
csgo_bo5 = 'https://docs.google.com/spreadsheets/d/1aLVN4izjSuqZGRyz73Kip6U1q3rubh6v9GrckgEqbfs/edit?pli=1#gid=1545712013'
player_baselines = 'https://docs.google.com/spreadsheets/d/1aLVN4izjSuqZGRyz73Kip6U1q3rubh6v9GrckgEqbfs/edit?pli=1#gid=1545712013'
@st.cache_data
def load_roo_model(URL):
sh = gc.open(URL)
worksheet = sh.get_worksheet(0)
raw_display = pd.DataFrame(worksheet.get_all_records())
try:
raw_display["Salary"] = raw_display["Salary"].replace("$", "", regex=True).astype(float)
except:
pass
try:
raw_display['Win%'] = raw_display['Win%'].str.replace('%', '').astype(float)/100
except:
pass
try:
raw_display['Top_finish'] = raw_display['Top_finish'].str.replace('%', '').astype(float)/100
except:
pass
try:
raw_display['Top_5_finish'] = raw_display['Top_5_finish'].str.replace('%', '').astype(float)/100
except:
pass
try:
raw_display['Top_10_finish'] = raw_display['Top_10_finish'].str.replace('%', '').astype(float)/100
except:
pass
try:
raw_display['60+%'] = raw_display['60+%'].str.replace('%', '').astype(float)/100
except:
pass
try:
raw_display['5x%'] = raw_display['5x%'].str.replace('%', '').astype(float)/100
except:
pass
try:
raw_display['6x%'] = raw_display['6x%'].str.replace('%', '').astype(float)/100
except:
pass
try:
raw_display['7x%'] = raw_display['7x%'].str.replace('%', '').astype(float)/100
except:
pass
try:
raw_display['Own'] = raw_display['Own'].str.replace('%', '').astype(float)/100
except:
pass
try:
raw_display['LevX'] = raw_display['LevX'].str.replace('%', '').astype(float)/100
except:
pass
return raw_display
@st.cache_data
def load_overall_odds(URL):
sh = gc.open_by_url(URL)
worksheet = sh.worksheet('Overall_Vegas')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display['Odds'] = raw_display['Odds'].str.replace('%', '').astype(float)/100
return raw_display
@st.cache_data
def load_rpl_odds(URL):
sh = gc.open_by_url(URL)
worksheet = sh.worksheet('RPL_Vegas')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display['Odds'] = raw_display['Odds'].str.replace('%', '').astype(float)/100
raw_display['Vegas'] = raw_display['Vegas'].str.replace('%', '').astype(float)/100
raw_display = raw_display[['Team', 'Opponent', 'RPL', 'Opp_RPL', 'RPL_Diff', 'Vegas', 'Odds', 'P Rounds']]
return raw_display
@st.cache_data
def load_bo1_proj_model(URL):
sh = gc.open_by_url(URL)
worksheet = sh.worksheet('Overall_BO1_Projections')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.rename(columns={"Name": "Player"}, inplace = True)
raw_display['Odds%'] = raw_display['Odds%'].str.replace('%', '').astype(float)/100
raw_display = raw_display.sort_values(by='Kills', ascending=False)
return raw_display
@st.cache_data
def two_map_load(URL):
sh = gc.open_by_url(URL)
worksheet = sh.worksheet('2_map_projections')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.rename(columns={"Name": "Player"}, inplace = True)
raw_display['Odds%'] = raw_display['Odds%'].str.replace('%', '').astype(float)/100
raw_display = raw_display.sort_values(by='Kills', ascending=False)
return raw_display
@st.cache_data
def load_bo3_proj_model(URL):
sh = gc.open_by_url(URL)
worksheet = sh.worksheet('Overall_BO3_Projections')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.rename(columns={"Name": "Player"}, inplace = True)
raw_display['Odds%'] = raw_display['Odds%'].str.replace('%', '').astype(float)/100
raw_display = raw_display.sort_values(by='Kills', ascending=False)
return raw_display
@st.cache_data
def load_bo5_proj_model(URL):
sh = gc.open_by_url(URL)
worksheet = sh.worksheet('Overall_BO5_Projections')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.rename(columns={"Name": "Player"}, inplace = True)
raw_display['Odds%'] = raw_display['Odds%'].str.replace('%', '').astype(float)/100
raw_display = raw_display.sort_values(by='Kills', ascending=False)
return raw_display
@st.cache_data
def load_slate_baselines(URL):
sh = gc.open_by_url(URL)
worksheet = sh.worksheet('Player_Data')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.rename(columns={"Name": "Player"}, inplace = True)
raw_display = raw_display.sort_values(by='Kills/Round', ascending=False)
return raw_display
hold_display = load_roo_model(csgo_overall)
