File size: 16,774 Bytes
c0eac48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
import numpy as np


class Quaternions:
    """
    Quaternions is a wrapper around a numpy ndarray
    that allows it to act as if it were an narray of
    a quater data type.

    Therefore addition, subtraction, multiplication,
    division, negation, absolute, are all defined
    in terms of quater operations such as quater
    multiplication.

    This allows for much neater code and many routines
    which conceptually do the same thing to be written
    in the same way for point data and for rotation data.

    The Quaternions class has been desgined such that it
    should support broadcasting and slicing in all of the
    usual ways.
    """

    def __init__(self, qs):
        if isinstance(qs, np.ndarray):
            if len(qs.shape) == 1: qs = np.array([qs])
            self.qs = qs
            return

        if isinstance(qs, Quaternions):
            self.qs = qs
            return

        raise TypeError('Quaternions must be constructed from iterable, numpy array, or Quaternions, not %s' % type(qs))

    def __str__(self):
        return "Quaternions(" + str(self.qs) + ")"

    def __repr__(self):
        return "Quaternions(" + repr(self.qs) + ")"

    """ Helper Methods for Broadcasting and Data extraction """

    @classmethod
    def _broadcast(cls, sqs, oqs, scalar=False):
        if isinstance(oqs, float): return sqs, oqs * np.ones(sqs.shape[:-1])

        ss = np.array(sqs.shape) if not scalar else np.array(sqs.shape[:-1])
        os = np.array(oqs.shape)

        if len(ss) != len(os):
            raise TypeError('Quaternions cannot broadcast together shapes %s and %s' % (sqs.shape, oqs.shape))

        if np.all(ss == os): return sqs, oqs

        if not np.all((ss == os) | (os == np.ones(len(os))) | (ss == np.ones(len(ss)))):
            raise TypeError('Quaternions cannot broadcast together shapes %s and %s' % (sqs.shape, oqs.shape))

        sqsn, oqsn = sqs.copy(), oqs.copy()

        for a in np.where(ss == 1)[0]: sqsn = sqsn.repeat(os[a], axis=a)
        for a in np.where(os == 1)[0]: oqsn = oqsn.repeat(ss[a], axis=a)

        return sqsn, oqsn

    """ Adding Quaterions is just Defined as Multiplication """

    def __add__(self, other):
        return self * other

    def __sub__(self, other):
        return self / other

    """ Quaterion Multiplication """

    def __mul__(self, other):
        """
        Quaternion multiplication has three main methods.

        When multiplying a Quaternions array by Quaternions
        normal quater multiplication is performed.

        When multiplying a Quaternions array by a vector
        array of the same shape, where the last axis is 3,
        it is assumed to be a Quaternion by 3D-Vector
        multiplication and the 3D-Vectors are rotated
        in space by the Quaternions.

        When multipplying a Quaternions array by a scalar
        or vector of different shape it is assumed to be
        a Quaternions by Scalars multiplication and the
        Quaternions are scaled using Slerp and the identity
        quaternions.
        """

        """ If Quaternions type do Quaternions * Quaternions """
        if isinstance(other, Quaternions):
            sqs, oqs = Quaternions._broadcast(self.qs, other.qs)

            q0 = sqs[..., 0];
            q1 = sqs[..., 1];
            q2 = sqs[..., 2];
            q3 = sqs[..., 3];
            r0 = oqs[..., 0];
            r1 = oqs[..., 1];
            r2 = oqs[..., 2];
            r3 = oqs[..., 3];

            qs = np.empty(sqs.shape)
            qs[..., 0] = r0 * q0 - r1 * q1 - r2 * q2 - r3 * q3
            qs[..., 1] = r0 * q1 + r1 * q0 - r2 * q3 + r3 * q2
            qs[..., 2] = r0 * q2 + r1 * q3 + r2 * q0 - r3 * q1
            qs[..., 3] = r0 * q3 - r1 * q2 + r2 * q1 + r3 * q0

            return Quaternions(qs)

