Multichem commited on
Commit
b423965
·
1 Parent(s): c5dbfef

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +264 -0
app.py ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pulp
2
+ import numpy as np
3
+ import pandas as pd
4
+ import random
5
+ import sys
6
+ import openpyxl
7
+ import re
8
+ import time
9
+ import streamlit as st
10
+ import matplotlib
11
+ from matplotlib.colors import LinearSegmentedColormap
12
+ from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode
13
+ import json
14
+ import requests
15
+ import gspread
16
+ import plotly.figure_factory as ff
17
+
18
+ scope = ['https://www.googleapis.com/auth/spreadsheets',
19
+ "https://www.googleapis.com/auth/drive"]
20
+
21
+ credentials = {
22
+ "type": "service_account",
23
+ "project_id": "sheets-api-connect-378620",
24
+ "private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
25
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
26
+ "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
27
+ "client_id": "106625872877651920064",
28
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
29
+ "token_uri": "https://oauth2.googleapis.com/token",
30
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
31
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
32
+ }
33
+
34
+ gc = gspread.service_account_from_dict(credentials)
35
+
36
+ st.set_page_config(layout="wide")
37
+
38
+ roo_format = {'Win%': '{:.2%}', 'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}',
39
+ '60+%': '{:.2%}','5x%': '{:.2%}','6x%': '{:.2%}','7x%': '{:.2%}','Own': '{:.2%}','LevX': '{:.2%}'}
40
+ stat_format = {'Odds%': '{:.2%}'}
41
+ table_format = {'Odds': '{:.2%}'}
42
+
43
+ csgo_overall = 'CSGO_Overall_Proj'
44
+ csgo_rpl = 'CSGO_RPL_Proj'
45
+ csgo_neutral = 'CSGO_Neutral_Proj'
46
+ csgo_wins = 'CSGO_Win_Proj'
47
+ csgo_losses = 'CSGO_Loss_Proj'
48
+ overall_odds = 'https://docs.google.com/spreadsheets/d/1aLVN4izjSuqZGRyz73Kip6U1q3rubh6v9GrckgEqbfs/edit?pli=1#gid=1545712013'
49
+ RPL_odds = 'https://docs.google.com/spreadsheets/d/1aLVN4izjSuqZGRyz73Kip6U1q3rubh6v9GrckgEqbfs/edit?pli=1#gid=1545712013'
50
+ csgo_bo1 = 'https://docs.google.com/spreadsheets/d/1aLVN4izjSuqZGRyz73Kip6U1q3rubh6v9GrckgEqbfs/edit?pli=1#gid=1545712013'
51
+ csgo_bo3 = 'https://docs.google.com/spreadsheets/d/1aLVN4izjSuqZGRyz73Kip6U1q3rubh6v9GrckgEqbfs/edit?pli=1#gid=1545712013'
52
+ csgo_bo5 = 'https://docs.google.com/spreadsheets/d/1aLVN4izjSuqZGRyz73Kip6U1q3rubh6v9GrckgEqbfs/edit?pli=1#gid=1545712013'
53
+ player_baselines = 'https://docs.google.com/spreadsheets/d/1aLVN4izjSuqZGRyz73Kip6U1q3rubh6v9GrckgEqbfs/edit?pli=1#gid=1545712013'
54
+
55
+ @st.cache_data
56
+ def load_roo_model(URL):
57
+ sh = gc.open(URL)
58
+ worksheet = sh.get_worksheet(0)
59
+ raw_display = pd.DataFrame(worksheet.get_all_records())
60
+ try:
61
+ raw_display["Salary"] = raw_display["Salary"].replace("$", "", regex=True).astype(float)
62
+ except:
63
+ pass
64
+ try:
65
+ raw_display['Win%'] = raw_display['Win%'].str.replace('%', '').astype(float)/100
66
+ except:
67
+ pass
68
+ try:
69
+ raw_display['Top_finish'] = raw_display['Top_finish'].str.replace('%', '').astype(float)/100
70
+ except:
71
+ pass
72
+ try:
73
+ raw_display['Top_5_finish'] = raw_display['Top_5_finish'].str.replace('%', '').astype(float)/100
74
+ except:
75
+ pass
76
+ try:
77
+ raw_display['Top_10_finish'] = raw_display['Top_10_finish'].str.replace('%', '').astype(float)/100
78
+ except:
79
+ pass
80
+ try:
81
+ raw_display['60+%'] = raw_display['60+%'].str.replace('%', '').astype(float)/100
82
+ except:
83
+ pass
84
+ try:
85
+ raw_display['5x%'] = raw_display['5x%'].str.replace('%', '').astype(float)/100
86
+ except:
87
+ pass
88
