File size: 3,877 Bytes
fb59cb8
 
 
 
 
 
aa7c58e
7c078a3
c410097
01b28b7
8cdd8e4
7c078a3
8cdd8e4
7c078a3
c410097
 
 
 
 
 
 
228bfd8
8cdd8e4
 
aa7c58e
 
 
 
 
 
 
 
 
 
c410097
 
228bfd8
aa7c58e
8cdd8e4
aa7c58e
 
 
 
 
 
228bfd8
 
aa7c58e
 
 
 
bfae66b
aa7c58e
 
228bfd8
 
 
 
 
 
aa7c58e
 
 
 
228bfd8
aa7c58e
 
 
 
bfae66b
aa7c58e
 
228bfd8
 
c410097
 
01b28b7
bbe49e5
 
 
8cdd8e4
bbe49e5
 
aa7c58e
 
 
 
 
 
8cdd8e4
01b28b7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#!/usr/bin/env python

from __future__ import annotations

import gradio as gr
import PIL.Image
import zipfile
from genTag import genTag
from checkIgnore import is_ignore

def predict(image: PIL.Image.Image, score_threshold: float):
    result_threshold = genTag(image, score_threshold)
    result_html = ''
    for label, prob in result_threshold.items():
        if is_ignore(label, 1):
            result_html += '<p class="m5dd_list">'
        else:
            result_html += '<p class="m5dd_list use">'
        result_html = result_html + '<span>' + str(label) + '</span><span>' + str(round(prob, 3)) + '</span></p>'
    result_html = '<div>' + result_html + '</div>'
    result_filter = {key: value for key, value in result_threshold.items() if not is_ignore(key, 1)}
    result_text = ', '.join(result_filter.keys())
    return result_html, result_text

def predict_batch(zip_file, score_threshold: float, progress=gr.Progress()):
    result = ''
    with zipfile.ZipFile(zip_file) as zf:
        for file in progress.tqdm(zf.namelist()):
            print(file)
            if file.endswith(".png") or file.endswith(".jpg"):
                image_file = zf.open(file)
                image = PIL.Image.open(image_file)
                image = image.convert("RGB")
                result_threshold = genTag(image, score_threshold)
                result_filter = {key: value for key, value in result_threshold.items() if not is_ignore(key, 2)}
                tag = ', '.join(result_filter.keys())
                result = result + str(file) + '\n' + str(tag) + '\n\n'
    return result

with gr.Blocks(css="style.css", js="script.js") as demo:
    with gr.Tab(label='Single'):
        with gr.Row():
            with gr.Column(scale=1):
                image = gr.Image(label='Upload a image',
                                 type='pil',
                                 elem_classes='m5dd_image',
                                 sources=["upload", "clipboard"])
                score_threshold = gr.Slider(label='Score threshold',
                                            minimum=0,
                                            maximum=1,
                                            step=0.05,
                                            value=0.3)
                run_button = gr.Button('Run')
            with gr.Column(scale=2):
                result_text = gr.Textbox(lines=3,
                                         max_lines=3,
                                         label='Result',
                                         show_copy_button=True,
                                         elem_id="m5dd_result")
                result_html = gr.HTML(value="")
    with gr.Tab(label='Batch'):
        with gr.Row():
            with gr.Column(scale=1):
                batch_file = gr.File(label="Upload a ZIP file containing images",
                                     file_types=['.zip'])
                score_threshold2 = gr.Slider(label='Score threshold',
                                             minimum=0,
                                             maximum=1,
                                             step=0.05,
                                             value=0.3)
                run_button2 = gr.Button('Run')
            with gr.Column(scale=2):
                result_text2 = gr.Textbox(lines=20,
                                          max_lines=20,
                                          label='Result',
                                          show_copy_button=True)

    run_button.click(
        fn=predict,
        inputs=[image, score_threshold],
        outputs=[result_html, result_text],
        api_name='predict',
    )
    run_button2.click(
        fn=predict_batch,
        inputs=[batch_file, score_threshold2],
        outputs=[result_text2],
        api_name='predict_batch',
    )

demo.queue().launch()