Spaces:
Running
Running
MonkeyJuice
commited on
Commit
•
aa7c58e
1
Parent(s):
7c078a3
add batch handle
Browse files
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 🏃
|
|
4 |
colorFrom: gray
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
4 |
colorFrom: gray
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.19.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
app.py
CHANGED
@@ -4,6 +4,7 @@ from __future__ import annotations
|
|
4 |
|
5 |
import gradio as gr
|
6 |
import PIL.Image
|
|
|
7 |
from genTag import genTag
|
8 |
|
9 |
def predict(image: PIL.Image.Image, score_threshold: float):
|
@@ -16,47 +17,51 @@ def predict(image: PIL.Image.Image, score_threshold: float):
|
|
16 |
result_text = '<div id="m5dd_result">' + str(result_text) + '</div>'
|
17 |
return result_html, result_text
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
.map(v=>v.innerText)
|
33 |
-
.join(', ')
|
34 |
-
}else if (resultArea){
|
35 |
-
const selection = window.getSelection()
|
36 |
-
selection.removeAllRanges()
|
37 |
-
const range = document.createRange()
|
38 |
-
range.selectNodeContents(resultArea)
|
39 |
-
selection.addRange(range)
|
40 |
-
}else{
|
41 |
-
return
|
42 |
-
}
|
43 |
-
})
|
44 |
-
}
|
45 |
-
"""
|
46 |
|
47 |
-
with gr.Blocks(css="style.css") as demo:
|
48 |
-
with gr.
|
49 |
-
with gr.
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
run_button.click(
|
62 |
fn=predict,
|
@@ -64,6 +69,11 @@ with gr.Blocks(css="style.css") as demo:
|
|
64 |
outputs=[result_html, result_text],
|
65 |
api_name='predict',
|
66 |
)
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
demo.queue().launch()
|
|
|
4 |
|
5 |
import gradio as gr
|
6 |
import PIL.Image
|
7 |
+
import zipfile
|
8 |
from genTag import genTag
|
9 |
|
10 |
def predict(image: PIL.Image.Image, score_threshold: float):
|
|
|
17 |
result_text = '<div id="m5dd_result">' + str(result_text) + '</div>'
|
18 |
return result_html, result_text
|
19 |
|
20 |
+
def predict_batch(zip_file, score_threshold: float, progress=gr.Progress()):
|
21 |
+
result = ''
|
22 |
+
with zipfile.ZipFile(zip_file) as zf:
|
23 |
+
for file in progress.tqdm(zf.namelist()):
|
24 |
+
print(file)
|
25 |
+
if file.endswith(".png") or file.endswith(".jpg"):
|
26 |
+
image_file = zf.open(file)
|
27 |
+
image = PIL.Image.open(image_file)
|
28 |
+
image = image.convert("RGB")
|
29 |
+
result_threshold = genTag(image, score_threshold)
|
30 |
+
tag = ', '.join(result_threshold.keys())
|
31 |
+
result = result + str(file) + '\n' + str(tag) + '\n'
|
32 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
with gr.Blocks(css="style.css", js="script.js") as demo:
|
35 |
+
with gr.Tab(label='Single'):
|
36 |
+
with gr.Row():
|
37 |
+
with gr.Column(scale=1):
|
38 |
+
image = gr.Image(label='Upload a image',
|
39 |
+
type='pil',
|
40 |
+
sources=["upload", "clipboard"],
|
41 |
+
height='20em')
|
42 |
+
score_threshold = gr.Slider(label='Score threshold',
|
43 |
+
minimum=0,
|
44 |
+
maximum=1,
|
45 |
+
step=0.05,
|
46 |
+
value=0.5)
|
47 |
+
run_button = gr.Button('Run')
|
48 |
+
result_text = gr.HTML(value="<div></div>")
|
49 |
+
with gr.Column(scale=2):
|
50 |
+
result_html = gr.HTML(value="<div></div>")
|
51 |
+
with gr.Tab(label='Batch'):
|
52 |
+
with gr.Row():
|
53 |
+
with gr.Column(scale=1):
|
54 |
+
batch_file = gr.File(label="Upload a ZIP file containing images",
|
55 |
+
file_types=['.zip'],
|
56 |
+
height='20em')
|
57 |
+
score_threshold2 = gr.Slider(label='Score threshold',
|
58 |
+
minimum=0,
|
59 |
+
maximum=1,
|
60 |
+
step=0.05,
|
61 |
+
value=0.5)
|
62 |
+
run_button2 = gr.Button('Run')
|
63 |
+
with gr.Column(scale=2):
|
64 |
+
result_text2 = gr.Textbox(lines=5, show_copy_button=True)
|
65 |
|
66 |
run_button.click(
|
67 |
fn=predict,
|
|
|
69 |
outputs=[result_html, result_text],
|
70 |
api_name='predict',
|
71 |
)
|
72 |
+
run_button2.click(
|
73 |
+
fn=predict_batch,
|
74 |
+
inputs=[batch_file, score_threshold2],
|
75 |
+
outputs=[result_text2],
|
76 |
+
api_name='predict_batch',
|
77 |
+
)
|
78 |
|
79 |
demo.queue().launch()
|
script.js
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
document.addEventListener('click', function (event) {
|
3 |
+
let tagItem = event.target.closest('.m5dd_list')
|
4 |
+
let resultArea = event.target.closest('#m5dd_result')
|
5 |
+
if (tagItem) {
|
6 |
+
if (tagItem.classList.contains('use')) {
|
7 |
+
tagItem.classList.remove('use')
|
8 |
+
} else {
|
9 |
+
tagItem.classList.add('use')
|
10 |
+
}
|
11 |
+
document.getElementById('m5dd_result').innerText =
|
12 |
+
Array.from(document.querySelectorAll('.m5dd_list.use>span:nth-child(1)'))
|
13 |
+
.map(v => v.innerText)
|
14 |
+
.join(', ')
|
15 |
+
} else if (resultArea) {
|
16 |
+
const selection = window.getSelection()
|
17 |
+
selection.removeAllRanges()
|
18 |
+
const range = document.createRange()
|
19 |
+
range.selectNodeContents(resultArea)
|
20 |
+
selection.addRange(range)
|
21 |
+
} else {
|
22 |
+
return
|
23 |
+
}
|
24 |
+
})
|