Update utils/refinement.py
Browse files- utils/refinement.py +213 -148
utils/refinement.py
CHANGED
|
@@ -1,167 +1,232 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
utils.refinement
|
| 4 |
-
|
| 5 |
-
Single-frame mask refinement for BackgroundFX Pro.
|
| 6 |
-
|
| 7 |
-
Public API
|
| 8 |
-
----------
|
| 9 |
-
refine_mask_hq(image, mask, matanyone_processor, fallback_enabled=True) -> np.ndarray
|
| 10 |
"""
|
| 11 |
|
| 12 |
from __future__ import annotations
|
| 13 |
-
from typing import Any,
|
| 14 |
-
import logging
|
| 15 |
-
|
| 16 |
-
log = logging.getLogger(__name__)
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
MAX_AREA_RATIO = 0.97
|
| 21 |
|
| 22 |
-
|
| 23 |
-
# Public
|
| 24 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 25 |
-
__all__ = ["refine_mask_hq"]
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
def refine_mask_hq(
|
| 28 |
image: np.ndarray,
|
| 29 |
-
mask:
|
| 30 |
-
|
| 31 |
-
fallback_enabled: bool = True
|
| 32 |
) -> np.ndarray:
|
| 33 |
"""
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
"""
|
| 39 |
-
mask
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
try:
|
| 44 |
-
refined =
|
| 45 |
-
if
|
| 46 |
return refined
|
| 47 |
-
log.warning("
|
| 48 |
except Exception as e:
|
| 49 |
-
log.warning(f"
|
| 50 |
-
|
| 51 |
-
#
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
# 3 β GrabCut + saliency double-fallback
|
| 60 |
-
try:
|
| 61 |
-
gc = _refine_with_grabcut(image, mask)
|
| 62 |
-
if _validate_mask_quality(gc, image.shape[:2]):
|
| 63 |
-
return gc
|
| 64 |
-
sal = _refine_with_saliency(image, mask)
|
| 65 |
-
if _validate_mask_quality(sal, image.shape[:2]):
|
| 66 |
-
return sal
|
| 67 |
-
except Exception as e:
|
| 68 |
-
log.debug(f"GrabCut/saliency fallback error: {e}")
|
| 69 |
-
|
| 70 |
-
# last resort
|
| 71 |
-
return mask if fallback_enabled else _opencv_enhance(image, mask)
|
| 72 |
-
|
| 73 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 74 |
-
# MatAnyOne wrapper (safe)
|
| 75 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββοΏ½οΏ½βββββββββββββββββββββββββ
|
| 76 |
-
def _matanyone_refine(img, mask, proc) -> Optional[np.ndarray]:
|
| 77 |
-
if not (hasattr(proc, "step") and hasattr(proc, "output_prob_to_mask")):
|
| 78 |
-
return None
|
| 79 |
-
# image tensor (C,H,W) float32 0-1
|
| 80 |
-
anp = img.astype(np.float32)
|
| 81 |
-
if anp.max() > 1: anp /= 255.0
|
| 82 |
-
anp = np.transpose(anp, (2,0,1))
|
| 83 |
-
img_t = torch.from_numpy(anp).unsqueeze(0).to(proc.device if hasattr(proc,"device") else "cpu")
|
| 84 |
-
mask_f = mask.astype(np.float32)/255.0
|
| 85 |
-
mask_t = torch.from_numpy(mask_f).unsqueeze(0).to(img_t.device)
|
| 86 |
-
|
| 87 |
-
with torch.no_grad():
|
| 88 |
-
prob = proc.step(img_t, mask_t, objects=[1])
|
| 89 |
-
m = proc.output_prob_to_mask(prob).squeeze().cpu().numpy()
|
| 90 |
-
if m.max() <= 1: m *= 255
|
| 91 |
-
return m.astype(np.uint8)
|
| 92 |
-
|
| 93 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 94 |
-
# OpenCV enhanced filter chain
|
| 95 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 96 |
-
def _opencv_enhance(img, mask):
|
| 97 |
-
if mask.ndim == 3: mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
| 98 |
-
if mask.max()<=1: mask = (mask*255).astype(np.uint8)
|
