File size: 14,493 Bytes
222fbf0
13219e6
fea9443
460af25
fea9443
bb76c1f
fea9443
9d6017e
fea9443
13219e6
fea9443
 
edbcfa6
71ed397
 
 
 
 
 
 
c6a43c4
9d6017e
73042d9
 
fea9443
758e952
 
73042d9
 
 
 
 
 
 
 
 
 
fea9443
73042d9
 
 
deeb73e
bb76c1f
 
 
 
 
 
fea9443
bb76c1f
 
 
 
9d6017e
8a2bd53
 
 
 
 
 
 
 
 
 
f072863
bb76c1f
 
73042d9
bb76c1f
73042d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f072863
73042d9
 
 
 
fea9443
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a2bd53
 
 
 
 
 
 
 
 
 
fea9443
 
 
758e952
fea9443
 
 
 
 
 
758e952
fea9443
 
 
758e952
 
fea9443
 
758e952
 
 
fea9443
 
758e952
 
9d6017e
 
 
 
758e952
 
 
 
 
fea9443
 
758e952
fea9443
bb76c1f
 
 
 
 
 
8a2bd53
bb76c1f
 
 
13219e6
bb76c1f
d39a013
8a2bd53
deeb73e
13219e6
 
bb76c1f
c6a43c4
88a78a4
dd65136
 
 
f751163
 
 
 
 
 
 
 
 
 
 
 
 
 
9d6017e
 
 
f751163
dd65136
 
 
e487754
dd65136
 
 
 
 
 
 
fea9443
dd65136
 
 
 
 
9d6017e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a2bd53
9d6017e
 
 
 
8a2bd53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d6017e
8a2bd53
9d6017e
8a2bd53
 
 
 
 
 
 
 
9d6017e
 
 
 
 
 
 
8a2bd53
 
 
 
dd65136
 
 
 
 
 
9d6017e
8a2bd53
 
 
 
 
 
 
 
 
 
dd65136
 
 
f072863
dd65136
46fdaa6
 
 
 
dd65136
46fdaa6
dd65136
46fdaa6
 
fea9443
c353ada
bb76c1f
 
4eac491
 
c353ada
 
46fdaa6
dd65136
bb76c1f
46fdaa6
dd65136
 
 
bb76c1f
dd65136
 
 
fea9443
dd65136
 
 
 
9d6017e
8a2bd53
 
 
 
 
 
 
 
 
 
dd65136
46fdaa6
fea9443
46fdaa6
 
 
dd65136
 
 
 
fea9443
dd65136
 
 
edbcfa6
fea9443
 
 
 
 
 
758e952
fea9443
5a5a76f
edbcfa6
9d6017e
4eac491
9d6017e
4eac491
 
9d6017e
4eac491
 
 
9d6017e
 
 
 
 
 
 
 
 
4eac491
 
 
9d6017e
 
4eac491
 
9d6017e
 
 
4eac491
 
9d6017e
 
4eac491
 
9d6017e
 
4eac491
9d6017e
 
4eac491
 
 
 
9d6017e
758e952
 
 
 
9d6017e
758e952
 
9d6017e
758e952
9d6017e
 
 
f751163
 
9d6017e
 
f751163
 
9d6017e
 
f751163
758e952
 
f751163
758e952
 
 
 
f072863
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import gradio as gr
import numpy as np
import os
import pandas as pd
import time
import multiprocessing as mp
from matplotlib import pyplot as plt

plt.ioff()
import tempfile
from typing import Optional, Union
from pathlib import Path

empty_df = pd.DataFrame(
    {
        "equation": [],
        "loss": [],
        "complexity": [],
    }
)

test_equations = ["sin(2*x)/x + 0.1*x"]


def generate_data(s: str, num_points: int, noise_level: float, data_seed: int):
    rstate = np.random.RandomState(data_seed)
    x = rstate.uniform(-10, 10, num_points)
    for (k, v) in {
        "sin": "np.sin",
        "cos": "np.cos",
        "exp": "np.exp",
        "log": "np.log",
        "tan": "np.tan",
        "^": "**",
    }.items():
        s = s.replace(k, v)
    y = eval(s)
    noise = rstate.normal(0, noise_level, y.shape)
    y_noisy = y + noise
    return pd.DataFrame({"x": x}), y_noisy


