Spaces:
Running
Running
File size: 4,603 Bytes
c0eac48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
import os
from os.path import join as pjoin
import torch
from torch.utils.data import DataLoader
from models.vq.model import RVQVAE
from models.vq.vq_trainer import RVQTokenizerTrainer
from options.vq_option import arg_parse
from data.t2m_dataset import MotionDataset
from utils import paramUtil
import numpy as np
from models.t2m_eval_wrapper import EvaluatorModelWrapper
from utils.get_opt import get_opt
from motion_loaders.dataset_motion_loader import get_dataset_motion_loader
from utils.motion_process import recover_from_ric
from utils.plot_script import plot_3d_motion
os.environ["OMP_NUM_THREADS"] = "1"
def plot_t2m(data, save_dir):
data = train_dataset.inv_transform(data)
for i in range(len(data)):
joint_data = data[i]
joint = recover_from_ric(torch.from_numpy(joint_data).float(), opt.joints_num).numpy()
save_path = pjoin(save_dir, '%02d.mp4' % (i))
plot_3d_motion(save_path, kinematic_chain, joint, title="None", fps=fps, radius=radius)
if __name__ == "__main__":
# torch.autograd.set_detect_anomaly(True)
opt = arg_parse(True)
opt.device = torch.device("cpu" if opt.gpu_id == -1 else "cuda:" + str(opt.gpu_id))
print(f"Using Device: {opt.device}")
opt.save_root = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.name)
opt.model_dir = pjoin(opt.save_root, 'model')
opt.meta_dir = pjoin(opt.save_root, 'meta')
opt.eval_dir = pjoin(opt.save_root, 'animation')
opt.log_dir = pjoin('./log/vq/', opt.dataset_name, opt.name)
os.makedirs(opt.model_dir, exist_ok=True)
os.makedirs(opt.meta_dir, exist_ok=True)
os.makedirs(opt.eval_dir, exist_ok=True)
os.makedirs(opt.log_dir, exist_ok=True)
if opt.dataset_name == "t2m":
opt.data_root = './dataset/HumanML3D/'
opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs')
opt.text_dir = pjoin(opt.data_root, 'texts')
opt.joints_num = 22
dim_pose = 263
fps = 20
radius = 4
kinematic_chain = paramUtil.t2m_kinematic_chain
dataset_opt_path = './checkpoints/t2m/Comp_v6_KLD005/opt.txt'
elif opt.dataset_name == "kit":
opt.data_root = './dataset/KIT-ML/'
opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs')
opt.text_dir = pjoin(opt.data_root, 'texts')
opt.joints_num = 21
radius = 240 * 8
fps = 12.5
dim_pose = 251
opt.max_motion_length = 196
kinematic_chain = paramUtil.kit_kinematic_chain
dataset_opt_path = './checkpoints/kit/Comp_v6_KLD005/opt.txt'
else:
raise KeyError('Dataset Does not Exists')
wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
mean = np.load(pjoin(opt.data_root, 'Mean.npy'))
std = np.load(pjoin(opt.data_root, 'Std.npy'))
train_split_file = pjoin(opt.data_root, 'train.txt')
val_split_file = pjoin(opt.data_root, 'val.txt')
net = RVQVAE(opt,
dim_pose,
opt.nb_code,
opt.code_dim,
opt.code_dim,
opt.down_t,
opt.stride_t,
opt.width,
opt.depth,
opt.dilation_growth_rate,
opt.vq_act,
opt.vq_norm)
pc_vq = sum(param.numel() for param in net.parameters())
print(net)
# print("Total parameters of discriminator net: {}".format(pc_vq))
# all_params += pc_vq_dis
print('Total parameters of all models: {}M'.format(pc_vq/1000_000))
trainer = RVQTokenizerTrainer(opt, vq_model=net)
train_dataset = MotionDataset(opt, mean, std, train_split_file)
val_dataset = MotionDataset(opt, mean, std, val_split_file)
train_loader = DataLoader(train_dataset, batch_size=opt.batch_size, drop_last=True, num_workers=4,
shuffle=True, pin_memory=True)
val_loader = DataLoader(val_dataset, batch_size=opt.batch_size, drop_last=True, num_workers=4,
shuffle=True, pin_memory=True)
eval_val_loader, _ = get_dataset_motion_loader(dataset_opt_path, 32, 'test', device=opt.device)
trainer.train(train_loader, val_loader, eval_val_loader, eval_wrapper, plot_t2m)
## train_vq.py --dataset_name kit --batch_size 512 --name VQVAE_dp2 --gpu_id 3
## train_vq.py --dataset_name kit --batch_size 256 --name VQVAE_dp2_b256 --gpu_id 2
## train_vq.py --dataset_name kit --batch_size 1024 --name VQVAE_dp2_b1024 --gpu_id 1
## python train_vq.py --dataset_name kit --batch_size 256 --name VQVAE_dp1_b256 --gpu_id 2 |