+ try:
89
+ raw_display['6x%'] = raw_display['6x%'].str.replace('%', '').astype(float)/100
90
+ except:
91
+ pass
92
+ try:
93
+ raw_display['7x%'] = raw_display['7x%'].str.replace('%', '').astype(float)/100
94
+ except:
95
+ pass
96
+ try:
97
+ raw_display['Own'] = raw_display['Own'].str.replace('%', '').astype(float)/100
98
+ except:
99
+ pass
100
+ try:
101
+ raw_display['LevX'] = raw_display['LevX'].str.replace('%', '').astype(float)/100
102
+ except:
103
+ pass
104
+
105
+ return raw_display
106
+
107
+ @st.cache_data
108
+ def load_overall_odds(URL):
109
+ sh = gc.open_by_url(URL)
110
+ worksheet = sh.get_worksheet(12)
111
+ raw_display = pd.DataFrame(worksheet.get_all_records())
112
+ raw_display['Odds'] = raw_display['Odds'].str.replace('%', '').astype(float)/100
113
+
114
+ return raw_display
115
+
116
+ @st.cache_data
117
+ def load_rpl_odds(URL):
118
+ sh = gc.open_by_url(URL)
119
+ worksheet = sh.get_worksheet(13)
120
+ raw_display = pd.DataFrame(worksheet.get_all_records())
121
+ raw_display['Odds'] = raw_display['Odds'].str.replace('%', '').astype(float)/100
122
+ raw_display['Vegas'] = raw_display['Vegas'].str.replace('%', '').astype(float)/100
123
+ raw_display = raw_display[['Team', 'Opponent', 'RPL', 'Opp_RPL', 'RPL_Diff', 'Vegas', 'Odds', 'P Rounds']]
124
+
125
+ return raw_display
126
+
127
+ @st.cache_data
128
+ def load_bo1_proj_model(URL):
129
+ sh = gc.open_by_url(URL)
130
+ worksheet = sh.get_worksheet(3)
131
+ raw_display = pd.DataFrame(worksheet.get_all_records())
132
+ raw_display.rename(columns={"Name": "Player"}, inplace = True)
133
+ raw_display['Odds%'] = raw_display['Odds%'].str.replace('%', '').astype(float)/100
134
+ raw_display = raw_display.sort_values(by='Kills', ascending=False)
135
+
136
+ return raw_display
137
+
138
+ @st.cache_data
139
+ def load_bo3_proj_model(URL):
140
+ sh = gc.open_by_url(URL)
141
+ worksheet = sh.get_worksheet(4)
142
+ raw_display = pd.DataFrame(worksheet.get_all_records())
143
+ raw_display.rename(columns={"Name": "Player"}, inplace = True)
144
+ raw_display['Odds%'] = raw_display['Odds%'].str.replace('%', '').astype(float)/100
145
+ raw_display = raw_display.sort_values(by='Kills', ascending=False)
146
+
147
+ return raw_display
148
+
149
+ @st.cache_data
150
+ def load_bo5_proj_model(URL):
151
+ sh = gc.open_by_url(URL)
152
+ worksheet = sh.get_worksheet(5)
153
+ raw_display = pd.DataFrame(worksheet.get_all_records())
154
+ raw_display.rename(columns={"Name": "Player"}, inplace = True)
155
+ raw_display['Odds%'] = raw_display['Odds%'].str.replace('%', '').astype(float)/100
156
+ raw_display = raw_display.sort_values(by='Kills', ascending=False)
157
+
158
+ return raw_display
159
+
160
+ @st.cache_data
161
+ def load_slate_baselines(URL):
162
+ sh = gc.open_by_url(URL)
163
+ worksheet = sh.get_worksheet(6)
164
+ raw_display = pd.DataFrame(worksheet.get_all_records())
165
+ raw_display.rename(columns={"Name": "Player"}, inplace = True)
166
+ raw_display = raw_display.sort_values(by='Kills/Round', ascending=False)
167
+
168
+ return raw_display
169
+
170
+ hold_display = load_roo_model(csgo_overall)
171
+
172
+ tab1, tab2, tab3, tab4 = st.tabs(["CSGO Odds Tables", "CSGO Range of Outcomes", "CSGO Player Stat Projections", "CSGO Slate Baselines"])
173
+
174
+ def convert_df_to_csv(df):
175
+ return df.to_csv().encode('utf-8')
176
+
177
+ with tab1:
178
+ if st.button("Reset Data", key='reset4'):
179
+ # Clear values from *all* all in-memory and on-disk data caches:
180
+ # i.e. clear values from both square and cube
181
+ st.cache_data.clear()
182
+ odds_choice = st.radio("What table would you like to display?", ('Overall', 'RPL'), key='odds_table')
183
