File size: 16,935 Bytes
a0ffb03 53fdc22 a0ffb03 7b9f1c5 53fdc22 a0ffb03 53fdc22 69083e6 a0ffb03 53fdc22 a0ffb03 53fdc22 7b9f1c5 53fdc22 7b9f1c5 53fdc22 a0ffb03 53fdc22 a0ffb03 53fdc22 a0ffb03 53fdc22 a0ffb03 53fdc22 a0ffb03 53fdc22 a0ffb03 53fdc22 a0ffb03 53fdc22 7b9f1c5 53fdc22 69083e6 a8a12b2 69083e6 a8a12b2 69083e6 e94d263 69083e6 e94d263 69083e6 a8a12b2 69083e6 a8a12b2 69083e6 e94d263 7b9f1c5 69083e6 7b9f1c5 a8a12b2 69083e6 7b9f1c5 69083e6 7b9f1c5 69083e6 7b9f1c5 69083e6 7b9f1c5 69083e6 7b9f1c5 69083e6 7b9f1c5 69083e6 7b9f1c5 69083e6 7b9f1c5 69083e6 53fdc22 7b9f1c5 53fdc22 7b9f1c5 a8a12b2 7b9f1c5 a8a12b2 7b9f1c5 a8a12b2 7b9f1c5 e94d263 7b9f1c5 e94d263 7b9f1c5 a8a12b2 7b9f1c5 a8a12b2 7b9f1c5 a8a12b2 7b9f1c5 a8a12b2 7b9f1c5 a8a12b2 7b9f1c5 e94d263 7b9f1c5 a8a12b2 7b9f1c5 a8a12b2 7b9f1c5 53fdc22 7b9f1c5 53fdc22 7b9f1c5 53fdc22 7b9f1c5 53fdc22 7b9f1c5 53fdc22 7b9f1c5 53fdc22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
#!/usr/bin/env python3
"""
utils.refinement
High-quality mask refinement for BackgroundFX Pro.
"""
from __future__ import annotations
from typing import Any, Optional, Tuple, List
import logging
import cv2
import numpy as np
import torch
log = logging.getLogger(__name__)
# ============================================================================
# CUSTOM EXCEPTION
# ============================================================================
class MaskRefinementError(Exception):
"""Custom exception for mask refinement errors"""
pass
# ============================================================================
# EXPORTS
# ============================================================================
__all__ = [
"refine_mask_hq",
"refine_masks_batch",
"MaskRefinementError",
]
# ============================================================================
# MAIN API - SINGLE FRAME
# ============================================================================
def refine_mask_hq(
image: np.ndarray,
mask: np.ndarray,
matanyone_model: Optional[Any] = None,
fallback_enabled: bool = True
) -> np.ndarray:
"""
High-quality mask refinement with multiple strategies.
Args:
image: Original BGR image
mask: Initial binary mask (0/255)
matanyone_model: Optional MatAnyone model for AI refinement
fallback_enabled: Whether to use fallback methods if AI fails
Returns:
Refined binary mask (0/255)
"""
if image is None or mask is None:
raise MaskRefinementError("Invalid input image or mask")
if image.shape[:2] != mask.shape[:2]:
raise MaskRefinementError(f"Image shape {image.shape[:2]} doesn't match mask shape {mask.shape[:2]}")
# Try AI-based refinement first if model available
if matanyone_model is not None:
try:
refined = _refine_with_matanyone(image, mask, matanyone_model)
if _validate_refined_mask(refined, mask):
return refined
log.warning("MatAnyone refinement failed validation")
except Exception as e:
log.warning(f"MatAnyone refinement failed: {e}")
# Fallback to classical refinement methods
if fallback_enabled:
try:
return _classical_refinement(image, mask)
except Exception as e:
log.warning(f"Classical refinement failed: {e}")
return mask # Return original if all fails
return mask
# ============================================================================
# BATCH PROCESSING FOR TEMPORAL CONSISTENCY
# ============================================================================
def refine_masks_batch(
frames: List[np.ndarray],
masks: List[np.ndarray],
matanyone_model: Optional[Any] = None,
fallback_enabled: bool = True
) -> List[np.ndarray]:
"""
Refine multiple masks using MatAnyone's temporal consistency.