| 99 |
-
m = cv2.bilateralFilter(mask, 9, 75, 75)
|
| 100 |
-
m = _guided_filter(img, m, r=8, eps=0.2)
|
| 101 |
-
m = cv2.morphologyEx(m, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5)))
|
| 102 |
-
m = cv2.morphologyEx(m, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)))
|
| 103 |
-
m = cv2.GaussianBlur(m,(3,3),0.8)
|
| 104 |
-
_,m = cv2.threshold(m,127,255,cv2.THRESH_BINARY)
|
| 105 |
-
return m
|
| 106 |
-
|
| 107 |
-
def _guided_filter(guide, mask, r=8, eps=0.2):
|
| 108 |
-
g = cv2.cvtColor(guide, cv2.COLOR_BGR2GRAY).astype(np.float32)/255.0
|
| 109 |
-
m = mask.astype(np.float32)/255.0
|
| 110 |
-
k = 2*r+1
|
| 111 |
-
mean_g = cv2.boxFilter(g, -1, (k,k))
|
| 112 |
-
mean_m = cv2.boxFilter(m, -1, (k,k))
|
| 113 |
-
corr_gm = cv2.boxFilter(g*m, -1, (k,k))
|
| 114 |
-
cov = corr_gm - mean_g*mean_m
|
| 115 |
-
var_g = cv2.boxFilter(g*g, -1, (k,k)) - mean_g*mean_g
|
| 116 |
-
a = cov/(var_g+eps)
|
| 117 |
-
b = mean_m - a*mean_g
|
| 118 |
-
mean_a = cv2.boxFilter(a, -1, (k,k))
|
| 119 |
-
mean_b = cv2.boxFilter(b, -1, (k,k))
|
| 120 |
-
out = (mean_a*g+mean_b)*255
|
| 121 |
-
return out.astype(np.uint8)
|
| 122 |
-
|
| 123 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 124 |
-
# GrabCut & saliency fallbacks
|
| 125 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 126 |
-
def _refine_with_grabcut(img, seed):
|
| 127 |
-
h,w = img.shape[:2]
|
| 128 |
-
gc = np.full((h,w), cv2.GC_PR_BGD, np.uint8)
|
| 129 |
-
gc[seed>200] = cv2.GC_FGD
|
| 130 |
-
rect = (w//4, h//6, w//2, int(h*0.7))
|
| 131 |
-
bgd,fgd = np.zeros((1,65),np.float64), np.zeros((1,65),np.float64)
|
| 132 |
-
cv2.grabCut(img, gc, rect, bgd, fgd, 3, cv2.GC_INIT_WITH_MASK)
|
| 133 |
-
return np.where((gc==cv2.GC_FGD)|(gc==cv2.GC_PR_FGD),255,0).astype(np.uint8)
|
| 134 |
-
|
| 135 |
-
def _refine_with_saliency(img, seed):
|
| 136 |
-
sal = _compute_saliency(img)
|
| 137 |
-
if sal is None: return seed
|
| 138 |
-
high = (sal>0.6).astype(np.uint8)*255
|
| 139 |
-
cy,cx = img.shape[0]//2, img.shape[1]//2
|
| 140 |
-
if np.any(seed>127):
|
| 141 |
-
ys,xs = np.where(seed>127); cy,cx=int(np.mean(ys)),int(np.mean(xs))
|
| 142 |
-
ff = high.copy(); cv2.floodFill(ff,None,(cx,cy),255,loDiff=5,upDiff=5)
|
| 143 |
-
return ff
|
| 144 |
-
|
| 145 |
-
def _compute_saliency(img):
|
| 146 |
-
try:
|
| 147 |
-
if hasattr(cv2,"saliency"):
|
| 148 |
-
s=cv2.saliency.StaticSaliencySpectralResidual_create()
|
| 149 |
-
ok,sm=s.computeSaliency(img)
|
| 150 |
-
if ok: return (sm-sm.min())/max(1e-6,sm.max()-sm.min())
|
| 151 |
-
except Exception: pass
|
| 152 |
-
return None
|
| 153 |
-
|
| 154 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 155 |
-
# Helpers
|
| 156 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 157 |
-
def _process_mask(mask):
|
| 158 |
-
if mask.ndim==3: mask=cv2.cvtColor(mask,cv2.COLOR_BGR2GRAY)
|
| 159 |
-
if mask.dtype!=np.uint8:
|
| 160 |
-
mask = (mask*255).astype(np.uint8) if mask.max()<=1 else mask.astype(np.uint8)
|
| 161 |
-
_,mask=cv2.threshold(mask,127,255,cv2.THRESH_BINARY)
|
| 162 |
return mask
|
| 163 |
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
utils.refinement
|
| 4 |
+
High-quality mask refinement for BackgroundFX Pro.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
"""
|
| 6 |
|
| 7 |