tab1, tab2, tab3, tab4, tab5 = st.tabs(["CSGO Odds Tables", "CSGO Range of Outcomes", "CSGO Player Stat Projections", "CSGO Slate Baselines", '2-map Projections'])
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
with tab1:
if st.button("Reset Data", key='reset4'):
# Clear values from *all* all in-memory and on-disk data caches:
# i.e. clear values from both square and cube
st.cache_data.clear()
odds_choice = st.radio("What table would you like to display?", ('Overall', 'RPL'), key='odds_table')
if odds_choice == 'Overall':
hold_display = load_overall_odds(overall_odds)
elif odds_choice == 'RPL':
hold_display = load_rpl_odds(RPL_odds)
display = hold_display.set_index('Team')
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(table_format, precision=2), use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(display),
file_name='CSGO_Odds_Tables_export.csv',
mime='text/csv',
)
with tab2:
if st.button("Reset Data", key='reset1'):
# Clear values from *all* all in-memory and on-disk data caches:
# i.e. clear values from both square and cube
st.cache_data.clear()
model_choice = st.radio("What table would you like to display?", ('Overall', 'RPL', 'Neutral', 'Wins', 'Losses'), key='roo_table')
team_var1 = st.multiselect('View specific team?', options = hold_display['Team'].unique(), key = 'roo_teamvar')
if model_choice == 'Overall':
hold_display = load_roo_model(csgo_overall)
elif model_choice == 'RPL':
hold_display = load_roo_model(csgo_rpl)
elif model_choice == 'Neutral':
hold_display = load_roo_model(csgo_neutral)
elif model_choice == 'Wins':
hold_display = load_roo_model(csgo_wins)
elif model_choice == 'Losses':
hold_display = load_roo_model(csgo_losses)
hold_display['Cpt_Own'] = (hold_display['Own']) * ((100 - (100-hold_display['Own'])))
hold_display['Own'] = hold_display['Own'] / 100
display = hold_display.set_index('Player')
export_display = display
export_display['Own'] = export_display['Own'] *100
export_display['Position'] = "FLEX"
if team_var1:
display = display[display['Team'].isin(team_var1)]
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(roo_format, precision=2), use_container_width = True)
st.download_button(
label="Export Range of Outcomes",
data=convert_df_to_csv(export_display),
file_name='CSGO_ROO_export.csv',
mime='text/csv',
)
with tab3:
if st.button("Reset Data", key='reset2'):
# Clear values from *all* all in-memory and on-disk data caches:
# i.e. clear values from both square and cube
st.cache_data.clear()
gametype_choice = st.radio("What format are the games being played?", ('Best of 1', 'Best of 3', 'Best of 5'), key='player_stats')
team_var2 = st.multiselect('View specific team?', options = hold_display['Team'].unique(), key = 'stat_teamvar')
if gametype_choice == 'Best of 1':
hold_display = load_bo1_proj_model(csgo_bo1)
elif gametype_choice == 'Best of 3':
hold_display = load_bo3_proj_model(csgo_bo3)
elif gametype_choice == 'Best of 5':
hold_display = load_bo5_proj_model(csgo_bo5)
display = hold_display.set_index('Player')
if team_var2:
display = display[display['Team'].isin(team_var2)]
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(stat_format, precision=2), use_container_width = True)
st.download_button(
label="Export Projections",
data=convert_df_to_csv(display),
file_name='CSGO_Projections_export.csv',
mime='text/csv',
)
with tab4:
if st.button("Reset Data", key='reset3'):
# Clear values from *all* all in-memory and on-disk data caches:
# i.e. clear values from both square and cube
st.cache_data.clear()
hold_display = load_slate_baselines(player_baselines)
display = hold_display.set_index('Player')
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
st.download_button(
label="Export Baselines",
data=convert_df_to_csv(display),
file_name='CSGO_Baselines_export.csv',
mime='text/csv',
)
with tab5:
if st.button("Reset Data", key='reset5'):
# Clear values from *all* all in-memory and on-disk data caches:
# i.e. clear values from both square and cube
st.cache_data.clear()
hold_display = two_map_load(two_map)
display = hold_display.set_index('Player')
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
st.download_button(
label="Export Baselines",
data=convert_df_to_csv(display),
file_name='CSGO_2_map_export.csv',
mime='text/csv',
) |