File size: 15,686 Bytes
c0eac48
 
3f20a52
c0eac48
3f20a52
 
c0eac48
 
2cbaf0c
feb4121
c0eac48
3f20a52
c0eac48
023631a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
980e069
c0eac48
 
 
 
 
 
 
 
 
 
a17787e
c0eac48
 
 
 
 
db86108
 
340bd0a
c0eac48
 
 
5c7c8c1
 
 
19648e8
feb4121
a604ace
2023904
f72f36a
 
2023904
a604ace
feb4121
 
 
980e069
feb4121
 
c0eac48
 
 
 
 
7450ab3
 
 
a66aa36
 
abf4903
a66aa36
292e62f
 
f696cc3
 
 
 
292e62f
 
c0eac48
 
 
 
 
 
 
 
b91097e
c0eac48
319aa53
 
c0eac48
 
 
 
 
afec801
c0eac48
 
 
 
 
 
 
 
023631a
5ac6ee6
29b0148
5ac6ee6
 
 
 
 
 
 
fd9a211
 
 
 
 
 
 
5ac6ee6
 
6c5de49
023631a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afec801
 
 
023631a
 
c0eac48
023631a
c0eac48
cfc358c
f04512a
5ac6ee6
 
fd9a211
023631a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0eac48
023631a
 
 
 
 
 
 
 
 
 
 
5ac6ee6
023631a
afec801
023631a
 
 
afec801
35a8822
023631a
b4c5e21
023631a
 
 
 
afec801
c0eac48
35a8822
c0eac48
 
023631a
c0eac48
 
 
 
 
 
 
 
 
 
609f3a5
 
 
319aa53
c0eac48
b91097e
c0eac48
 
 
 
 
023631a
c0eac48
3d89bc0
afec801
abcf2c4
 
 
 
023631a
 
c0eac48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
044e4f5
023631a
 
 
 
 
 
 
 
 
 
 
e68f4c7
023631a
 
 
 
 
 
 
 
319aa53
 
 
afec801
319aa53
afec801
 
c0eac48
2ff190a
c0eac48
 
 
 
 
 
 
023631a
c0eac48
 
 
 
 
 
 
 
 
 
3d89bc0
c0eac48
 
 
feb4121
c0eac48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
023631a
c0eac48
 
 
 
023631a
c0eac48
 
 
 
3d89bc0
c0eac48
 
 
562fd30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
from functools import partial
import os
print("Starting")
import torch
print(f"Is CUDA available: {torch.cuda.is_available()}")
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
import numpy as np
import gradio as gr
import random
import shutil



import os
from os.path import join as pjoin

import torch.nn.functional as F

from models.mask_transformer.transformer import MaskTransformer, ResidualTransformer
from models.vq.model import RVQVAE, LengthEstimator

from options.hgdemo_option import EvalT2MOptions
from utils.get_opt import get_opt

from utils.fixseed import fixseed
from visualization.joints2bvh import Joint2BVHConvertor
from torch.distributions.categorical import Categorical

from utils.motion_process import recover_from_ric
from utils.plot_script import plot_3d_motion

from utils.paramUtil import t2m_kinematic_chain

from gen_t2m import load_vq_model, load_res_model, load_trans_model, load_len_estimator

clip_version = 'ViT-B/32'

