Spaces:
Running
Running
File size: 8,476 Bytes
a206d6a 985f8fa a206d6a c1a4fec 967d63f c6a43c4 88a78a4 a206d6a 2139b62 a206d6a e487754 dd65136 a206d6a dd65136 a206d6a 0dc382d 9d6017e a206d6a 9d6017e d3c4f72 9d6017e 0dc382d 9d6017e a206d6a 9d6017e a206d6a 9d6017e 8a2bd53 9d6017e a206d6a 8a2bd53 a206d6a 8a2bd53 a206d6a 8a2bd53 a206d6a 8a2bd53 a206d6a 8a2bd53 a206d6a 8a2bd53 a206d6a 8a2bd53 a206d6a 8a2bd53 a206d6a 9d6017e 8a2bd53 9d6017e a206d6a 8a2bd53 a206d6a 9d6017e a206d6a 8a2bd53 a206d6a 28639ea a206d6a 89fd807 a206d6a 89fd807 a206d6a 89fd807 a206d6a 46fdaa6 a206d6a 46fdaa6 a206d6a 46fdaa6 a206d6a edbcfa6 fea9443 a206d6a c1a4fec a206d6a 967d63f fea9443 28639ea a206d6a 89fd807 28639ea a206d6a 89fd807 a206d6a 89fd807 a206d6a 89fd807 a206d6a 89fd807 a206d6a 2608088 985f8fa 2608088 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
from collections import OrderedDict
import gradio as gr
import numpy as np
from data import TEST_EQUATIONS
from gradio.components.base import Component
from plots import plot_example_data, plot_pareto_curve
from processing import processing
class ExampleData:
def __init__(self, demo: gr.Blocks) -> None:
with gr.Column():
self.example_plot = gr.Plot()
with gr.Column():
self.test_equation = gr.Radio(
TEST_EQUATIONS, value=TEST_EQUATIONS[0], label="Test Equation"
)
self.num_points = gr.Slider(
minimum=10,
maximum=1000,
value=200,
label="Number of Data Points",
step=1,
)
self.noise_level = gr.Slider(
minimum=0, maximum=1, value=0.05, label="Noise Level"
)
self.data_seed = gr.Number(value=0, label="Random Seed")
# Set up plotting:
eqn_components = [
self.test_equation,
self.num_points,
self.noise_level,
self.data_seed,
]
for eqn_component in eqn_components:
eqn_component.change(
plot_example_data,
eqn_components,
self.example_plot,
show_progress=False,
)
demo.load(plot_example_data, eqn_components, self.example_plot)
class UploadData:
def __init__(self) -> None:
self.file_input = gr.File(label="Upload a CSV File")
self.label = gr.Markdown(
"The rightmost column of your CSV file will be used as the target variable."
)
class Data:
def __init__(self, demo: gr.Blocks) -> None:
with gr.Tab("Example Data"):
self.example_data = ExampleData(demo)
with gr.Tab("Upload Data"):
self.upload_data = UploadData()
class BasicSettings:
def __init__(self) -> None:
self.binary_operators = gr.CheckboxGroup(
choices=["+", "-", "*", "/", "^", "max", "min", "mod", "cond"],
label="Binary Operators",
value=["+", "-", "*", "/"],
)
self.unary_operators = gr.CheckboxGroup(
choices=[
"sin",
"cos",
"tan",
"exp",
"log",
"square",
"cube",
"sqrt",
"abs",
"erf",
"relu",
"round",
"sign",
],
label="Unary Operators",
value=["sin"],
)
self.niterations = gr.Slider(
minimum=1,
maximum=1000,
value=40,
label="Number of Iterations",
step=1,
)
self.maxsize = gr.Slider(
minimum=7,
maximum=100,
value=20,
label="Maximum Complexity",
step=1,
)
self.parsimony = gr.Number(
value=0.0032,
label="Parsimony Coefficient",
)
class AdvancedSettings:
def __init__(self) -> None:
self.populations = gr.Slider(
minimum=2,
maximum=100,
value=15,
label="Number of Populations",
step=1,
)
self.population_size = gr.Slider(
minimum=2,
maximum=1000,
value=33,
label="Population Size",
step=1,
)
self.ncycles_per_iteration = gr.Number(
value=550,
label="Cycles per Iteration",
)
self.elementwise_loss = gr.Radio(
["L2DistLoss()", "L1DistLoss()", "LogitDistLoss()", "HuberLoss()"],
