MilesCranmer commited on
Commit
4abcbfe
·
1 Parent(s): be36d4a

Fix issue with torch imported before Julia init

Browse files
Files changed (1) hide show
  1. test/test_torch.py +4 -10
test/test_torch.py CHANGED
@@ -2,6 +2,10 @@ import unittest
2
  import numpy as np
3
  import pandas as pd
4
  from pysr import sympy2torch, PySRRegressor
 
 
 
 
5
  import sympy
6
 
7
 
@@ -13,8 +17,6 @@ class TestTorch(unittest.TestCase):
13
  x, y, z = sympy.symbols("x y z")
14
  cosx = 1.0 * sympy.cos(x) + y
15
 
16
- import torch
17
-
18
  X = torch.tensor(np.random.randn(1000, 3))
19
  true = 1.0 * torch.cos(X[:, 0]) + X[:, 1]
20
  torch_module = sympy2torch(cosx, [x, y, z])
@@ -49,7 +51,6 @@ class TestTorch(unittest.TestCase):
49
  model.refresh(checkpoint_file="equation_file.csv")
50
  tformat = model.pytorch()
51
  self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)")
52
- import torch
53
 
54
  np.testing.assert_almost_equal(
55
  tformat(torch.tensor(X.values)).detach().numpy(),
@@ -85,8 +86,6 @@ class TestTorch(unittest.TestCase):
85
  tformat = model.pytorch()
86
  self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)")
87
 
88
- import torch
89
-
90
  np.testing.assert_almost_equal(
91
  tformat(torch.tensor(X)).detach().numpy(),
92
  np.square(np.cos(X[:, 1])), # 2nd feature
@@ -99,8 +98,6 @@ class TestTorch(unittest.TestCase):
99
 
100
  module = sympy2torch(expression, [x, y, z])
101
 
102
- import torch
103
-
104
  X = torch.rand(100, 3).float() * 10
105
 
106
  true_out = (
@@ -135,8 +132,6 @@ class TestTorch(unittest.TestCase):
135
  "equation_file_custom_operator.csv.bkup", sep="|"
136
  )
137
 
138
- import torch
139
-
140
  model.set_params(
141
  equation_file="equation_file_custom_operator.csv",
142
  extra_sympy_mappings={"mycustomoperator": sympy.sin},
@@ -168,7 +163,6 @@ class TestTorch(unittest.TestCase):
168
  torch_module = model.pytorch()
169
 
170
  np_output = model.predict(X.values)
171
- import torch
172
 
173
  torch_output = torch_module(torch.tensor(X.values)).detach().numpy()
174
 
 
2
  import numpy as np
3
  import pandas as pd
4
  from pysr import sympy2torch, PySRRegressor
5
+ # Need to initialize Julia before importing torch...
6
+ from pysr.julia_helpers import init_julia
7
+ Main = init_julia()
8
+ import torch
9
  import sympy
10
 
11
 
 
17
  x, y, z = sympy.symbols("x y z")
18
  cosx = 1.0 * sympy.cos(x) + y
19
 
 
 
20
  X = torch.tensor(np.random.randn(1000, 3))
21
  true = 1.0 * torch.cos(X[:, 0]) + X[:, 1]
22
  torch_module = sympy2torch(cosx, [x, y, z])
 
51
  model.refresh(checkpoint_file="equation_file.csv")
52
  tformat = model.pytorch()
53
  self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)")
 
54
 
55
  np.testing.assert_almost_equal(
56
  tformat(torch.tensor(X.values)).detach().numpy(),
 
86
  tformat = model.pytorch()
87
  self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)")
88
 
 
 
89
  np.testing.assert_almost_equal(
90
  tformat(torch.tensor(X)).detach().numpy(),
91
  np.square(np.cos(X[:, 1])), # 2nd feature
 
98
 
99
  module = sympy2torch(expression, [x, y, z])
100
 
 
 
101
  X = torch.rand(100, 3).float() * 10
102
 
103
  true_out = (
 
132
  "equation_file_custom_operator.csv.bkup", sep="|"
133
  )
134
 
 
 
135
  model.set_params(
136
  equation_file="equation_file_custom_operator.csv",
137
  extra_sympy_mappings={"mycustomoperator": sympy.sin},
 
163
  torch_module = model.pytorch()
164
 
165
  np_output = model.predict(X.values)
 
166
 
167
  torch_output = torch_module(torch.tensor(X.values)).detach().numpy()
168