File size: 11,915 Bytes
c0eac48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import os
import sys
import numpy as np
import torch
import argparse

from os.path import join as pjoin


# from visualization import BVH
from visualization.InverseKinematics import JacobianInverseKinematics, BasicInverseKinematics
# from scripts.motion_process_bvh import *
# from visualization.Animation import *


def softmax(x, **kw):
    softness = kw.pop("softness", 1.0)
    maxi, mini = np.max(x, **kw), np.min(x, **kw)
    return maxi + np.log(softness + np.exp(mini - maxi))


def softmin(x, **kw):
    return -softmax(-x, **kw)


def alpha(t):
    return 2.0 * t * t * t - 3.0 * t * t + 1


def lerp(a, l, r):
    return (1 - a) * l + a * r

def remove_fs_old(anim, glb, foot_contact, fid_l=(3, 4), fid_r=(7, 8), interp_length=5, force_on_floor=True):
    # glb_height = 2.06820832 Not the case, may be use upper leg length
    scale = 1. #glb_height / 1.65 #scale to meter
    # fps = 20 #
    # velocity_thres = 10. # m/s
    height_thres = [0.06, 0.03] #[ankle, toe] meter
    if foot_contact is None:
        def foot_detect(positions, velfactor, heightfactor):
            feet_l_x = (positions[1:, fid_l, 0] - positions[:-1, fid_l, 0]) ** 2
            feet_l_y = (positions[1:, fid_l, 1] - positions[:-1, fid_l, 1]) ** 2
            feet_l_z = (positions[1:, fid_l, 2] - positions[:-1, fid_l, 2]) ** 2
            feet_l_h = positions[:-1, fid_l, 1]
            feet_l = (((feet_l_x + feet_l_y + feet_l_z) < velfactor) & (feet_l_h < heightfactor)).astype(np.float)

            feet_r_x = (positions[1:, fid_r, 0] - positions[:-1, fid_r, 0]) ** 2
            feet_r_y = (positions[1:, fid_r, 1] - positions[:-1, fid_r, 1]) ** 2
            feet_r_z = (positions[1:, fid_r, 2] - positions[:-1, fid_r, 2]) ** 2
            feet_r_h = positions[:-1, fid_r, 1]

            feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor) & (feet_r_h < heightfactor)).astype(np.float)

            return feet_l, feet_r

        # feet_thre = 0.002
        # feet_vel_thre = np.array([velocity_thres**2, velocity_thres**2]) * scale**2 / fps**2
        feet_vel_thre = np.array([0.05, 0.2])
        # height_thre = np.array([0.06, 0.04]) * scale
        feet_h_thre = np.array(height_thres) * scale
        feet_l, feet_r = foot_detect(glb, velfactor=feet_vel_thre, heightfactor=feet_h_thre)
        foot = np.concatenate([feet_l, feet_r], axis=-1).transpose(1, 0)  # [4, T-1]
        foot = np.concatenate([foot, foot[:, -1:]], axis=-1)
    else:
        foot = foot_contact.transpose(1, 0)

    T = len(glb)

    fid = list(fid_l) + list(fid_r)
    fid_l, fid_r = np.array(fid_l), np.array(fid_r)
    foot_heights = np.minimum(glb[:, fid_l, 1],
                              glb[:, fid_r, 1]).min(axis=1)  # [T, 2] -> [T]
    # print(foot_heights)
    # floor_height = softmin(foot_heights, softness=0.03, axis=0)
    sort_height = np.sort(foot_heights)
    temp_len = len(sort_height)
    floor_height = np.mean(sort_height[int(0.25*temp_len):int(0.5*temp_len)])
    if floor_height > 0.5: # for motion like swim
        floor_height = 0
    # print(floor_height)
    # floor_height = foot_heights.min()
    # print(floor_height)
    # print(foot)
    # print(foot_heights.min())
    # print(floor_height)
    glb[:, :, 1] -= floor_height
    anim.positions[:, 0, 1] -= floor_height
    for i, fidx in enumerate(fid):
        fixed = foot[i]  # [T]