Args:
frames: List of BGR images
masks: List of initial binary masks
matanyone_model: MatAnyone InferenceCore model
fallback_enabled: Whether to use fallback methods
Returns:
List of refined binary masks
"""
if not frames or not masks:
return masks
if len(frames) != len(masks):
raise MaskRefinementError(f"Frame count {len(frames)} doesn't match mask count {len(masks)}")
if matanyone_model is not None:
try:
refined = _refine_batch_with_matanyone(frames, masks, matanyone_model)
# Validate all masks
if all(_validate_refined_mask(r, m) for r, m in zip(refined, masks)):
return refined
log.warning("Batch MatAnyone refinement failed validation")
except Exception as e:
log.warning(f"Batch MatAnyone refinement failed: {e}")
# Fallback to frame-by-frame classical refinement
if fallback_enabled:
return [_classical_refinement(f, m) for f, m in zip(frames, masks)]
return masks
# ============================================================================
# AI-BASED REFINEMENT - SINGLE FRAME
# ============================================================================
def _refine_with_matanyone(
image: np.ndarray,
mask: np.ndarray,
model: Any
) -> np.ndarray:
"""Use MatAnyone model for mask refinement."""
try:
# Set device to GPU (Tesla T4 on cuda:0)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# Convert BGR to RGB and normalize
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
h, w = image_rgb.shape[:2]
# Convert to torch tensor format (C, H, W) and normalize to [0, 1]
image_tensor = torch.from_numpy(image_rgb).permute(2, 0, 1).float() / 255.0
image_tensor = image_tensor.unsqueeze(0).to(device) # Add batch dimension and move to GPU
# CRITICAL: Ensure mask is 2D before processing
if mask.ndim == 3:
# Convert multi-channel to single channel
if mask.shape[2] == 3:
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
else:
mask = mask[:, :, 0]
# Ensure mask is binary uint8
if mask.dtype != np.uint8:
mask = (mask * 255).astype(np.uint8) if mask.max() <= 1 else mask.astype(np.uint8)
# Final verification that mask is 2D
assert mask.ndim == 2, f"Mask must be 2D after conversion, got shape {mask.shape}"
assert mask.shape == (h, w), f"Mask shape {mask.shape} doesn't match image shape ({h}, {w})"
# Convert mask to tensor and move to GPU
mask_tensor = torch.from_numpy(mask).float() / 255.0
mask_tensor = mask_tensor.unsqueeze(0).unsqueeze(0).to(device) # (1, 1, H, W) on GPU
# Verify tensor dimensions
assert mask_tensor.shape == (1, 1, h, w), f"Mask tensor wrong shape: {mask_tensor.shape}, expected (1, 1, {h}, {w})"
# Try different methods on InferenceCore
result = None
# Log available methods for debugging
methods = [m for m in dir(model) if not m.startswith('_')]
log.debug(f"MatAnyone InferenceCore methods: {methods}")
with torch.no_grad():
if hasattr(model, 'step'):
# Step method for iterative processing
result = model.step(image_tensor, mask_tensor)
elif hasattr(model, 'process_frame'):
result = model.process_frame(image_tensor, mask_tensor)
elif hasattr(model, 'forward'):
result = model.forward(image_tensor, mask_tensor)
elif hasattr(model, '__call__'):
result = model(image_tensor, mask_tensor)
else:
raise MaskRefinementError(f"No recognized method. Available: {methods}")
if result is None:
raise MaskRefinementError("MatAnyone returned None")
# Extract alpha matte from result
alpha = _extract_alpha_from_result(result)
# Convert back to numpy and resize if needed
if isinstance(alpha, torch.Tensor):
alpha = alpha.squeeze().cpu().numpy()
if alpha.ndim == 3:
alpha = alpha[0] if alpha.shape[0] == 1 else alpha.mean(axis=0)
if alpha.dtype != np.uint8:
alpha = (alpha * 255).clip(0, 255).astype(np.uint8)
if alpha.shape != (h, w):
alpha = cv2.resize(alpha, (w, h), interpolation=cv2.INTER_LINEAR)
return _process_mask(alpha)
except Exception as e:
log.error(f"MatAnyone processing error: {str(e)}")
raise MaskRefinementError(f"MatAnyone processing failed: {str(e)}")
# ============================================================================
# AI-BASED REFINEMENT - BATCH
# ============================================================================
def _refine_batch_with_matanyone(
frames: List[np.ndarray],
masks: List[np.ndarray],
model: Any
) -> List[np.ndarray]:
"""Process batch of frames through MatAnyone for temporal consistency."""