        """ If array type do Quaternions * Vectors """
        if isinstance(other, np.ndarray) and other.shape[-1] == 3:
            vs = Quaternions(np.concatenate([np.zeros(other.shape[:-1] + (1,)), other], axis=-1))

            return (self * (vs * -self)).imaginaries

        """ If float do Quaternions * Scalars """
        if isinstance(other, np.ndarray) or isinstance(other, float):
            return Quaternions.slerp(Quaternions.id_like(self), self, other)

        raise TypeError('Cannot multiply/add Quaternions with type %s' % str(type(other)))

    def __div__(self, other):
        """
        When a Quaternion type is supplied, division is defined
        as multiplication by the inverse of that Quaternion.

        When a scalar or vector is supplied it is defined
        as multiplicaion of one over the supplied value.
        Essentially a scaling.
        """

        if isinstance(other, Quaternions): return self * (-other)
        if isinstance(other, np.ndarray): return self * (1.0 / other)
        if isinstance(other, float): return self * (1.0 / other)
        raise TypeError('Cannot divide/subtract Quaternions with type %s' + str(type(other)))

    def __eq__(self, other):
        return self.qs == other.qs

    def __ne__(self, other):
        return self.qs != other.qs

    def __neg__(self):
        """ Invert Quaternions """
        return Quaternions(self.qs * np.array([[1, -1, -1, -1]]))

    def __abs__(self):
        """ Unify Quaternions To Single Pole """
        qabs = self.normalized().copy()
        top = np.sum((qabs.qs) * np.array([1, 0, 0, 0]), axis=-1)
        bot = np.sum((-qabs.qs) * np.array([1, 0, 0, 0]), axis=-1)
        qabs.qs[top < bot] = -qabs.qs[top < bot]
        return qabs

    def __iter__(self):
        return iter(self.qs)

    def __len__(self):
        return len(self.qs)

    def __getitem__(self, k):
        return Quaternions(self.qs[k])

    def __setitem__(self, k, v):
        self.qs[k] = v.qs

    @property
    def lengths(self):
        return np.sum(self.qs ** 2.0, axis=-1) ** 0.5

    @property
    def reals(self):
        return self.qs[..., 0]

    @property
    def imaginaries(self):
        return self.qs[..., 1:4]

    @property
    def shape(self):
        return self.qs.shape[:-1]

    def repeat(self, n, **kwargs):
        return Quaternions(self.qs.repeat(n, **kwargs))

    def normalized(self):
        return Quaternions(self.qs / self.lengths[..., np.newaxis])

    def log(self):
        norm = abs(self.normalized())
        imgs = norm.imaginaries
        lens = np.sqrt(np.sum(imgs ** 2, axis=-1))
        lens = np.arctan2(lens, norm.reals) / (lens + 1e-10)
        return imgs * lens[..., np.newaxis]

    def constrained(self, axis):

        rl = self.reals
        im = np.sum(axis * self.imaginaries, axis=-1)

        t1 = -2 * np.arctan2(rl, im) + np.pi
        t2 = -2 * np.arctan2(rl, im) - np.pi

        top = Quaternions.exp(axis[np.newaxis] * (t1[:, np.newaxis] / 2.0))
        bot = Quaternions.exp(axis[np.newaxis] * (t2[:, np.newaxis] / 2.0))
        img = self.dot(top) > self.dot(bot)

        ret = top.copy()
        ret[img] = top[img]
        ret[~img] = bot[~img]
        return ret

    def constrained_x(self):
        return self.constrained(np.array([1, 0, 0]))

    def constrained_y(self):
        return self.constrained(np.array([0, 1, 0]))

    def constrained_z(self):
        return self.constrained(np.array([0, 0, 1]))

    def dot(self, q):
        return np.sum(self.qs * q.qs, axis=-1)

    def copy(self):
        return Quaternions(np.copy(self.qs))

    def reshape(self, s):
        self.qs.reshape(s)
        return self

    def interpolate(self, ws):
        return Quaternions.exp(np.average(abs(self).log, axis=0, weights=ws))

    def euler(self, order='xyz'):  # fix the wrong convert, this should convert to world euler by default.

