File size: 14,619 Bytes
2cbacd8
 
 
 
 
 
0fe12f3
3413fb8
2cbacd8
 
 
 
 
 
3413fb8
 
5065308
3413fb8
2cbacd8
 
 
5065308
 
 
 
2cbacd8
 
0fe12f3
3413fb8
 
 
 
 
 
 
2cbacd8
 
 
3413fb8
 
2cbacd8
0fe12f3
5065308
2cbacd8
3413fb8
2cbacd8
3413fb8
2cbacd8
 
0fe12f3
2cbacd8
0fe12f3
2cbacd8
0fe12f3
 
 
3413fb8
 
 
 
 
 
 
 
 
5065308
3413fb8
 
 
 
5065308
 
 
3413fb8
 
 
 
 
 
 
0fe12f3
2cbacd8
3413fb8
2cbacd8
3413fb8
 
 
0fe12f3
 
5065308
 
 
 
2cbacd8
0fe12f3
3413fb8
2cbacd8
 
c75fc46
 
3413fb8
c75fc46
 
2cbacd8
 
 
 
3413fb8
c75fc46
3413fb8
2cbacd8
 
c75fc46
2cbacd8
 
35d7582
 
0fe12f3
c75fc46
 
 
3413fb8
c75fc46
 
0fe12f3
c75fc46
 
 
 
 
 
 
 
 
 
 
0fe12f3
c75fc46
 
2cbacd8
c75fc46
0fe12f3
2cbacd8
0fe12f3
3413fb8
2cbacd8
0fe12f3
c75fc46
 
0fe12f3
 
 
 
 
 
c75fc46
 
0fe12f3
2cbacd8
0fe12f3
 
 
 
 
 
 
2cbacd8
 
c75fc46
2cbacd8
 
c75fc46
2cbacd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a4236f
2cbacd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import os
import gradio as gr
import requests
import pandas as pd
import traceback
import time 
import mimetypes
from tempfile import NamedTemporaryFile

# Import smol-agent and tool components
from smolagents import CodeAgent, LiteLLMModel, tool
from smolagents import DuckDuckGoSearchTool
from unstructured.partition.auto import partition

# Imports for advanced file processing
import speech_recognition as sr
from pydub import AudioSegment

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Tool Definition (Upgraded for Full Multimodality with pydub) ---
@tool
def file_reader(file_path: str) -> str:
    """
    Reads and analyzes the content of a file and returns relevant text-based information.
    Supports:
      - Text files (PDF, TXT, CSV)
      - Images (PNG, JPG) with OCR
      - Audio (MP3, WAV) via speech recognition
      - Video (MP4, MOV) via speech recognition on audio track
    Can be used with a local file path or a web URL.

    Args:
        file_path (str): The local path or web URL of the file to be read.
    Returns:
        str: Extracted or transcribed content as text.
    """
    temp_file_path = None
    audio_temp_path = None
    try:
        # Download the file if it's a URL
        if file_path.startswith("http://") or file_path.startswith("https://"):
            temp_file_path = NamedTemporaryFile(delete=False).name
            response = requests.get(file_path, timeout=20)
            response.raise_for_status()
            with open(temp_file_path, "wb") as f:
                f.write(response.content)
            local_path = temp_file_path
        else:
            local_path = file_path

        mime_type, _ = mimetypes.guess_type(local_path)
        recognizer = sr.Recognizer()

        if mime_type:
            # Handle audio files
            if mime_type.startswith("audio/"):
                with sr.AudioFile(local_path) as source:
                    audio = recognizer.record(source)
                    return recognizer.recognize_whisper(audio)

            # Handle video files by extracting audio with pydub
            elif mime_type.startswith("video/"):
                with NamedTemporaryFile(suffix=".wav", delete=False) as audio_temp:
                    audio_temp_path = audio_temp.name
                
                # Extract audio using pydub
                video_audio = AudioSegment.from_file(local_path, format=mime_type.split('/')[1])
                video_audio.export(audio_temp_path, format="wav")
                
                with sr.AudioFile(audio_temp_path) as source:
                    audio = recognizer.record(source)
                
                return recognizer.recognize_whisper(audio)

        # Default to handling text and images with OCR if not audio/video
        elements = partition(local_path)
        return "\n\n".join([str(el) for el in elements])

    except Exception as e:
        return f"Error reading or processing file '{file_path}': {e}"
    finally:
        # Clean up the downloaded file if it exists
        if temp_file_path and os.path.exists(temp_file_path):
            os.remove(temp_file_path)
        # Clean up the temporary audio file
        if audio_temp_path and os.path.exists(audio_temp_path):
            os.remove(audio_temp_path)



# --- Agent Class (Updated with More Powerful Model and Tools) ---
class GaiaSmolAgent:
    def __init__(self):
        """
        Initializes the optimized agent.
        Now uses a more powerful model and the agent's native conversation memory.
        """
        print("Initializing Optimized GaiaSmolAgent...")
        api_key = os.getenv("GEMINI_API_KEY")
        if not api_key:
            raise ValueError("API key 'GEMINI_API_KEY' not found in environment secrets.")