        """
        for t in range(T):
            glb[t, fidx][1] = max(glb[t, fidx][1], 0.25)
        """

        s = 0
        while s < T:
            while s < T and fixed[s] == 0:
                s += 1
            if s >= T:
                break
            t = s
            avg = glb[t, fidx].copy()
            while t + 1 < T and fixed[t + 1] == 1:
                t += 1
                avg += glb[t, fidx].copy()
            avg /= (t - s + 1)

            if force_on_floor:
                avg[1] = 0.0

            for j in range(s, t + 1):
                glb[j, fidx] = avg.copy()

            s = t + 1

        for s in range(T):
            if fixed[s] == 1:
                continue
            l, r = None, None
            consl, consr = False, False
            for k in range(interp_length):
                if s - k - 1 < 0:
                    break
                if fixed[s - k - 1]:
                    l = s - k - 1
                    consl = True
                    break
            for k in range(interp_length):
                if s + k + 1 >= T:
                    break
                if fixed[s + k + 1]:
                    r = s + k + 1
                    consr = True
                    break

            if not consl and not consr:
                continue
            if consl and consr:
                litp = lerp(alpha(1.0 * (s - l + 1) / (interp_length + 1)),
                            glb[s, fidx], glb[l, fidx])
                ritp = lerp(alpha(1.0 * (r - s + 1) / (interp_length + 1)),
                            glb[s, fidx], glb[r, fidx])
                itp = lerp(alpha(1.0 * (s - l + 1) / (r - l + 1)),
                           ritp, litp)
                glb[s, fidx] = itp.copy()
                continue
            if consl:
                litp = lerp(alpha(1.0 * (s - l + 1) / (interp_length + 1)),
                            glb[s, fidx], glb[l, fidx])
                glb[s, fidx] = litp.copy()
                continue
            if consr:
                ritp = lerp(alpha(1.0 * (r - s + 1) / (interp_length + 1)),
                            glb[s, fidx], glb[r, fidx])
                glb[s, fidx] = ritp.copy()

    targetmap = {}
    for j in range(glb.shape[1]):
        targetmap[j] = glb[:, j]

    # ik = BasicInverseKinematics(anim, glb, iterations=5,
    #                             silent=True)

    # slightly larger loss, but better visual
    ik = JacobianInverseKinematics(anim, targetmap, iterations=30, damping=5, recalculate=False, silent=True)

    anim = ik()
    return anim



def remove_fs(glb, foot_contact, fid_l=(3, 4), fid_r=(7, 8), interp_length=5, force_on_floor=True):
    # glb_height = 2.06820832 Not the case, may be use upper leg length
    scale = 1. #glb_height / 1.65 #scale to meter
    # fps = 20 #
    # velocity_thres = 10. # m/s
    height_thres = [0.06, 0.03] #[ankle, toe] meter
    if foot_contact is None:
        def foot_detect(positions, velfactor, heightfactor):
            feet_l_x = (positions[1:, fid_l, 0] - positions[:-1, fid_l, 0]) ** 2
            feet_l_y = (positions[1:, fid_l, 1] - positions[:-1, fid_l, 1]) ** 2
            feet_l_z = (positions[1:, fid_l, 2] - positions[:-1, fid_l, 2]) ** 2
            feet_l_h = positions[:-1, fid_l, 1]
            feet_l = (((feet_l_x + feet_l_y + feet_l_z) < velfactor) & (feet_l_h < heightfactor)).astype(np.float)

            feet_r_x = (positions[1:, fid_r, 0] - positions[:-1, fid_r, 0]) ** 2
            feet_r_y = (positions[1:, fid_r, 1] - positions[:-1, fid_r, 1]) ** 2
            feet_r_z = (positions[1:, fid_r, 2] - positions[:-1, fid_r, 2]) ** 2
            feet_r_h = positions[:-1, fid_r, 1]

            feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor) & (feet_r_h < heightfactor)).astype(np.float)

            return feet_l, feet_r

        # feet_thre = 0.002
        # feet_vel_thre = np.array([velocity_thres**2, velocity_thres**2]) * scale**2 / fps**2
        feet_vel_thre = np.array([0.05, 0.2])
        # height_thre = np.array([0.06, 0.04]) * scale
        feet_h_thre = np.array(height_thres) * scale
        feet_l, feet_r = foot_detect(glb, velfactor=feet_vel_thre, heightfactor=feet_h_thre)
        foot = np.concatenate([feet_l, feet_r], axis=-1).transpose(1, 0)  # [4, T-1]
        foot = np.concatenate([foot, foot[:, -1:]], axis=-1)
    else:
        foot = foot_contact.transpose(1, 0)