from __future__ import annotations
|
| 8 |
+
from typing import Any, Optional, Tuple
|
| 9 |
+
import logging
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
import cv2
|
| 12 |
+
import numpy as np
|
|
|
|
| 13 |
|
| 14 |
+
log = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
# ============================================================================
|
| 17 |
+
# CUSTOM EXCEPTION
|
| 18 |
+
# ============================================================================
|
| 19 |
+
class MaskRefinementError(Exception):
|
| 20 |
+
"""Custom exception for mask refinement errors"""
|
| 21 |
+
pass
|
| 22 |
+
|
| 23 |
+
# ============================================================================
|
| 24 |
+
# EXPORTS
|
| 25 |
+
# ============================================================================
|
| 26 |
+
__all__ = [
|
| 27 |
+
"refine_mask_hq",
|
| 28 |
+
"MaskRefinementError",
|
| 29 |
+
]
|
| 30 |
+
|
| 31 |
+
# ============================================================================
|
| 32 |
+
# MAIN API
|
| 33 |
+
# ============================================================================
|
| 34 |
def refine_mask_hq(
|
| 35 |
image: np.ndarray,
|
| 36 |
+
mask: np.ndarray,
|
| 37 |
+
matanyone_model: Optional[Any] = None,
|
| 38 |
+
fallback_enabled: bool = True
|
| 39 |
) -> np.ndarray:
|
| 40 |
"""
|
| 41 |
+
High-quality mask refinement with multiple strategies.
|
| 42 |
+
|
| 43 |
+
Args:
|
| 44 |
+
image: Original BGR image
|
| 45 |
+
mask: Initial binary mask (0/255)
|
| 46 |
+
matanyone_model: Optional MatAnyone model for AI refinement
|
| 47 |
+
fallback_enabled: Whether to use fallback methods if AI fails
|
| 48 |
+
|
| 49 |
+
Returns:
|
| 50 |
+
Refined binary mask (0/255)
|
| 51 |
"""
|
| 52 |
+
if image is None or mask is None:
|
| 53 |
+
raise MaskRefinementError("Invalid input image or mask")
|
| 54 |
+
|
| 55 |
+
if image.shape[:2] != mask.shape[:2]:
|
| 56 |
+
raise MaskRefinementError(f"Image shape {image.shape[:2]} doesn't match mask shape {mask.shape[:2]}")
|
| 57 |
+
|
| 58 |
+
# Try AI-based refinement first if model available
|
| 59 |
+
if matanyone_model is not None:
|
| 60 |
try:
|
| 61 |
+
refined = _refine_with_matanyone(image, mask, matanyone_model)
|
| 62 |
+
if _validate_refined_mask(refined, mask):
|
| 63 |
return refined
|
| 64 |
+
log.warning("MatAnyone refinement failed validation")
|
| 65 |
except Exception as e:
|
| 66 |
+
log.warning(f"MatAnyone refinement failed: {e}")
|
| 67 |
+
|
| 68 |
+
# Fallback to classical refinement methods
|
| 69 |
+
if fallback_enabled:
|
| 70 |
+
try:
|
| 71 |
+
return _classical_refinement(image, mask)
|
| 72 |
+
except Exception as e:
|
| 73 |
+
log.warning(f"Classical refinement failed: {e}")
|
| 74 |
+
return mask # Return original if all fails
|
| 75 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
return mask
|
| 77 |
|
| 78 |
+
# ============================================================================
|
| 79 |
+
# AI-BASED REFINEMENT
|
| 80 |
+
# ============================================================================
|
| 81 |
+
def _refine_with_matanyone(
|
| 82 |
+
image: np.ndarray,
|
| 83 |
+
mask: np.ndarray,
|
| 84 |
+
model: Any
|
| 85 |
+
) -> np.ndarray:
|
| 86 |
+
"""Use MatAnyone model for mask refinement."""