def _greet_dispatch(
    file_input,
    force_run,
    test_equation,
    num_points,
    noise_level,
    data_seed,
    niterations,
    maxsize,
    binary_operators,
    unary_operators,
    plot_update_delay,
    parsimony,
    populations,
    population_size,
    ncycles_per_iteration,
    elementwise_loss,
    adaptive_parsimony_scaling,
    optimizer_algorithm,
    optimizer_iterations,
    batching,
    batch_size,
):
    """Load data, then spawn a process to run the greet function."""
    if file_input is not None:
        # Look at some statistics of the file:
        df = pd.read_csv(file_input)
        if len(df) == 0:
            return (
                empty_df,
                "The file is empty!",
            )
        if len(df.columns) == 1:
            return (
                empty_df,
                "The file has only one column!",
            )
        if len(df) > 10_000 and not force_run:
            return (
                empty_df,
                "You have uploaded a file with more than 10,000 rows. "
                "This will take very long to run. "
                "Please upload a subsample of the data, "
                "or check the box 'Ignore Warnings'.",
            )

        col_to_fit = df.columns[-1]
        y = np.array(df[col_to_fit])
        X = df.drop([col_to_fit], axis=1)
    else:
        X, y = generate_data(test_equation, num_points, noise_level, data_seed)

    with tempfile.TemporaryDirectory() as tmpdirname:
        base = Path(tmpdirname)
        equation_file = base / "hall_of_fame.csv"
        equation_file_bkup = base / "hall_of_fame.csv.bkup"
        process = mp.Process(
            target=greet,
            kwargs=dict(
                X=X,
                y=y,
                niterations=niterations,
                maxsize=maxsize,
                binary_operators=binary_operators,
                unary_operators=unary_operators,
                equation_file=equation_file,
                parsimony=parsimony,
                populations=populations,
                population_size=population_size,
                ncycles_per_iteration=ncycles_per_iteration,
                elementwise_loss=elementwise_loss,
                adaptive_parsimony_scaling=adaptive_parsimony_scaling,
                optimizer_algorithm=optimizer_algorithm,
                optimizer_iterations=optimizer_iterations,
                batching=batching,
                batch_size=batch_size,
            ),
        )
        process.start()
        last_yield_time = None
        while process.is_alive():
            if equation_file_bkup.exists():
                try:
                    # First, copy the file to a the copy file
                    equation_file_copy = base / "hall_of_fame_copy.csv"
                    os.system(f"cp {equation_file_bkup} {equation_file_copy}")
                    equations = pd.read_csv(equation_file_copy)
                    # Ensure it is pareto dominated, with more complex expressions
                    # having higher loss. Otherwise remove those rows.
                    # TODO: Not sure why this occurs; could be the result of a late copy?
                    equations.sort_values("Complexity", ascending=True, inplace=True)
                    equations.reset_index(inplace=True)
                    bad_idx = []
                    min_loss = None
                    for i in equations.index:
                        if min_loss is None or equations.loc[i, "Loss"] < min_loss:
                            min_loss = float(equations.loc[i, "Loss"])
                        else:
                            bad_idx.append(i)
                    equations.drop(index=bad_idx, inplace=True)

                    while (
                        last_yield_time is not None
                        and time.time() - last_yield_time < plot_update_delay
                    ):
                        time.sleep(0.1)

                    yield equations[["Complexity", "Loss", "Equation"]]

                    last_yield_time = time.time()
                except pd.errors.EmptyDataError:
                    pass

        process.join()


def greet(
    *,
    X,
    y,
    **pysr_kwargs,
):
    import pysr

    model = pysr.PySRRegressor(
        progress=False,
        timeout_in_seconds=1000,
        **pysr_kwargs,
    )
    model.fit(X, y)