try:
# Set device to GPU (Tesla T4 on cuda:0)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
batch_size = len(frames)
h, w = frames[0].shape[:2]
# Convert frames to tensor batch and move to GPU
frame_tensors = []
for frame in frames:
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
tensor = torch.from_numpy(frame_rgb).permute(2, 0, 1).float() / 255.0
frame_tensors.append(tensor)
# Stack into batch (N, C, H, W) and move to GPU
batch_tensor = torch.stack(frame_tensors).to(device)
# Prepare first mask for initialization
first_mask = masks[0]
# CRITICAL: Ensure first mask is 2D
if first_mask.ndim == 3:
if first_mask.shape[2] == 3:
first_mask = cv2.cvtColor(first_mask, cv2.COLOR_BGR2GRAY)
else:
first_mask = first_mask[:, :, 0]
if first_mask.dtype != np.uint8:
first_mask = (first_mask * 255).astype(np.uint8) if first_mask.max() <= 1 else first_mask.astype(np.uint8)
assert first_mask.ndim == 2, f"First mask must be 2D, got shape {first_mask.shape}"
# Convert first mask to tensor and move to GPU
first_mask_tensor = torch.from_numpy(first_mask).float() / 255.0
first_mask_tensor = first_mask_tensor.unsqueeze(0).unsqueeze(0).to(device)
refined_masks = []
with torch.no_grad():
# Check for batch processing methods
if hasattr(model, 'process_batch'):
# Direct batch processing
results = model.process_batch(batch_tensor, first_mask_tensor)
for result in results:
alpha = _extract_alpha_from_result(result)
refined_masks.append(_tensor_to_mask(alpha, h, w))
elif hasattr(model, 'step'):
# Process frames sequentially with memory
for i, frame_tensor in enumerate(frame_tensors):
frame_on_device = frame_tensor.unsqueeze(0).to(device)
if i == 0:
# First frame with mask
result = model.step(frame_on_device, first_mask_tensor)
else:
# Subsequent frames use memory from previous
result = model.step(frame_on_device, None)
alpha = _extract_alpha_from_result(result)
refined_masks.append(_tensor_to_mask(alpha, h, w))
else:
# Fallback to processing each frame with its mask
log.warning("MatAnyone batch processing not available, using frame-by-frame")
for frame_tensor, mask in zip(frame_tensors, masks):
# Ensure each mask is 2D
if mask.ndim == 3:
if mask.shape[2] == 3:
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
else:
mask = mask[:, :, 0]
mask_tensor = torch.from_numpy(mask).float() / 255.0
mask_tensor = mask_tensor.unsqueeze(0).unsqueeze(0).to(device)
frame_on_device = frame_tensor.unsqueeze(0).to(device)
result = model(frame_on_device, mask_tensor)
alpha = _extract_alpha_from_result(result)
refined_masks.append(_tensor_to_mask(alpha, h, w))
return refined_masks
except Exception as e:
log.error(f"Batch MatAnyone processing error: {str(e)}")
raise MaskRefinementError(f"Batch processing failed: {str(e)}")
# ============================================================================
# HELPER FUNCTIONS
# ============================================================================
def _extract_alpha_from_result(result):
"""Extract alpha matte from various result formats."""
if isinstance(result, (tuple, list)):
return result[0] if len(result) > 0 else None
elif isinstance(result, dict):
return result.get('alpha', result.get('matte', result.get('mask', None)))
else:
return result
def _tensor_to_mask(tensor, target_h, target_w):
"""Convert tensor to numpy mask with proper sizing."""