|
| 87 |
+
# Check if model has expected interface
|
| 88 |
+
if hasattr(model, 'process'):
|
| 89 |
+
result = model.process(image, mask)
|
| 90 |
+
elif hasattr(model, 'refine'):
|
| 91 |
+
result = model.refine(image, mask)
|
| 92 |
+
elif callable(model):
|
| 93 |
+
result = model(image, mask)
|
| 94 |
+
else:
|
| 95 |
+
raise MaskRefinementError("MatAnyone model doesn't have expected interface")
|
| 96 |
+
|
| 97 |
+
# Convert result to binary mask
|
| 98 |
+
if result is None:
|
| 99 |
+
raise MaskRefinementError("MatAnyone returned None")
|
| 100 |
+
|
| 101 |
+
return _process_mask(result)
|
| 102 |
+
|
| 103 |
+
# ============================================================================
|
| 104 |
+
# CLASSICAL REFINEMENT
|
| 105 |
+
# ============================================================================
|
| 106 |
+
def _classical_refinement(image: np.ndarray, mask: np.ndarray) -> np.ndarray:
|
| 107 |
+
"""Apply classical CV techniques for mask refinement."""
|
| 108 |
+
refined = mask.copy()
|
| 109 |
+
|
| 110 |
+
# 1. Morphological operations to clean up
|
| 111 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
|
| 112 |
+
refined = cv2.morphologyEx(refined, cv2.MORPH_CLOSE, kernel)
|
| 113 |
+
refined = cv2.morphologyEx(refined, cv2.MORPH_OPEN, kernel)
|
| 114 |
+
|
| 115 |
+
# 2. Edge-aware smoothing
|
| 116 |
+
refined = _edge_aware_smooth(image, refined)
|
| 117 |
+
|
| 118 |
+
# 3. Feather edges slightly
|
| 119 |
+
refined = _feather_edges(refined, radius=3)
|
| 120 |
+
|
| 121 |
+
# 4. Remove small disconnected components
|
| 122 |
+
refined = _remove_small_components(refined, min_area_ratio=0.005)
|
| 123 |
+
|
| 124 |
+
return refined
|
| 125 |
+
|
| 126 |
+
# ============================================================================
|
| 127 |
+
# HELPER FUNCTIONS
|
| 128 |
+
# ============================================================================
|
| 129 |
+
def _validate_refined_mask(refined: np.ndarray, original: np.ndarray) -> bool:
|
| 130 |
+
"""Check if refined mask is reasonable."""
|
| 131 |
+
if refined is None or refined.size == 0:
|
| 132 |
+
return False
|
| 133 |
+
|
| 134 |
+
# Check if mask has reasonable coverage
|
| 135 |
+
refined_area = np.sum(refined > 127)
|
| 136 |
+
original_area = np.sum(original > 127)
|
| 137 |
+
|
| 138 |
+
if refined_area == 0:
|
| 139 |
+
return False
|
| 140 |
+
|
| 141 |
+
# Allow some variation but not extreme changes
|
| 142 |
+
ratio = refined_area / max(original_area, 1)
|
| 143 |
+
return 0.5 <= ratio <= 2.0
|
| 144 |
+
|
| 145 |
+
def _process_mask(mask: np.ndarray) -> np.ndarray:
|
| 146 |
+
"""Convert any mask format to binary 0/255."""
|
| 147 |
+
if mask.dtype == np.float32 or mask.dtype == np.float64:
|
| 148 |
+
if mask.max() <= 1.0:
|
| 149 |
+
mask = (mask * 255).astype(np.uint8)
|
| 150 |
+
|
| 151 |
+
if mask.dtype != np.uint8:
|
| 152 |
+
mask = mask.astype(np.uint8)
|
| 153 |
+
|
| 154 |
+
if mask.ndim == 3:
|
| 155 |
+
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
| 156 |
+
|
| 157 |
+
_, binary = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)
|
| 158 |
+
return binary
|
| 159 |
+
|
| 160 |
+
def _edge_aware_smooth(image: np.ndarray, mask: np.ndarray) -> np.ndarray:
|
| 161 |
+
"""Apply edge-aware smoothing using guided filter."""