        q = self.normalized().qs
        q0 = q[..., 0]
        q1 = q[..., 1]
        q2 = q[..., 2]
        q3 = q[..., 3]
        es = np.zeros(self.shape + (3,))

        if order == 'xyz':
            es[..., 0] = np.arctan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2))
            es[..., 1] = np.arcsin((2 * (q0 * q2 - q3 * q1)).clip(-1, 1))
            es[..., 2] = np.arctan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3))
        elif order == 'yzx':
            es[..., 0] = np.arctan2(2 * (q1 * q0 - q2 * q3), -q1 * q1 + q2 * q2 - q3 * q3 + q0 * q0)
            es[..., 1] = np.arctan2(2 * (q2 * q0 - q1 * q3), q1 * q1 - q2 * q2 - q3 * q3 + q0 * q0)
            es[..., 2] = np.arcsin((2 * (q1 * q2 + q3 * q0)).clip(-1, 1))
        else:
            raise NotImplementedError('Cannot convert from ordering %s' % order)

        """

        # These conversion don't appear to work correctly for Maya.
        # http://bediyap.com/programming/convert-quaternion-to-euler-rotations/

        if   order == 'xyz':
            es[fa + (0,)] = np.arctan2(2 * (q0 * q3 - q1 * q2), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3)
            es[fa + (1,)] = np.arcsin((2 * (q1 * q3 + q0 * q2)).clip(-1,1))
            es[fa + (2,)] = np.arctan2(2 * (q0 * q1 - q2 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3)
        elif order == 'yzx':
            es[fa + (0,)] = np.arctan2(2 * (q0 * q1 - q2 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3)
            es[fa + (1,)] = np.arcsin((2 * (q1 * q2 + q0 * q3)).clip(-1,1))
            es[fa + (2,)] = np.arctan2(2 * (q0 * q2 - q1 * q3), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3)
        elif order == 'zxy':
            es[fa + (0,)] = np.arctan2(2 * (q0 * q2 - q1 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3)
            es[fa + (1,)] = np.arcsin((2 * (q0 * q1 + q2 * q3)).clip(-1,1))
            es[fa + (2,)] = np.arctan2(2 * (q0 * q3 - q1 * q2), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3) 
        elif order == 'xzy':
            es[fa + (0,)] = np.arctan2(2 * (q0 * q2 + q1 * q3), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3)
            es[fa + (1,)] = np.arcsin((2 * (q0 * q3 - q1 * q2)).clip(-1,1))
            es[fa + (2,)] = np.arctan2(2 * (q0 * q1 + q2 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3)
        elif order == 'yxz':
            es[fa + (0,)] = np.arctan2(2 * (q1 * q2 + q0 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3)
            es[fa + (1,)] = np.arcsin((2 * (q0 * q1 - q2 * q3)).clip(-1,1))
            es[fa + (2,)] = np.arctan2(2 * (q1 * q3 + q0 * q2), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3)
        elif order == 'zyx':
            es[fa + (0,)] = np.arctan2(2 * (q0 * q1 + q2 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3)
            es[fa + (1,)] = np.arcsin((2 * (q0 * q2 - q1 * q3)).clip(-1,1))
            es[fa + (2,)] = np.arctan2(2 * (q0 * q3 + q1 * q2), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3)
        else:
            raise KeyError('Unknown ordering %s' % order)

        """

