Spaces:
Sleeping
Sleeping
File size: 5,501 Bytes
9c31a35 3d7c303 9bfcbfa dca02e2 9b2a102 4abcbfe 5ffac80 9b2a102 5ffac80 215a7a1 5ffac80 9b2a102 5ffac80 215a7a1 5ffac80 3d7c303 7d4300a 9c31a35 51a6b05 9c31a35 7d4300a 9c31a35 5fe5010 51a6b05 9c31a35 7d4300a 9c31a35 7d4300a c7187a6 3821242 4b56660 3821242 c7187a6 fbb7cf7 c7187a6 5fe5010 c7187a6 9bfcbfa b07eb2d fbb7cf7 4b56660 fbb7cf7 7d4300a dca02e2 7d4300a 9bfcbfa 7d4300a 9bfcbfa fbb7cf7 9bfcbfa dca02e2 5fe5010 9bfcbfa 7d4300a c7187a6 7d4300a 9bfcbfa 962c25c 932dcf5 962c25c d4d95e5 fbb7cf7 4b56660 fbb7cf7 d4d95e5 c3a1736 d4d95e5 fbb7cf7 dca02e2 d4d95e5 fbb7cf7 c3a1736 d398bf9 c3a1736 d4d95e5 c7187a6 d4d95e5 47dbec6 4b56660 47dbec6 fbb7cf7 47dbec6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import unittest
import numpy as np
import pandas as pd
from pysr import sympy2torch, PySRRegressor
# Need to initialize Julia before importing torch...
import platform
if platform.system() == "Darwin":
# Import PyJulia, then Torch
from pysr.julia_helpers import init_julia
Main = init_julia()
import torch
else:
# Import Torch, then PyJulia
# https://github.com/pytorch/pytorch/issues/78829
import torch
import sympy
class TestTorch(unittest.TestCase):
def setUp(self):
np.random.seed(0)
def test_sympy2torch(self):
x, y, z = sympy.symbols("x y z")
cosx = 1.0 * sympy.cos(x) + y
X = torch.tensor(np.random.randn(1000, 3))
true = 1.0 * torch.cos(X[:, 0]) + X[:, 1]
torch_module = sympy2torch(cosx, [x, y, z])
self.assertTrue(
np.all(np.isclose(torch_module(X).detach().numpy(), true.detach().numpy()))
)
def test_pipeline_pandas(self):
X = pd.DataFrame(np.random.randn(100, 10))
y = np.ones(X.shape[0])
model = PySRRegressor(
progress=False,
max_evals=10000,
model_selection="accuracy",
extra_sympy_mappings={},
output_torch_format=True,
)
model.fit(X, y)
equations = pd.DataFrame(
{
"Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
"MSE": [1.0, 0.1, 1e-5],
"Complexity": [1, 2, 3],
}
)
equations["Complexity MSE Equation".split(" ")].to_csv(
"equation_file.csv.bkup", sep="|"
)
model.refresh(checkpoint_file="equation_file.csv")
tformat = model.pytorch()
self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)")
np.testing.assert_almost_equal(
tformat(torch.tensor(X.values)).detach().numpy(),
np.square(np.cos(X.values[:, 1])), # Selection 1st feature
decimal=4,
)
def test_pipeline(self):
X = np.random.randn(100, 10)
y = np.ones(X.shape[0])
model = PySRRegressor(
progress=False,
max_evals=10000,
model_selection="accuracy",
output_torch_format=True,
)
model.fit(X, y)
equations = pd.DataFrame(
{
"Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
"MSE": [1.0, 0.1, 1e-5],
"Complexity": [1, 2, 3],
}
)
equations["Complexity MSE Equation".split(" ")].to_csv(
"equation_file.csv.bkup", sep="|"
)
model.refresh(checkpoint_file="equation_file.csv")
tformat = model.pytorch()
self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)")
np.testing.assert_almost_equal(
tformat(torch.tensor(X)).detach().numpy(),
np.square(np.cos(X[:, 1])), # 2nd feature
decimal=4,
)
def test_mod_mapping(self):
x, y, z = sympy.symbols("x y z")
expression = x**2 + sympy.atanh(sympy.Mod(y + 1, 2) - 1) * 3.2 * z
module = sympy2torch(expression, [x, y, z])
X = torch.rand(100, 3).float() * 10
true_out = (
X[:, 0] ** 2 + torch.atanh(torch.fmod(X[:, 1] + 1, 2) - 1) * 3.2 * X[:, 2]
)
torch_out = module(X)
np.testing.assert_array_almost_equal(
true_out.detach(), torch_out.detach(), decimal=4
)
def test_custom_operator(self):
X = np.random.randn(100, 3)
y = np.ones(X.shape[0])
model = PySRRegressor(
progress=False,
max_evals=10000,
model_selection="accuracy",
output_torch_format=True,
)
model.fit(X, y)
equations = pd.DataFrame(
{
"Equation": ["1.0", "mycustomoperator(x1)"],
"MSE": [1.0, 0.1],
"Complexity": [1, 2],
}
)
equations["Complexity MSE Equation".split(" ")].to_csv(
"equation_file_custom_operator.csv.bkup", sep="|"
)
model.set_params(
equation_file="equation_file_custom_operator.csv",
extra_sympy_mappings={"mycustomoperator": sympy.sin},
extra_torch_mappings={"mycustomoperator": torch.sin},
)
model.refresh(checkpoint_file="equation_file_custom_operator.csv")
self.assertEqual(str(model.sympy()), "sin(x1)")
# Will automatically use the set global state from get_hof.
tformat = model.pytorch()
self.assertEqual(str(tformat), "_SingleSymPyModule(expression=sin(x1))")
np.testing.assert_almost_equal(
tformat(torch.tensor(X)).detach().numpy(),
np.sin(X[:, 1]),
decimal=4,
)
def test_feature_selection(self):
X = pd.DataFrame({f"k{i}": np.random.randn(1000) for i in range(10, 21)})
y = X["k15"] ** 2 + np.cos(X["k20"])
model = PySRRegressor(
progress=False,
unary_operators=["cos"],
select_k_features=3,
early_stop_condition=1e-5,
)
model.fit(X.values, y.values)
torch_module = model.pytorch()
np_output = model.predict(X.values)
torch_output = torch_module(torch.tensor(X.values)).detach().numpy()
np.testing.assert_almost_equal(np_output, torch_output, decimal=4)
|