        # Use a more powerful, "clever" model for better reasoning.
        model = LiteLLMModel(
            model_id="gemini/gemini-1.5-pro-latest",
            api_key=api_key,
            temperature=0.0,
            timeout=120.0, # Add a timeout to prevent hanging
        )

        # Store the sophisticated system prompt as an instance variable.
        self.system_prompt = """
        You are an expert-level research assistant AI. Your sole purpose is to answer the user's question by breaking it down into logical steps and using the provided tools. You will have access to the conversation history, so use it for context.

        **Available Tools:**
        - `duck_duck_go_search(query: str) -> str`: Use this to find information, file URLs, or anything on the web.
        - `file_reader(file_path: str) -> str`: Use this to read the contents of a file from a local path or a web URL. It can read text, extract text from images (OCR), and transcribe audio from audio/video files.

        **Your Thought Process:**
        1.  **Deconstruct the Goal:** Carefully analyze the question to understand what information is needed, considering the previous turns in the conversation.
        2.  **Formulate a Plan:** Think step-by-step about which tools to use in what order. For example, you might need to search for a URL first, then read the content of that URL.
        3.  **Execute & Analyze:** Call the necessary tools. Carefully examine the output of each tool to extract the required facts. You can write Python code to process the data returned by the tools.
        4.  **Synthesize the Answer:** Once you have gathered sufficient information, formulate a final, concise answer to the original question.

        **CRITICAL INSTRUCTIONS:**
        - Your final action MUST be a single call to the `final_answer(answer: str)` function.
        - The `answer` argument must be a string containing only the definitive answer.
        - All code you write is executed in a restricted Python environment. You can define variables and write logic to process the tool outputs before calling `final_answer`.
        - Do not ask for clarification. Directly proceed to solve the problem.
        """

        # Initialize the agent with the updated file_reader tool and memory settings.
        self.agent = CodeAgent(
            model=model,
            tools=[file_reader, DuckDuckGoSearchTool()],
            add_base_tools=True,  # Provides the python interpreter and the final_answer function
            planning_interval=3 # Re-plan every 3 steps, considering memory.
        )
        
        print("Optimized GaiaSmolAgent initialized successfully with native memory and full multimodal capabilities.")

    def __call__(self, question: str, reset_memory: bool = False) -> str:
        """
        Directly runs the agent to generate and execute a plan to answer the question.
        It leverages the agent's built-in memory, controlled by the `reset` parameter.
        
        Args:
            question (str): The user's question.
            reset_memory (bool): If True, the agent's conversation memory will be cleared
                                 before running. Maps to the agent's `reset` parameter.
        """
        print(f"Optimized Agent received question: {question[:100]}...")
        
        try:
            # Combine the system prompt with the current question. The agent will handle the history.
            full_prompt = f"{self.system_prompt}\n\nCURRENT TASK:\nUser Question: \"{question}\""
            
            # Use the agent's `reset` parameter to control conversation memory.
            # `reset=False` keeps the memory from previous calls.
            final_answer = self.agent.run(full_prompt, reset=reset_memory)

        except Exception as e:
            print(f"FATAL AGENT ERROR: An exception occurred during agent execution: {e}")
            print(traceback.format_exc()) # Print full traceback for easier debugging
            return f"FATAL AGENT ERROR: {e}"

        print(f"Optimized Agent returning final answer: {final_answer}")
        return str(final_answer)

# --- Main Application Logic (Unchanged) ---
def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = GaiaSmolAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Gradio Interface (Updated Instructions) ---
with gr.Blocks() as demo:
    gr.Markdown("# GAIA Agent Evaluation Runner (smol-agent)")
    gr.Markdown(
        """
        **Instructions:**
        1.  Ensure you have added your **GEMINI API key** (as `GEMINI_API_KEY`) in the Space's secrets.
        2.  Log in to your Hugging Face account using the button below.
        3.  Click 'Run Evaluation & Submit All Answers' to run your agent and see the score.
        """
    )
    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
    
    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("Launching Gradio Interface for GAIA Agent Evaluation...")
    demo.launch(debug=True, share=False)