        # https://github.com/ehsan/ogre/blob/master/OgreMain/src/OgreMatrix3.cpp
        # Use this class and convert from matrix

        return es

    def average(self):

        if len(self.shape) == 1:

            import numpy.core.umath_tests as ut
            system = ut.matrix_multiply(self.qs[:, :, np.newaxis], self.qs[:, np.newaxis, :]).sum(axis=0)
            w, v = np.linalg.eigh(system)
            qiT_dot_qref = (self.qs[:, :, np.newaxis] * v[np.newaxis, :, :]).sum(axis=1)
            return Quaternions(v[:, np.argmin((1. - qiT_dot_qref ** 2).sum(axis=0))])

        else:

            raise NotImplementedError('Cannot average multi-dimensionsal Quaternions')

    def angle_axis(self):

        norm = self.normalized()
        s = np.sqrt(1 - (norm.reals ** 2.0))
        s[s == 0] = 0.001

        angles = 2.0 * np.arccos(norm.reals)
        axis = norm.imaginaries / s[..., np.newaxis]

        return angles, axis

    def transforms(self):

        qw = self.qs[..., 0]
        qx = self.qs[..., 1]
        qy = self.qs[..., 2]
        qz = self.qs[..., 3]

        x2 = qx + qx;
        y2 = qy + qy;
        z2 = qz + qz;
        xx = qx * x2;
        yy = qy * y2;
        wx = qw * x2;
        xy = qx * y2;
        yz = qy * z2;
        wy = qw * y2;
        xz = qx * z2;
        zz = qz * z2;
        wz = qw * z2;

        m = np.empty(self.shape + (3, 3))
        m[..., 0, 0] = 1.0 - (yy + zz)
        m[..., 0, 1] = xy - wz
        m[..., 0, 2] = xz + wy
        m[..., 1, 0] = xy + wz
        m[..., 1, 1] = 1.0 - (xx + zz)
        m[..., 1, 2] = yz - wx
        m[..., 2, 0] = xz - wy
        m[..., 2, 1] = yz + wx
        m[..., 2, 2] = 1.0 - (xx + yy)

        return m

    def ravel(self):
        return self.qs.ravel()

    @classmethod
    def id(cls, n):

        if isinstance(n, tuple):
            qs = np.zeros(n + (4,))
            qs[..., 0] = 1.0
            return Quaternions(qs)

        if isinstance(n, int):
            qs = np.zeros((n, 4))
            qs[:, 0] = 1.0
            return Quaternions(qs)

        raise TypeError('Cannot Construct Quaternion from %s type' % str(type(n)))

    @classmethod
    def id_like(cls, a):
        qs = np.zeros(a.shape + (4,))
        qs[..., 0] = 1.0
        return Quaternions(qs)

    @classmethod
    def exp(cls, ws):

        ts = np.sum(ws ** 2.0, axis=-1) ** 0.5
        ts[ts == 0] = 0.001
        ls = np.sin(ts) / ts

        qs = np.empty(ws.shape[:-1] + (4,))
        qs[..., 0] = np.cos(ts)
        qs[..., 1] = ws[..., 0] * ls
        qs[..., 2] = ws[..., 1] * ls
        qs[..., 3] = ws[..., 2] * ls

        return Quaternions(qs).normalized()

    @classmethod
    def slerp(cls, q0s, q1s, a):

        fst, snd = cls._broadcast(q0s.qs, q1s.qs)
        fst, a = cls._broadcast(fst, a, scalar=True)
        snd, a = cls._broadcast(snd, a, scalar=True)

        len = np.sum(fst * snd, axis=-1)

        neg = len < 0.0
        len[neg] = -len[neg]
        snd[neg] = -snd[neg]

        amount0 = np.zeros(a.shape)
        amount1 = np.zeros(a.shape)

        linear = (1.0 - len) < 0.01
        omegas = np.arccos(len[~linear])
        sinoms = np.sin(omegas)

        amount0[linear] = 1.0 - a[linear]
        amount1[linear] = a[linear]
        amount0[~linear] = np.sin((1.0 - a[~linear]) * omegas) / sinoms
        amount1[~linear] = np.sin(a[~linear] * omegas) / sinoms

        return Quaternions(
            amount0[..., np.newaxis] * fst +
            amount1[..., np.newaxis] * snd)