    T = len(glb)

    fid = list(fid_l) + list(fid_r)
    fid_l, fid_r = np.array(fid_l), np.array(fid_r)
    foot_heights = np.minimum(glb[:, fid_l, 1],
                              glb[:, fid_r, 1]).min(axis=1)  # [T, 2] -> [T]
    # print(foot_heights)
    # floor_height = softmin(foot_heights, softness=0.03, axis=0)
    sort_height = np.sort(foot_heights)
    temp_len = len(sort_height)
    floor_height = np.mean(sort_height[int(0.25*temp_len):int(0.5*temp_len)])
    if floor_height > 0.5: # for motion like swim
        floor_height = 0
    # print(floor_height)
    # floor_height = foot_heights.min()
    # print(floor_height)
    # print(foot)
    # print(foot_heights.min())
    # print(floor_height)
    glb[:, :, 1] -= floor_height
    # anim.positions[:, 0, 1] -= floor_height
    for i, fidx in enumerate(fid):
        fixed = foot[i]  # [T]

        """
        for t in range(T):
            glb[t, fidx][1] = max(glb[t, fidx][1], 0.25)
        """

        s = 0
        while s < T:
            while s < T and fixed[s] == 0:
                s += 1
            if s >= T:
                break
            t = s
            avg = glb[t, fidx].copy()
            while t + 1 < T and fixed[t + 1] == 1:
                t += 1
                avg += glb[t, fidx].copy()
            avg /= (t - s + 1)

            if force_on_floor:
                avg[1] = 0.0

            for j in range(s, t + 1):
                glb[j, fidx] = avg.copy()

            s = t + 1

        for s in range(T):
            if fixed[s] == 1:
                continue
            l, r = None, None
            consl, consr = False, False
            for k in range(interp_length):
                if s - k - 1 < 0:
                    break
                if fixed[s - k - 1]:
                    l = s - k - 1
                    consl = True
                    break
            for k in range(interp_length):
                if s + k + 1 >= T:
                    break
                if fixed[s + k + 1]:
                    r = s + k + 1
                    consr = True
                    break

            if not consl and not consr:
                continue
            if consl and consr:
                litp = lerp(alpha(1.0 * (s - l + 1) / (interp_length + 1)),
                            glb[s, fidx], glb[l, fidx])
                ritp = lerp(alpha(1.0 * (r - s + 1) / (interp_length + 1)),
                            glb[s, fidx], glb[r, fidx])
                itp = lerp(alpha(1.0 * (s - l + 1) / (r - l + 1)),
                           ritp, litp)
                glb[s, fidx] = itp.copy()
                continue
            if consl:
                litp = lerp(alpha(1.0 * (s - l + 1) / (interp_length + 1)),
                            glb[s, fidx], glb[l, fidx])
                glb[s, fidx] = litp.copy()
                continue
            if consr:
                ritp = lerp(alpha(1.0 * (r - s + 1) / (interp_length + 1)),
                            glb[s, fidx], glb[r, fidx])
                glb[s, fidx] = ritp.copy()

    targetmap = {}
    for j in range(glb.shape[1]):
        targetmap[j] = glb[:, j]

    # ik = BasicInverseKinematics(anim, glb, iterations=5,
    #                             silent=True)

    # slightly larger loss, but better visual
    # ik = JacobianInverseKinematics(anim, targetmap, iterations=30, damping=5, recalculate=False, silent=True)

    # anim = ik()
    return glb


def compute_foot_sliding(foot_data, traj_qpos, offseth):
    foot = np.array(foot_data).copy()
    offseth = np.mean(foot[:10, 1])
    foot[:, 1] -= offseth  # Grounding it
    foot_disp = np.linalg.norm(foot[1:, [0, 2]] - foot[:-1, [0, 2]], axis=1)
    traj_qpos[:, 1] -= offseth
    seq_len = len(traj_qpos)
    H = 0.05
    y_threshold = 0.65  # yup system
    y = traj_qpos[1:, 1]

    foot_avg = (foot[:-1, 1] + foot[1:, 1]) / 2
    subset = np.logical_and(foot_avg < H, y > y_threshold)
    # import pdb; pdb.set_trace()

    sliding_stats = np.abs(foot_disp * (2 - 2 ** (foot_avg / H)))[subset]
    sliding = np.sum(sliding_stats) / seq_len * 1000
    return sliding, sliding_stats