Spaces:
Running
Running
MilesCranmer
commited on
Commit
•
8a2bd53
1
Parent(s):
9d6017e
Add more advanced settings
Browse files- gui/app.py +102 -13
gui/app.py
CHANGED
@@ -52,6 +52,16 @@ def _greet_dispatch(
|
|
52 |
binary_operators,
|
53 |
unary_operators,
|
54 |
plot_update_delay,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
):
|
56 |
"""Load data, then spawn a process to run the greet function."""
|
57 |
if file_input is not None:
|
@@ -96,6 +106,16 @@ def _greet_dispatch(
|
|
96 |
binary_operators=binary_operators,
|
97 |
unary_operators=unary_operators,
|
98 |
equation_file=equation_file,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
),
|
100 |
)
|
101 |
process.start()
|
@@ -140,22 +160,14 @@ def greet(
|
|
140 |
*,
|
141 |
X,
|
142 |
y,
|
143 |
-
|
144 |
-
maxsize: int,
|
145 |
-
binary_operators: list,
|
146 |
-
unary_operators: list,
|
147 |
-
equation_file: Union[str, Path],
|
148 |
):
|
149 |
import pysr
|
150 |
|
151 |
model = pysr.PySRRegressor(
|
152 |
progress=False,
|
153 |
-
maxsize=maxsize,
|
154 |
-
niterations=niterations,
|
155 |
-
binary_operators=binary_operators,
|
156 |
-
unary_operators=unary_operators,
|
157 |
timeout_in_seconds=1000,
|
158 |
-
|
159 |
)
|
160 |
model.fit(X, y)
|
161 |
|
@@ -230,15 +242,68 @@ def _settings_layout():
|
|
230 |
)
|
231 |
maxsize = gr.Slider(
|
232 |
minimum=7,
|
233 |
-
maximum=
|
234 |
value=20,
|
235 |
label="Maximum Complexity",
|
236 |
step=1,
|
237 |
)
|
238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
value=False,
|
240 |
-
label="
|
241 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
with gr.Tab("Gradio Settings"):
|
243 |
plot_update_delay = gr.Slider(
|
244 |
minimum=1,
|
@@ -246,6 +311,10 @@ def _settings_layout():
|
|
246 |
value=3,
|
247 |
label="Plot Update Delay",
|
248 |
)
|
|
|
|
|
|
|
|
|
249 |
return dict(
|
250 |
binary_operators=binary_operators,
|
251 |
unary_operators=unary_operators,
|
@@ -253,6 +322,16 @@ def _settings_layout():
|
|
253 |
maxsize=maxsize,
|
254 |
force_run=force_run,
|
255 |
plot_update_delay=plot_update_delay,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
)
|
257 |
|
258 |
|
@@ -292,6 +371,16 @@ def main():
|
|
292 |
"binary_operators",
|
293 |
"unary_operators",
|
294 |
"plot_update_delay",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
]
|
296 |
],
|
297 |
outputs=blocks["df"],
|
|
|
52 |
binary_operators,
|
53 |
unary_operators,
|
54 |
plot_update_delay,
|
55 |
+
parsimony,
|
56 |
+
populations,
|
57 |
+
population_size,
|
58 |
+
ncycles_per_iteration,
|
59 |
+
elementwise_loss,
|
60 |
+
adaptive_parsimony_scaling,
|
61 |
+
optimizer_algorithm,
|
62 |
+
optimizer_iterations,
|
63 |
+
batching,
|
64 |
+
batch_size,
|
65 |
):
|
66 |
"""Load data, then spawn a process to run the greet function."""
