File size: 12,643 Bytes
b423965
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import pulp
import numpy as np
import pandas as pd
import random
import sys
import openpyxl
import re
import time
import streamlit as st
import matplotlib
from  matplotlib.colors import LinearSegmentedColormap
from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode
import json
import requests
import gspread
import plotly.figure_factory as ff

scope = ['https://www.googleapis.com/auth/spreadsheets',
          "https://www.googleapis.com/auth/drive"]

credentials = {
  "type": "service_account",
  "project_id": "sheets-api-connect-378620",
  "private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
  "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
  "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
  "client_id": "106625872877651920064",
  "auth_uri": "https://accounts.google.com/o/oauth2/auth",
  "token_uri": "https://oauth2.googleapis.com/token",
  "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
  "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}

gc = gspread.service_account_from_dict(credentials)

st.set_page_config(layout="wide")

roo_format = {'Win%': '{:.2%}', 'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}',
              '60+%': '{:.2%}','5x%': '{:.2%}','6x%': '{:.2%}','7x%': '{:.2%}','Own': '{:.2%}','LevX': '{:.2%}'}
stat_format = {'Odds%': '{:.2%}'}
table_format = {'Odds': '{:.2%}'}

csgo_overall = 'CSGO_Overall_Proj'
csgo_rpl = 'CSGO_RPL_Proj'
csgo_neutral = 'CSGO_Neutral_Proj'
csgo_wins = 'CSGO_Win_Proj'
csgo_losses = 'CSGO_Loss_Proj'
overall_odds = 'https://docs.google.com/spreadsheets/d/1aLVN4izjSuqZGRyz73Kip6U1q3rubh6v9GrckgEqbfs/edit?pli=1#gid=1545712013'
RPL_odds = 'https://docs.google.com/spreadsheets/d/1aLVN4izjSuqZGRyz73Kip6U1q3rubh6v9GrckgEqbfs/edit?pli=1#gid=1545712013'
csgo_bo1 = 'https://docs.google.com/spreadsheets/d/1aLVN4izjSuqZGRyz73Kip6U1q3rubh6v9GrckgEqbfs/edit?pli=1#gid=1545712013'
csgo_bo3 = 'https://docs.google.com/spreadsheets/d/1aLVN4izjSuqZGRyz73Kip6U1q3rubh6v9GrckgEqbfs/edit?pli=1#gid=1545712013'
csgo_bo5 = 'https://docs.google.com/spreadsheets/d/1aLVN4izjSuqZGRyz73Kip6U1q3rubh6v9GrckgEqbfs/edit?pli=1#gid=1545712013'
player_baselines = 'https://docs.google.com/spreadsheets/d/1aLVN4izjSuqZGRyz73Kip6U1q3rubh6v9GrckgEqbfs/edit?pli=1#gid=1545712013'

@st.cache_data
def load_roo_model(URL):
    sh = gc.open(URL)
    worksheet = sh.get_worksheet(0)
    raw_display = pd.DataFrame(worksheet.get_all_records())
    try:
          raw_display["Salary"] = raw_display["Salary"].replace("$", "", regex=True).astype(float)
    except:
          pass
    try:
          raw_display['Win%'] = raw_display['Win%'].str.replace('%', '').astype(float)/100
    except:
          pass
    try:
          raw_display['Top_finish'] = raw_display['Top_finish'].str.replace('%', '').astype(float)/100
    except:
          pass
    try:
          raw_display['Top_5_finish'] = raw_display['Top_5_finish'].str.replace('%', '').astype(float)/100
    except:
          pass
    try:
          raw_display['Top_10_finish'] = raw_display['Top_10_finish'].str.replace('%', '').astype(float)/100
    except:
          pass
    try: 
          raw_display['60+%'] = raw_display['60+%'].str.replace('%', '').astype(float)/100
    except:
          pass
    try:
          raw_display['5x%'] = raw_display['5x%'].str.replace('%', '').astype(float)/100
    except:
          pass
    try:
          raw_display['6x%'] = raw_display['6x%'].str.replace('%', '').astype(float)/100
    except:
          pass
    try:
          raw_display['7x%'] = raw_display['7x%'].str.replace('%', '').astype(float)/100
    except:
          pass
    try:
          raw_display['Own'] = raw_display['Own'].str.replace('%', '').astype(float)/100
    except:
          pass
    try:
          raw_display['LevX'] = raw_display['LevX'].str.replace('%', '').astype(float)/100
    except:
          pass

    return raw_display

@st.cache_data
def load_overall_odds(URL):
    sh = gc.open_by_url(URL)
    worksheet = sh.get_worksheet(12)
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display['Odds'] = raw_display['Odds'].str.replace('%', '').astype(float)/100

    return raw_display

@st.cache_data
def load_rpl_odds(URL):
    sh = gc.open_by_url(URL)
    worksheet = sh.get_worksheet(13)
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display['Odds'] = raw_display['Odds'].str.replace('%', '').astype(float)/100
    raw_display['Vegas'] = raw_display['Vegas'].str.replace('%', '').astype(float)/100
    raw_display = raw_display[['Team', 'Opponent', 'RPL', 'Opp_RPL', 'RPL_Diff', 'Vegas', 'Odds', 'P Rounds']]