WEBSITE = """
<div class="embed_hidden">
<h1 style='text-align: center'> MoMask: Generative Masked Modeling of 3D Human Motions </h1>
<h2 style='text-align: center'>
<a href="https://ericguo5513.github.io" target="_blank"><nobr>Chuan Guo*</nobr></a> &emsp;
<a href="https://yxmu.foo/" target="_blank"><nobr>Yuxuan Mu*</nobr></a> &emsp;
<a href="https://scholar.google.com/citations?user=w4e-j9sAAAAJ&hl=en" target="_blank"><nobr>Muhammad Gohar Javed*</nobr></a> &emsp;
<a href="https://sites.google.com/site/senwang1312home/" target="_blank"><nobr>Sen Wang</nobr></a> &emsp;
<a href="https://www.ece.ualberta.ca/~lcheng5/" target="_blank"><nobr>Li Cheng</nobr></a>
</h2>
<h2 style='text-align: center'>
<nobr>CVPR 2024</nobr>
</h2>
<h3 style="text-align:center;">
<a target="_blank" href="https://arxiv.org/abs/2312.00063"> <button type="button" class="btn btn-primary btn-lg"> Paper </button></a> &ensp;
<a target="_blank" href="https://github.com/EricGuo5513/momask-codes"> <button type="button" class="btn btn-primary btn-lg"> Code </button></a> &ensp;
<a target="_blank" href="https://ericguo5513.github.io/momask/"> <button type="button" class="btn btn-primary btn-lg"> Webpage </button></a> &ensp;
<a target="_blank" href="https://ericguo5513.github.io/source_files/momask_2023_bib.txt"> <button type="button" class="btn btn-primary btn-lg"> BibTex </button></a> &ensp;
<a target="_blank" href="https://huggingface.co/spaces/MeYourHint/MoMask?docker=true" title="Run with docker"> <button type="button" class="btn btn-primary btn-lg"> Docker </button></a> &ensp;
<a target="_blank" href="https://huggingface.co/spaces/MeYourHint/MoMask?duplicate=true" title="Duplicate space with private gpu and no queue"> <button type="button" class="btn btn-primary btn-lg"> Duplicate </button></a> &ensp;
</h3>
<h3> Description </h3>
<p>
πŸ”₯πŸ”₯πŸ”₯ This space presents an interactive demo for <a href='https://ericguo5513.github.io/momask/' target='_blank'><b>MoMask</b></a>, a method for text-to-motion generation!!! It generates human motions (skeletal animations) based on your descriptions. To gain a better understanding of our work, you could try the provided examples first. πŸ”₯πŸ”₯πŸ”₯
</p>
<p>
πŸš€πŸš€πŸš€ In addition, we provide a link to download the generated human skeletal motion in <b>BVH</b> file format, compatible with CG software such as Blender!!! πŸš€πŸš€πŸš€
</p>
<p>
😁😁😁 If you find this demo interesting, kindly star our <a href="https://github.com/EricGuo5513/momask-codes" target="_blank">GitHub repository</a>. More details could be found on our <a href='https://ericguo5513.github.io/momask/' target='_blank'>webpage</a>. 🫢🫢🫢
</p>
<p>
If you have any issues on this space or feature requests, we warmly welcome you to contact us through our <a href="https://github.com/EricGuo5513/momask-codes/issues" target="_blank">repository</a> or <a href="mailto:ymu3@ualberta.ca?subject =[MoMask]Feedback&body = Message">email</a>.
</p>
</div>
"""
WEBSITE_bottom = """
<div class="embed_hidden">
<p>
We thanks <a href="https://huggingface.co/spaces/Mathux/TMR" target="_blank">TMR</a> for this cool space template.
</p>
</div>
"""

EXAMPLES = [
   "A person is running on a treadmill.", "The person takes 4 steps backwards.", 
   "A person jumps up and then lands.", "The person was pushed but did not fall.", 
   "The person does a salsa dance.", "A figure streches it hands and arms above its head.",
   "This person kicks with his right leg then jabs several times.",
   "A person stands for few seconds and picks up his arms and shakes them.",
   "A person walks in a clockwise circle and stops where he began.",
   "A man bends down and picks something up with his right hand.",
   "A person walks with a limp, their left leg gets injured.",
   "A person repeatedly blocks their face with their right arm.",
#    "The person holds his left foot with his left hand, puts his right foot up and left hand up too.",
   "The person holds their left foot with their left hand, lifting both their left foot and left hand up.",
#    "A person stands, crosses left leg in front of the right, lowering themselves until they are sitting, both hands on the floor before standing and uncrossing legs.",
   "The person stands, crosses their left leg in front of the right, lowers themselves until they are sitting with both hands on the floor, and then stands back up, uncrossing their legs.",
   "The man walked forward, spun right on one foot and walked back to his original position.",
   "A man is walking forward then steps over an object then continues walking forward.",
]

# Show closest text in the training


# css to make videos look nice
# var(--block-border-color); TODO
CSS = """
.generate_video {
    position: relative;
    margin-left: auto;
    margin-right: auto;
    box-shadow: var(--block-shadow);
    border-width: var(--block-border-width);
    border-color: #000000;
    border-radius: var(--block-radius);
    background: var(--block-background-fill);
    width: 25%;
    line-height: var(--line-sm);
}
}
"""


DEFAULT_TEXT = "A person is "


if not os.path.exists("/data/checkpoints/t2m"):
    os.system("bash prepare/download_models_demo.sh")
if not os.path.exists("checkpoints/t2m"):
    os.system("ln -s /data/checkpoints checkpoints")
if not os.path.exists("/data/stats"):
    os.makedirs("/data/stats")
    with open("/data/stats/Prompts.text", 'w') as f:
        pass

Total_Calls = 4730
def update_total_calls():
    global Total_Calls
    Total_Calls_offset = 4730 ## init number from visit, 01/07
    with open("/data/stats/Prompts.text", 'r') as f:
        Total_Calls = len(f.readlines()) + Total_Calls_offset
    print("Prompts Num:",Total_Calls)

### Load Stats ###

##########################
######Preparing demo######
##########################
parser = EvalT2MOptions()
opt = parser.parse()
fixseed(opt.seed)
opt.device = torch.device("cpu" if opt.gpu_id == -1 else "cuda:" + str(opt.gpu_id))
dim_pose = 263
root_dir = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.name)
model_dir = pjoin(root_dir, 'model')
model_opt_path = pjoin(root_dir, 'opt.txt')
model_opt = get_opt(model_opt_path, device=opt.device)