|
| 162 |
+
# Convert to float for processing
|
| 163 |
+
mask_float = mask.astype(np.float32) / 255.0
|
| 164 |
+
|
| 165 |
+
# Simple guided filter approximation
|
| 166 |
+
radius = 5
|
| 167 |
+
eps = 0.01
|
| 168 |
+
|
| 169 |
+
# Use image as guide
|
| 170 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY).astype(np.float32) / 255.0
|
| 171 |
+
|
| 172 |
+
# Box filter for mean
|
| 173 |
+
mean_I = cv2.boxFilter(gray, -1, (radius, radius))
|
| 174 |
+
mean_p = cv2.boxFilter(mask_float, -1, (radius, radius))
|
| 175 |
+
mean_Ip = cv2.boxFilter(gray * mask_float, -1, (radius, radius))
|
| 176 |
+
|
| 177 |
+
# Covariance
|
| 178 |
+
cov_Ip = mean_Ip - mean_I * mean_p
|
| 179 |
+
|
| 180 |
+
# Variance
|
| 181 |
+
mean_II = cv2.boxFilter(gray * gray, -1, (radius, radius))
|
| 182 |
+
var_I = mean_II - mean_I * mean_I
|
| 183 |
+
|
| 184 |
+
# Coefficients
|
| 185 |
+
a = cov_Ip / (var_I + eps)
|
| 186 |
+
b = mean_p - a * mean_I
|
| 187 |
+
|
| 188 |
+
# Filter
|
| 189 |
+
mean_a = cv2.boxFilter(a, -1, (radius, radius))
|
| 190 |
+
mean_b = cv2.boxFilter(b, -1, (radius, radius))
|
| 191 |
+
|
| 192 |
+
refined = mean_a * gray + mean_b
|
| 193 |
+
|
| 194 |
+
# Convert back to binary
|
| 195 |
+
return (refined * 255).clip(0, 255).astype(np.uint8)
|
| 196 |
+
|
| 197 |
+
def _feather_edges(mask: np.ndarray, radius: int = 3) -> np.ndarray:
|
| 198 |
+
"""Slightly blur edges for smoother transitions."""
|
| 199 |
+
if radius <= 0:
|
| 200 |
+
return mask
|
| 201 |
+
|
| 202 |
+
# Blur then threshold to maintain binary nature
|
| 203 |
+
blurred = cv2.GaussianBlur(mask, (radius*2+1, radius*2+1), radius/2)
|
| 204 |
+
_, binary = cv2.threshold(blurred, 127, 255, cv2.THRESH_BINARY)
|
| 205 |
+
|
| 206 |
+
return binary
|
| 207 |
+
|
| 208 |
+
def _remove_small_components(mask: np.ndarray, min_area_ratio: float = 0.005) -> np.ndarray:
|
| 209 |
+
"""Remove small disconnected components."""
|
| 210 |
+
num_labels, labels, stats, _ = cv2.connectedComponentsWithStats(mask, connectivity=8)
|
| 211 |
+
|
| 212 |
+
if num_labels <= 1:
|
| 213 |
+
return mask
|
| 214 |
+
|
| 215 |
+
# Calculate minimum area
|
| 216 |
+
total_area = mask.shape[0] * mask.shape[1]
|
| 217 |
+
min_area = int(total_area * min_area_ratio)
|
| 218 |
+
|
| 219 |
+
# Find largest component (excluding background)
|
| 220 |
+
areas = stats[1:, cv2.CC_STAT_AREA]
|
| 221 |
+
if len(areas) == 0:
|
| 222 |
+
return mask
|
| 223 |
+
|
| 224 |
+
max_label = np.argmax(areas) + 1
|
| 225 |
+
|
| 226 |
+
# Keep only components above threshold or the largest one
|
| 227 |
+
cleaned = np.zeros_like(mask)
|
| 228 |
+
for label in range(1, num_labels):
|
| 229 |
+
if stats[label, cv2.CC_STAT_AREA] >= min_area or label == max_label:
|
| 230 |
+
cleaned[labels == label] = 255
|
| 231 |
+
|
| 232 |
+
return cleaned
|