    @classmethod
    def between(cls, v0s, v1s):
        a = np.cross(v0s, v1s)
        w = np.sqrt((v0s ** 2).sum(axis=-1) * (v1s ** 2).sum(axis=-1)) + (v0s * v1s).sum(axis=-1)
        return Quaternions(np.concatenate([w[..., np.newaxis], a], axis=-1)).normalized()

    @classmethod
    def from_angle_axis(cls, angles, axis):
        axis = axis / (np.sqrt(np.sum(axis ** 2, axis=-1)) + 1e-10)[..., np.newaxis]
        sines = np.sin(angles / 2.0)[..., np.newaxis]
        cosines = np.cos(angles / 2.0)[..., np.newaxis]
        return Quaternions(np.concatenate([cosines, axis * sines], axis=-1))

    @classmethod
    def from_euler(cls, es, order='xyz', world=False):

        axis = {
            'x': np.array([1, 0, 0]),
            'y': np.array([0, 1, 0]),
            'z': np.array([0, 0, 1]),
        }

        q0s = Quaternions.from_angle_axis(es[..., 0], axis[order[0]])
        q1s = Quaternions.from_angle_axis(es[..., 1], axis[order[1]])
        q2s = Quaternions.from_angle_axis(es[..., 2], axis[order[2]])

        return (q2s * (q1s * q0s)) if world else (q0s * (q1s * q2s))

    @classmethod
    def from_transforms(cls, ts):

        d0, d1, d2 = ts[..., 0, 0], ts[..., 1, 1], ts[..., 2, 2]

        q0 = (d0 + d1 + d2 + 1.0) / 4.0
        q1 = (d0 - d1 - d2 + 1.0) / 4.0
        q2 = (-d0 + d1 - d2 + 1.0) / 4.0
        q3 = (-d0 - d1 + d2 + 1.0) / 4.0

        q0 = np.sqrt(q0.clip(0, None))
        q1 = np.sqrt(q1.clip(0, None))
        q2 = np.sqrt(q2.clip(0, None))
        q3 = np.sqrt(q3.clip(0, None))

        c0 = (q0 >= q1) & (q0 >= q2) & (q0 >= q3)
        c1 = (q1 >= q0) & (q1 >= q2) & (q1 >= q3)
        c2 = (q2 >= q0) & (q2 >= q1) & (q2 >= q3)
        c3 = (q3 >= q0) & (q3 >= q1) & (q3 >= q2)

        q1[c0] *= np.sign(ts[c0, 2, 1] - ts[c0, 1, 2])
        q2[c0] *= np.sign(ts[c0, 0, 2] - ts[c0, 2, 0])
        q3[c0] *= np.sign(ts[c0, 1, 0] - ts[c0, 0, 1])

        q0[c1] *= np.sign(ts[c1, 2, 1] - ts[c1, 1, 2])
        q2[c1] *= np.sign(ts[c1, 1, 0] + ts[c1, 0, 1])
        q3[c1] *= np.sign(ts[c1, 0, 2] + ts[c1, 2, 0])

        q0[c2] *= np.sign(ts[c2, 0, 2] - ts[c2, 2, 0])
        q1[c2] *= np.sign(ts[c2, 1, 0] + ts[c2, 0, 1])
        q3[c2] *= np.sign(ts[c2, 2, 1] + ts[c2, 1, 2])

        q0[c3] *= np.sign(ts[c3, 1, 0] - ts[c3, 0, 1])
        q1[c3] *= np.sign(ts[c3, 2, 0] + ts[c3, 0, 2])
        q2[c3] *= np.sign(ts[c3, 2, 1] + ts[c3, 1, 2])

        qs = np.empty(ts.shape[:-2] + (4,))
        qs[..., 0] = q0
        qs[..., 1] = q1
        qs[..., 2] = q2
        qs[..., 3] = q3

        return cls(qs)