|
67 |
if file_input is not None:
|
|
|
106 |
binary_operators=binary_operators,
|
107 |
unary_operators=unary_operators,
|
108 |
equation_file=equation_file,
|
109 |
+
parsimony=parsimony,
|
110 |
+
populations=populations,
|
111 |
+
population_size=population_size,
|
112 |
+
ncycles_per_iteration=ncycles_per_iteration,
|
113 |
+
elementwise_loss=elementwise_loss,
|
114 |
+
adaptive_parsimony_scaling=adaptive_parsimony_scaling,
|
115 |
+
optimizer_algorithm=optimizer_algorithm,
|
116 |
+
optimizer_iterations=optimizer_iterations,
|
117 |
+
batching=batching,
|
118 |
+
batch_size=batch_size,
|
119 |
),
|
120 |
)
|
121 |
process.start()
|
|
|
160 |
*,
|
161 |
X,
|
162 |
y,
|
163 |
+
**pysr_kwargs,
|
|
|
|
|
|
|
|
|
164 |
):
|
165 |
import pysr
|
166 |
|
167 |
model = pysr.PySRRegressor(
|
168 |
progress=False,
|
|
|
|
|
|
|
|
|
169 |
timeout_in_seconds=1000,
|
170 |
+
**pysr_kwargs,
|
171 |
)
|
172 |
model.fit(X, y)
|
173 |
|
|
|
242 |
)
|
243 |
maxsize = gr.Slider(
|
244 |
minimum=7,
|
245 |
+
maximum=100,
|
246 |
value=20,
|
247 |
label="Maximum Complexity",
|
248 |
step=1,
|
249 |
)
|
250 |
+
parsimony = gr.Number(
|
251 |
+
value=0.0032,
|
252 |
+
label="Parsimony Coefficient",
|
253 |
+
)
|
254 |
+
with gr.Tab("Advanced Settings"):
|
255 |
+
populations = gr.Slider(
|
256 |
+
minimum=2,
|
257 |
+
maximum=100,
|
258 |
+
value=15,
|
259 |
+
label="Number of Populations",
|
260 |
+
step=1,
|
261 |
+
)
|
262 |
+
population_size = gr.Slider(
|
263 |
+
minimum=2,
|
264 |
+
maximum=1000,
|
265 |
+
value=33,
|
266 |
+
label="Population Size",
|
267 |
+
step=1,
|
268 |
+
)
|
269 |
+
ncycles_per_iteration = gr.Number(
|
270 |
+
value=550,
|
271 |
+
label="Cycles per Iteration",
|
272 |
+
)
|
273 |
+
elementwise_loss = gr.Radio(
|
274 |
+
["L2DistLoss()", "L1DistLoss()", "LogitDistLoss()", "HuberLoss()"],
|
275 |
+
value="L2DistLoss()",
|
276 |
+
label="Loss Function",
|
277 |
+
)
|
278 |
+
adaptive_parsimony_scaling = gr.Number(
|
279 |
+
value=20.0,
|
280 |
+
label="Adaptive Parsimony Scaling",
|
281 |
+
)
|
282 |
+
optimizer_algorithm = gr.Radio(
|
283 |
+
["BFGS", "NelderMead"],
|
284 |
+
value="BFGS",
|
285 |
+
label="Optimizer Algorithm",
|
286 |
+
)
|
287 |
+
optimizer_iterations = gr.Slider(
|
288 |
+
minimum=1,
|
289 |
+
maximum=100,
|
290 |
+
value=8,
|
291 |
+
label="Optimizer Iterations",
|
292 |
+
step=1,
|
293 |
+
)
|
294 |
+
# Bool:
|
295 |
+
batching = gr.Checkbox(
|
296 |
value=False,
|
297 |
+
label="Batching",
|
298 |
)
|
299 |
+
batch_size = gr.Slider(
|
300 |
+
minimum=2,
|
301 |
+
maximum=1000,
|
302 |
+
value=50,
|
303 |
+
label="Batch Size",
|
304 |
+
step=1,
|
305 |
+
)
|
306 |
+
|
307 |
with gr.Tab("Gradio Settings"):
|
308 |
plot_update_delay = gr.Slider(
|
309 |
minimum=1,
|
|
|
311 |
value=3,
|
312 |
label="Plot Update Delay",
|
313 |
)
|
314 |
+
force_run = gr.Checkbox(
|
315 |
+
value=False,
|
316 |
+
label="Ignore Warnings",
|
317 |
+
)
|
318 |
return dict(
|
319 |
binary_operators=binary_operators,
|
320 |
unary_operators=unary_operators,
|
|
|
322 |
maxsize=maxsize,
|
323 |
force_run=force_run,
|
324 |
plot_update_delay=plot_update_delay,
|
325 |
+
parsimony=parsimony,
|
326 |
+
populations=populations,
|
327 |
+
population_size=population_size,
|
328 |
+
ncycles_per_iteration=ncycles_per_iteration,
|
329 |
+
elementwise_loss=elementwise_loss,
|
330 |
+
adaptive_parsimony_scaling=adaptive_parsimony_scaling,
|
331 |
+
optimizer_algorithm=optimizer_algorithm,
|
332 |
+
optimizer_iterations=optimizer_iterations,
|
333 |
+
batching=batching,
|
334 |
+
batch_size=batch_size,
|
335 |
)
|
336 |
|
337 |
|
|
|
371 |
"binary_operators",
|
372 |
"unary_operators",
|
373 |
"plot_update_delay",
|
374 |
+
"parsimony",
|
375 |
+
"populations",
|
376 |
+
"population_size",
|
377 |
+
"ncycles_per_iteration",
|
378 |
+
"elementwise_loss",
|
379 |
+
"adaptive_parsimony_scaling",
|
380 |
+
"optimizer_algorithm",
|
381 |
+
"optimizer_iterations",
|
382 |
+
"batching",
|
383 |
+
"batch_size",
|
384 |
]
|
385 |
],
|
386 |
outputs=blocks["df"],
|