+ if odds_choice == 'Overall':
184
+ hold_display = load_overall_odds(overall_odds)
185
+ elif odds_choice == 'RPL':
186
+ hold_display = load_rpl_odds(RPL_odds)
187
+ display = hold_display.set_index('Team')
188
+ st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(table_format, precision=2), use_container_width = True)
189
+ st.download_button(
190
+ label="Export Tables",
191
+ data=convert_df_to_csv(display),
192
+ file_name='CSGO_Odds_Tables_export.csv',
193
+ mime='text/csv',
194
+ )
195
+
196
+ with tab2:
197
+ if st.button("Reset Data", key='reset1'):
198
+ # Clear values from *all* all in-memory and on-disk data caches:
199
+ # i.e. clear values from both square and cube
200
+ st.cache_data.clear()
201
+ model_choice = st.radio("What table would you like to display?", ('Overall', 'RPL', 'Neutral', 'Wins', 'Losses'), key='roo_table')
202
+ team_var1 = st.multiselect('View specific team?', options = hold_display['Team'].unique(), key = 'roo_teamvar')
203
+ if model_choice == 'Overall':
204
+ hold_display = load_roo_model(csgo_overall)
205
+ elif model_choice == 'RPL':
206
+ hold_display = load_roo_model(csgo_rpl)
207
+ elif model_choice == 'Neutral':
208
+ hold_display = load_roo_model(csgo_neutral)
209
+ elif model_choice == 'Wins':
210
+ hold_display = load_roo_model(csgo_wins)
211
+ elif model_choice == 'Losses':
212
+ hold_display = load_roo_model(csgo_losses)
213
+ display = hold_display.set_index('Player')
214
+ export_display = display
215
+ export_display['Own'] = export_display['Own'] *100
216
+ export_display['Position'] = "FLEX"
217
+ if team_var1:
218
+ display = display[display['Team'].isin(team_var1)]
219
+ st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(roo_format, precision=2), use_container_width = True)
220
+ st.download_button(
221
+ label="Export Range of Outcomes",
222
+ data=convert_df_to_csv(export_display),
223
+ file_name='CSGO_ROO_export.csv',
224
+ mime='text/csv',
225
+ )
226
+
227
+ with tab3:
228
+ if st.button("Reset Data", key='reset2'):
229
+ # Clear values from *all* all in-memory and on-disk data caches:
230
+ # i.e. clear values from both square and cube
231
+ st.cache_data.clear()
232
+ gametype_choice = st.radio("What format are the games being played?", ('Best of 1', 'Best of 3', 'Best of 5'), key='player_stats')
233
+ team_var2 = st.multiselect('View specific team?', options = hold_display['Team'].unique(), key = 'stat_teamvar')
234
+ if gametype_choice == 'Best of 1':
235
+ hold_display = load_bo1_proj_model(csgo_bo1)
236
+ elif gametype_choice == 'Best of 3':
237
+ hold_display = load_bo3_proj_model(csgo_bo3)
238
+ elif gametype_choice == 'Best of 5':
239
+ hold_display = load_bo5_proj_model(csgo_bo5)
240
+ display = hold_display.set_index('Player')
241
+ if team_var2:
242
+ display = display[display['Team'].isin(team_var2)]
243
+ st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(stat_format, precision=2), use_container_width = True)
244
+ st.download_button(
245
+ label="Export Projections",
246
+ data=convert_df_to_csv(display),
247
+ file_name='CSGO_Projections_export.csv',
248
+ mime='text/csv',
249
+ )
250
+
251
+ with tab4:
252
+ if st.button("Reset Data", key='reset3'):
253
+ # Clear values from *all* all in-memory and on-disk data caches:
254
+ # i.e. clear values from both square and cube
255
+ st.cache_data.clear()
256
+ hold_display = load_slate_baselines(player_baselines)
257
+ display = hold_display.set_index('Player')
258
+ st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
259
+ st.download_button(
260
+ label="Export Baselines",
261
+ data=convert_df_to_csv(display),
262
+ file_name='CSGO_Baselines_export.csv',
263
+ mime='text/csv',
264
+ )