    return 0


def _data_layout():
    with gr.Tab("Example Data"):
        # Plot of the example data:
        with gr.Row():
            with gr.Column():
                example_plot = gr.Plot()
            with gr.Column():
                test_equation = gr.Radio(
                    test_equations, value=test_equations[0], label="Test Equation"
                )
                num_points = gr.Slider(
                    minimum=10,
                    maximum=1000,
                    value=200,
                    label="Number of Data Points",
                    step=1,
                )
                noise_level = gr.Slider(
                    minimum=0, maximum=1, value=0.05, label="Noise Level"
                )
                data_seed = gr.Number(value=0, label="Random Seed")
    with gr.Tab("Upload Data"):
        file_input = gr.File(label="Upload a CSV File")
        gr.Markdown(
            "The rightmost column of your CSV file will be used as the target variable."
        )

    return dict(
        file_input=file_input,
        test_equation=test_equation,
        num_points=num_points,
        noise_level=noise_level,
        data_seed=data_seed,
        example_plot=example_plot,
    )


def _settings_layout():
    with gr.Tab("Basic Settings"):
        binary_operators = gr.CheckboxGroup(
            choices=["+", "-", "*", "/", "^"],
            label="Binary Operators",
            value=["+", "-", "*", "/"],
        )
        unary_operators = gr.CheckboxGroup(
            choices=[
                "sin",
                "cos",
                "exp",
                "log",
                "square",
                "cube",
                "sqrt",
                "abs",
                "tan",
            ],
            label="Unary Operators",
            value=["sin"],
        )
        niterations = gr.Slider(
            minimum=1,
            maximum=1000,
            value=40,
            label="Number of Iterations",
            step=1,
        )
        maxsize = gr.Slider(
            minimum=7,
            maximum=100,
            value=20,
            label="Maximum Complexity",
            step=1,
        )
        parsimony = gr.Number(
            value=0.0032,
            label="Parsimony Coefficient",
        )
    with gr.Tab("Advanced Settings"):
        populations = gr.Slider(
            minimum=2,
            maximum=100,
            value=15,
            label="Number of Populations",
            step=1,
        )
        population_size = gr.Slider(
            minimum=2,
            maximum=1000,
            value=33,
            label="Population Size",
            step=1,
        )
        ncycles_per_iteration = gr.Number(
            value=550,
            label="Cycles per Iteration",
        )
        elementwise_loss = gr.Radio(
            ["L2DistLoss()", "L1DistLoss()", "LogitDistLoss()", "HuberLoss()"],
            value="L2DistLoss()",
            label="Loss Function",
        )
        adaptive_parsimony_scaling = gr.Number(
            value=20.0,
            label="Adaptive Parsimony Scaling",
        )
        optimizer_algorithm = gr.Radio(
            ["BFGS", "NelderMead"],
            value="BFGS",
            label="Optimizer Algorithm",
        )
        optimizer_iterations = gr.Slider(
            minimum=1,
            maximum=100,
            value=8,
            label="Optimizer Iterations",
            step=1,
        )
        # Bool:
        batching = gr.Checkbox(
            value=False,
            label="Batching",
        )
        batch_size = gr.Slider(
            minimum=2,
            maximum=1000,
            value=50,
            label="Batch Size",
            step=1,
        )

    with gr.Tab("Gradio Settings"):
        plot_update_delay = gr.Slider(
            minimum=1,
            maximum=100,
            value=3,
            label="Plot Update Delay",
        )
        force_run = gr.Checkbox(
            value=False,
            label="Ignore Warnings",
        )
    return dict(
        binary_operators=binary_operators,
        unary_operators=unary_operators,
        niterations=niterations,
        maxsize=maxsize,
        force_run=force_run,
        plot_update_delay=plot_update_delay,
        parsimony=parsimony,
        populations=populations,
        population_size=population_size,
        ncycles_per_iteration=ncycles_per_iteration,
        elementwise_loss=elementwise_loss,
        adaptive_parsimony_scaling=adaptive_parsimony_scaling,
        optimizer_algorithm=optimizer_algorithm,
        optimizer_iterations=optimizer_iterations,
        batching=batching,
        batch_size=batch_size,
    )


def main():
    blocks = {}
    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    blocks = {**blocks, **_data_layout()}
                with gr.Row():
                    blocks = {**blocks, **_settings_layout()}