    return raw_display

@st.cache_data
def load_bo1_proj_model(URL):
    sh = gc.open_by_url(URL)
    worksheet = sh.get_worksheet(3)
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.rename(columns={"Name": "Player"}, inplace = True)
    raw_display['Odds%'] = raw_display['Odds%'].str.replace('%', '').astype(float)/100
    raw_display = raw_display.sort_values(by='Kills', ascending=False)

    return raw_display

@st.cache_data
def load_bo3_proj_model(URL):
    sh = gc.open_by_url(URL)
    worksheet = sh.get_worksheet(4)
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.rename(columns={"Name": "Player"}, inplace = True)
    raw_display['Odds%'] = raw_display['Odds%'].str.replace('%', '').astype(float)/100
    raw_display = raw_display.sort_values(by='Kills', ascending=False)

    return raw_display

@st.cache_data
def load_bo5_proj_model(URL):
    sh = gc.open_by_url(URL)
    worksheet = sh.get_worksheet(5)
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.rename(columns={"Name": "Player"}, inplace = True)
    raw_display['Odds%'] = raw_display['Odds%'].str.replace('%', '').astype(float)/100
    raw_display = raw_display.sort_values(by='Kills', ascending=False)
          
    return raw_display  

@st.cache_data
def load_slate_baselines(URL):
    sh = gc.open_by_url(URL)
    worksheet = sh.get_worksheet(6)
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.rename(columns={"Name": "Player"}, inplace = True)
    raw_display = raw_display.sort_values(by='Kills/Round', ascending=False)

    return raw_display    

hold_display = load_roo_model(csgo_overall)

tab1, tab2, tab3, tab4 = st.tabs(["CSGO Odds Tables", "CSGO Range of Outcomes", "CSGO Player Stat Projections", "CSGO Slate Baselines"])

def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

with tab1:
    if st.button("Reset Data", key='reset4'):
              # Clear values from *all* all in-memory and on-disk data caches:
              # i.e. clear values from both square and cube
              st.cache_data.clear()
    odds_choice = st.radio("What table would you like to display?", ('Overall', 'RPL'), key='odds_table')
    if odds_choice == 'Overall':
        hold_display = load_overall_odds(overall_odds)
    elif odds_choice == 'RPL':
        hold_display = load_rpl_odds(RPL_odds)
    display = hold_display.set_index('Team')
    st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(table_format, precision=2), use_container_width = True)
    st.download_button(
        label="Export Tables",
        data=convert_df_to_csv(display),
        file_name='CSGO_Odds_Tables_export.csv',
        mime='text/csv',
    )

with tab2:
    if st.button("Reset Data", key='reset1'):
              # Clear values from *all* all in-memory and on-disk data caches:
              # i.e. clear values from both square and cube
              st.cache_data.clear()
    model_choice = st.radio("What table would you like to display?", ('Overall', 'RPL', 'Neutral', 'Wins', 'Losses'), key='roo_table')
    team_var1 = st.multiselect('View specific team?', options = hold_display['Team'].unique(), key = 'roo_teamvar')
    if model_choice == 'Overall':
      hold_display = load_roo_model(csgo_overall)
    elif model_choice == 'RPL':
      hold_display = load_roo_model(csgo_rpl)
    elif model_choice == 'Neutral':
      hold_display = load_roo_model(csgo_neutral)
    elif model_choice == 'Wins':
      hold_display = load_roo_model(csgo_wins)
    elif model_choice == 'Losses':
      hold_display = load_roo_model(csgo_losses)
    display = hold_display.set_index('Player')
    export_display = display
    export_display['Own'] =  export_display['Own'] *100
    export_display['Position'] = "FLEX"
    if team_var1:
              display = display[display['Team'].isin(team_var1)]
    st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(roo_format, precision=2), use_container_width = True)
    st.download_button(
        label="Export Range of Outcomes",
        data=convert_df_to_csv(export_display),
        file_name='CSGO_ROO_export.csv',
        mime='text/csv',
    )

with tab3:
    if st.button("Reset Data", key='reset2'):
              # Clear values from *all* all in-memory and on-disk data caches:
              # i.e. clear values from both square and cube
              st.cache_data.clear()
    gametype_choice = st.radio("What format are the games being played?", ('Best of 1', 'Best of 3', 'Best of 5'), key='player_stats')
    team_var2 = st.multiselect('View specific team?', options = hold_display['Team'].unique(), key = 'stat_teamvar')
    if gametype_choice == 'Best of 1':
      hold_display = load_bo1_proj_model(csgo_bo1)
    elif gametype_choice == 'Best of 3':
      hold_display = load_bo3_proj_model(csgo_bo3)
    elif gametype_choice == 'Best of 5':
      hold_display = load_bo5_proj_model(csgo_bo5)
    display = hold_display.set_index('Player')
    if team_var2:
          display = display[display['Team'].isin(team_var2)]
    st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(stat_format, precision=2), use_container_width = True)
    st.download_button(
        label="Export Projections",
        data=convert_df_to_csv(display),
        file_name='CSGO_Projections_export.csv',
        mime='text/csv',
    )

with tab4:
    if st.button("Reset Data", key='reset3'):
              # Clear values from *all* all in-memory and on-disk data caches:
              # i.e. clear values from both square and cube
              st.cache_data.clear()
    hold_display = load_slate_baselines(player_baselines)
    display = hold_display.set_index('Player')
    st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
    st.download_button(
        label="Export Baselines",
        data=convert_df_to_csv(display),
        file_name='CSGO_Baselines_export.csv',
        mime='text/csv',
    )