value="L2DistLoss()",
label="Loss Function",
)
self.adaptive_parsimony_scaling = gr.Number(
value=20.0,
label="Adaptive Parsimony Scaling",
)
self.optimizer_algorithm = gr.Radio(
["BFGS", "NelderMead"],
value="BFGS",
label="Optimizer Algorithm",
)
self.optimizer_iterations = gr.Slider(
minimum=1,
maximum=100,
value=8,
label="Optimizer Iterations",
step=1,
)
self.batching = gr.Checkbox(
value=False,
label="Batching",
)
self.batch_size = gr.Slider(
minimum=2,
maximum=1000,
value=50,
label="Batch Size",
step=1,
)
class GradioSettings:
def __init__(self) -> None:
self.plot_update_delay = gr.Slider(
minimum=1,
maximum=100,
value=3,
label="Plot Update Delay",
)
self.force_run = gr.Checkbox(
value=False,
label="Ignore Warnings",
)
class Settings:
def __init__(self):
with gr.Tab("Basic Settings"):
self.basic_settings = BasicSettings()
with gr.Tab("Advanced Settings"):
self.advanced_settings = AdvancedSettings()
with gr.Tab("Gradio Settings"):
self.gradio_settings = GradioSettings()
class Results:
def __init__(self):
with gr.Tab("Pareto Front"):
self.pareto = gr.Plot()
with gr.Tab("Predictions"):
self.predictions_plot = gr.Plot()
self.df = gr.Dataframe(
headers=["complexity", "loss", "equation"],
datatype=["number", "number", "str"],
wrap=True,
column_widths=[75, 75, 200],
interactive=False,
)
self.messages = gr.Textbox(label="Messages", value="", interactive=False)
def flatten_attributes(
component_group, absolute_name: str, d: OrderedDict
) -> OrderedDict:
if not hasattr(component_group, "__dict__"):
return d
for name, elem in component_group.__dict__.items():
new_absolute_name = absolute_name + "." + name
if name.startswith("_"):
# Private attribute
continue
elif elem in d.values():
# Don't duplicate any tiems
continue
elif isinstance(elem, Component):
# Only add components to dict
d[new_absolute_name] = elem
else:
flatten_attributes(elem, new_absolute_name, d)
return d
class AppInterface:
def __init__(self, demo: gr.Blocks) -> None:
with gr.Row():
with gr.Column():
with gr.Row():
self.data = Data(demo)
with gr.Row():
self.settings = Settings()
with gr.Column():
self.results = Results()
self.run = gr.Button()
# Update plot when dataframe is updated:
self.results.df.change(
plot_pareto_curve,
inputs=[self.results.df, self.settings.basic_settings.maxsize],
outputs=[self.results.pareto],
show_progress=False,
)
ignore = ["df", "predictions_plot", "pareto", "messages"]
self.run.click(
create_processing_function(self, ignore=ignore),
inputs=[
v
for k, v in flatten_attributes(self, "interface", OrderedDict()).items()
if last_part(k) not in ignore
],
outputs=[
self.results.df,
self.results.predictions_plot,
self.results.messages,
],
show_progress=True,
)
def last_part(k: str) -> str:
return k.split(".")[-1]
def create_processing_function(interface: AppInterface, ignore=[]):
d = flatten_attributes(interface, "interface", OrderedDict())
keys = [k for k in map(last_part, d.keys()) if k not in ignore]
_, idx, counts = np.unique(keys, return_index=True, return_counts=True)
if np.any(counts > 1):
raise AssertionError("Bad keys: " + ",".join(np.array(keys)[idx[counts > 1]]))
def f(*components):
n = len(components)
assert n == len(keys)
for output in processing(**{keys[i]: components[i] for i in range(n)}):
yield output
return f
def main():
with gr.Blocks(theme="default") as demo:
_ = AppInterface(demo)
demo.launch(debug=True)
if __name__ == "__main__":
main()
|