if isinstance(tensor, torch.Tensor):
mask = tensor.squeeze().cpu().numpy()
else:
mask = tensor
if mask.ndim == 3:
mask = mask[0] if mask.shape[0] == 1 else mask.mean(axis=0)
if mask.dtype != np.uint8:
mask = (mask * 255).clip(0, 255).astype(np.uint8)
if mask.shape != (target_h, target_w):
mask = cv2.resize(mask, (target_w, target_h), interpolation=cv2.INTER_LINEAR)
return mask
def _validate_refined_mask(refined: np.ndarray, original: np.ndarray) -> bool:
"""Check if refined mask is reasonable."""
if refined is None or refined.size == 0:
return False
refined_area = np.sum(refined > 127)
original_area = np.sum(original > 127)
if refined_area == 0:
return False
ratio = refined_area / max(original_area, 1)
return 0.5 <= ratio <= 2.0
def _process_mask(mask: np.ndarray) -> np.ndarray:
"""Convert any mask format to binary 0/255."""
if mask.dtype == np.float32 or mask.dtype == np.float64:
if mask.max() <= 1.0:
mask = (mask * 255).astype(np.uint8)
if mask.dtype != np.uint8:
mask = mask.astype(np.uint8)
if mask.ndim == 3:
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
_, binary = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)
return binary
# ============================================================================
# CLASSICAL REFINEMENT
# ============================================================================
def _classical_refinement(image: np.ndarray, mask: np.ndarray) -> np.ndarray:
"""Apply classical CV techniques for mask refinement."""
refined = mask.copy()
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
refined = cv2.morphologyEx(refined, cv2.MORPH_CLOSE, kernel)
refined = cv2.morphologyEx(refined, cv2.MORPH_OPEN, kernel)
refined = _edge_aware_smooth(image, refined)
refined = _feather_edges(refined, radius=3)
refined = _remove_small_components(refined, min_area_ratio=0.005)
return refined
def _edge_aware_smooth(image: np.ndarray, mask: np.ndarray) -> np.ndarray:
"""Apply edge-aware smoothing using guided filter."""
mask_float = mask.astype(np.float32) / 255.0
radius = 5
eps = 0.01
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY).astype(np.float32) / 255.0
mean_I = cv2.boxFilter(gray, -1, (radius, radius))
mean_p = cv2.boxFilter(mask_float, -1, (radius, radius))
mean_Ip = cv2.boxFilter(gray * mask_float, -1, (radius, radius))
cov_Ip = mean_Ip - mean_I * mean_p
mean_II = cv2.boxFilter(gray * gray, -1, (radius, radius))
var_I = mean_II - mean_I * mean_I
a = cov_Ip / (var_I + eps)
b = mean_p - a * mean_I
mean_a = cv2.boxFilter(a, -1, (radius, radius))
mean_b = cv2.boxFilter(b, -1, (radius, radius))
refined = mean_a * gray + mean_b
return (refined * 255).clip(0, 255).astype(np.uint8)
def _feather_edges(mask: np.ndarray, radius: int = 3) -> np.ndarray:
"""Slightly blur edges for smoother transitions."""
if radius <= 0:
return mask
blurred = cv2.GaussianBlur(mask, (radius*2+1, radius*2+1), radius/2)
_, binary = cv2.threshold(blurred, 127, 255, cv2.THRESH_BINARY)
return binary
def _remove_small_components(mask: np.ndarray, min_area_ratio: float = 0.005) -> np.ndarray:
"""Remove small disconnected components."""
num_labels, labels, stats, _ = cv2.connectedComponentsWithStats(mask, connectivity=8)
if num_labels <= 1:
return mask
total_area = mask.shape[0] * mask.shape[1]
min_area = int(total_area * min_area_ratio)
areas = stats[1:, cv2.CC_STAT_AREA]
if len(areas) == 0:
return mask
max_label = np.argmax(areas) + 1
cleaned = np.zeros_like(mask)
for label in range(1, num_labels):
if stats[label, cv2.CC_STAT_AREA] >= min_area or label == max_label:
cleaned[labels == label] = 255
return cleaned |