            with gr.Column():
                blocks["pareto"] = gr.Plot()
                blocks["df"] = gr.Dataframe(
                    headers=["complexity", "loss", "equation"],
                    datatype=["number", "number", "str"],
                    wrap=True,
                    column_widths=[100, 100, 300],
                )
                blocks["run"] = gr.Button()

        blocks["run"].click(
            _greet_dispatch,
            inputs=[
                blocks[k]
                for k in [
                    "file_input",
                    "force_run",
                    "test_equation",
                    "num_points",
                    "noise_level",
                    "data_seed",
                    "niterations",
                    "maxsize",
                    "binary_operators",
                    "unary_operators",
                    "plot_update_delay",
                    "parsimony",
                    "populations",
                    "population_size",
                    "ncycles_per_iteration",
                    "elementwise_loss",
                    "adaptive_parsimony_scaling",
                    "optimizer_algorithm",
                    "optimizer_iterations",
                    "batching",
                    "batch_size",
                ]
            ],
            outputs=blocks["df"],
        )

        # Any update to the equation choice will trigger a replot:
        eqn_components = [
            blocks["test_equation"],
            blocks["num_points"],
            blocks["noise_level"],
            blocks["data_seed"],
        ]
        for eqn_component in eqn_components:
            eqn_component.change(replot, eqn_components, blocks["example_plot"])

        # Update plot when dataframe is updated:
        blocks["df"].change(
            replot_pareto,
            inputs=[blocks["df"], blocks["maxsize"]],
            outputs=[blocks["pareto"]],
        )
        demo.load(replot, eqn_components, blocks["example_plot"])

    demo.launch(debug=True)


def replot_pareto(df, maxsize):
    plt.rcParams["font.family"] = "IBM Plex Mono"
    fig, ax = plt.subplots(figsize=(6, 6), dpi=100)

    if len(df) == 0 or "Equation" not in df.columns:
        return fig

    # Plotting the data
    ax.loglog(
        df["Complexity"],
        df["Loss"],
        marker="o",
        linestyle="-",
        color="#333f48",
        linewidth=1.5,
        markersize=6,
    )

    # Set the axis limits
    ax.set_xlim(0.5, maxsize + 1)
    ytop = 2 ** (np.ceil(np.log2(df["Loss"].max())))
    ybottom = 2 ** (np.floor(np.log2(df["Loss"].min() + 1e-20)))
    ax.set_ylim(ybottom, ytop)

    ax.grid(True, which="both", ls="--", linewidth=0.5, color="gray", alpha=0.5)
    ax.spines["top"].set_visible(False)
    ax.spines["right"].set_visible(False)

    # Range-frame the plot
    for direction in ["bottom", "left"]:
        ax.spines[direction].set_position(("outward", 10))

    # Delete far ticks
    ax.tick_params(axis="both", which="major", labelsize=10, direction="out", length=5)
    ax.tick_params(axis="both", which="minor", labelsize=8, direction="out", length=3)

    ax.set_xlabel("Complexity")
    ax.set_ylabel("Loss")
    fig.tight_layout(pad=2)

    return fig


def replot(test_equation, num_points, noise_level, data_seed):
    X, y = generate_data(test_equation, num_points, noise_level, data_seed)
    x = X["x"]

    plt.rcParams["font.family"] = "IBM Plex Mono"
    fig, ax = plt.subplots(figsize=(6, 6), dpi=100)

    ax.scatter(x, y, alpha=0.7, edgecolors="w", s=50)

    ax.grid(True, which="both", ls="--", linewidth=0.5, color="gray", alpha=0.5)
    ax.spines["top"].set_visible(False)
    ax.spines["right"].set_visible(False)

    # Range-frame the plot
    for direction in ["bottom", "left"]:
        ax.spines[direction].set_position(("outward", 10))

    # Delete far ticks
    ax.tick_params(axis="both", which="major", labelsize=10, direction="out", length=5)
    ax.tick_params(axis="both", which="minor", labelsize=8, direction="out", length=3)

    ax.set_xlabel("x")
    ax.set_ylabel("y")
    fig.tight_layout(pad=2)

    return fig


if __name__ == "__main__":
    main()