Spaces:
Runtime error
Runtime error
abd.py
#2
by
abdabbas
- opened
app.py
CHANGED
@@ -1,51 +1,51 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
from skimage.transform import resize
|
4 |
-
from tensorflow.keras.models import Sequential, load_model
|
5 |
-
from tensorflow.keras.layers import Conv2D, MaxPool2D, Dropout, Dense, Flatten, BatchNormalization
|
6 |
-
|
7 |
-
class SkinCancer :
|
8 |
-
def __init__ (self):
|
9 |
-
self.model = self.load_model()
|
10 |
-
|
11 |
-
def build_model (self) :
|
12 |
-
model = Sequential()
|
13 |
-
model.add(Conv2D(filters = 128, kernel_size = (4,4), input_shape = (32, 32, 3), activation = 'relu'))
|
14 |
-
model.add(MaxPool2D(pool_size = (4,4)))
|
15 |
-
model.add(Conv2D(filters = 64, kernel_size = (2,2), activation = 'relu'))
|
16 |
-
model.add(MaxPool2D(pool_size = (2,2)))
|
17 |
-
model.add(BatchNormalization())
|
18 |
-
#model.add(GlobalAveragePooling2D())
|
19 |
-
model.add(Flatten())
|
20 |
-
model.add(Dense(128, activation = 'relu'))
|
21 |
-
model.add(Dropout(0.2))
|
22 |
-
model.add(Dense(
|
23 |
-
#model.summary()
|
24 |
-
return model
|
25 |
-
|
26 |
-
def load_model(self):
|
27 |
-
model = self.build_model()
|
28 |
-
model = load_model("Normal_skin_cancer_model.h5")
|
29 |
-
return model
|
30 |
-
|
31 |
-
def preprocess_image(self,img):
|
32 |
-
img = resize(img, (32,32))
|
33 |
-
img = img.reshape(1,32,32,3)
|
34 |
-
return img
|
35 |
-
|
36 |
-
def predict(self,img):
|
37 |
-
real_labels = ["benign", "malignant"]
|
38 |
-
img = self.preprocess_image(img)
|
39 |
-
res = np.argmax(self.model.predict(img))
|
40 |
-
return real_labels[res]
|
41 |
-
|
42 |
-
def Test(img):
|
43 |
-
model_new = SkinCancer()
|
44 |
-
res = model_new.predict(img)
|
45 |
-
return res
|
46 |
-
#interface
|
47 |
-
interface = gr.Interface(fn = Test,
|
48 |
-
inputs = gr.inputs.Image(shape=(200,200)),
|
49 |
-
outputs=["text"],
|
50 |
-
title="Skin Cancer detection")
|
51 |
interface.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from skimage.transform import resize
|
4 |
+
from tensorflow.keras.models import Sequential, load_model
|
5 |
+
from tensorflow.keras.layers import Conv2D, MaxPool2D, Dropout, Dense, Flatten, BatchNormalization
|
6 |
+
|
7 |
+
class SkinCancer :
|
8 |
+
def __init__ (self):
|
9 |
+
self.model = self.load_model()
|
10 |
+
|
11 |
+
def build_model (self) :
|
12 |
+
model = Sequential()
|
13 |
+
model.add(Conv2D(filters = 128, kernel_size = (4,4), input_shape = (32, 32, 3), activation = 'relu'))
|
14 |
+
model.add(MaxPool2D(pool_size = (4,4)))
|
15 |
+
model.add(Conv2D(filters = 64, kernel_size = (2,2), activation = 'relu'))
|
16 |
+
model.add(MaxPool2D(pool_size = (2,2)))
|
17 |
+
model.add(BatchNormalization())
|
18 |
+
#model.add(GlobalAveragePooling2D())
|
19 |
+
model.add(Flatten())
|
20 |
+
model.add(Dense(128, activation = 'relu'))
|
21 |
+
model.add(Dropout(0.2))
|
22 |
+
model.add(Dense(1, activation = 'sigmoid')) # sigmoid is better for binary classification
|
23 |
+
#model.summary()
|
24 |
+
return model
|
25 |
+
|
26 |
+
def load_model(self):
|
27 |
+
model = self.build_model()
|
28 |
+
model = load_model("Normal_skin_cancer_model.h5")
|
29 |
+
return model
|
30 |
+
|
31 |
+
def preprocess_image(self,img):
|
32 |
+
img = resize(img, (32,32))
|
33 |
+
img = img.reshape(1,32,32,3)
|
34 |
+
return img
|
35 |
+
|
36 |
+
def predict(self,img):
|
37 |
+
real_labels = ["benign", "malignant"]
|
38 |
+
img = self.preprocess_image(img)
|
39 |
+
res = np.argmax(self.model.predict(img))
|
40 |
+
return real_labels[res]
|
41 |
+
|
42 |
+
def Test(img):
|
43 |
+
model_new = SkinCancer()
|
44 |
+
res = model_new.predict(img)
|
45 |
+
return res
|
46 |
+
#interface
|
47 |
+
interface = gr.Interface(fn = Test,
|
48 |
+
inputs = gr.inputs.Image(shape=(200,200)),
|
49 |
+
outputs=["text"],
|
50 |
+
title="Skin Cancer detection")
|
51 |
interface.launch()
|