######Loading RVQ######
vq_opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, model_opt.vq_name, 'opt.txt')
vq_opt = get_opt(vq_opt_path, device=opt.device)
vq_opt.dim_pose = dim_pose
vq_model, vq_opt = load_vq_model(vq_opt)

model_opt.num_tokens = vq_opt.nb_code
model_opt.num_quantizers = vq_opt.num_quantizers
model_opt.code_dim = vq_opt.code_dim

######Loading R-Transformer######
res_opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.res_name, 'opt.txt')
res_opt = get_opt(res_opt_path, device=opt.device)
res_model = load_res_model(res_opt, vq_opt, opt)

assert res_opt.vq_name == model_opt.vq_name

######Loading M-Transformer######
t2m_transformer = load_trans_model(model_opt, opt, 'latest.tar')

#####Loading Length Predictor#####
length_estimator = load_len_estimator(model_opt)

t2m_transformer.eval()
vq_model.eval()
res_model.eval()
length_estimator.eval()

res_model.to(opt.device)
t2m_transformer.to(opt.device)
vq_model.to(opt.device)
length_estimator.to(opt.device)

opt.nb_joints = 22
mean = np.load(pjoin(opt.checkpoints_dir, opt.dataset_name, model_opt.vq_name, 'meta', 'mean.npy'))
std = np.load(pjoin(opt.checkpoints_dir, opt.dataset_name, model_opt.vq_name, 'meta', 'std.npy'))
def inv_transform(data):
    return data * std + mean

kinematic_chain = t2m_kinematic_chain
converter = Joint2BVHConvertor()
cached_dir = './cached'
uid = 12138
animation_path = pjoin(cached_dir, f'{uid}')
os.makedirs(animation_path, exist_ok=True)

@torch.no_grad()
def generate(
    text, uid, motion_length=0, use_ik=True, seed=10107, repeat_times=1,
):
    # fixseed(seed)
    print(text)
    with open("/data/stats/Prompts.text", 'a') as f:
        f.write(text+'\n')
    update_total_calls()
    prompt_list = []
    length_list = []
    est_length = False
    prompt_list.append(text)
    if motion_length == 0:
        est_length = True
    else:
        length_list.append(motion_length)

    if est_length:
        print("Since no motion length are specified, we will use estimated motion lengthes!!")
        text_embedding = t2m_transformer.encode_text(prompt_list)
        pred_dis = length_estimator(text_embedding)
        probs = F.softmax(pred_dis, dim=-1)  # (b, ntoken)
        token_lens = Categorical(probs).sample()  # (b, seqlen)
    else:
        token_lens = torch.LongTensor(length_list) // 4
        token_lens = token_lens.to(opt.device).long()

    m_length = token_lens * 4
    captions = prompt_list
    datas = []
    for r in range(repeat_times):
        mids = t2m_transformer.generate(captions, token_lens,
                                        timesteps=opt.time_steps,
                                        cond_scale=opt.cond_scale,
                                        temperature=opt.temperature,
                                        topk_filter_thres=opt.topkr,
                                        gsample=opt.gumbel_sample)
        mids = res_model.generate(mids, captions, token_lens, temperature=1, cond_scale=5)
        pred_motions = vq_model.forward_decoder(mids)
        pred_motions = pred_motions.detach().cpu().numpy()
        data = inv_transform(pred_motions)
        ruid = random.randrange(999999999)
        for k, (caption, joint_data)  in enumerate(zip(captions, data)):
            animation_path = pjoin(cached_dir, f'{uid}')
            os.makedirs(animation_path, exist_ok=True)
            joint_data = joint_data[:m_length[k]]
            joint = recover_from_ric(torch.from_numpy(joint_data).float(), 22).numpy()
            bvh_path = pjoin(animation_path, "sample_repeat%d.bvh" % (r))
            save_path = pjoin(animation_path, "sample_repeat%d_%d.mp4"%(r, ruid))
            if use_ik:
                print("Using IK")
                _, joint = converter.convert(joint, filename=bvh_path, iterations=100)
            else:
                _, joint = converter.convert(joint, filename=bvh_path, iterations=100, foot_ik=False)
            plot_3d_motion(save_path, kinematic_chain, joint, title=caption, fps=20)
            np.save(pjoin(animation_path, "sample_repeat%d.npy"%(r)), joint)
        data_unit = {
            "url": pjoin(animation_path, "sample_repeat%d_%d.mp4"%(r, ruid))
            }
        datas.append(data_unit)

    return datas


# HTML component
def get_video_html(data, video_id, width=700, height=700):
    url = data["url"]
    # class="wrap default svelte-gjihhp hide"
    # <div class="contour_video" style="position: absolute; padding: 10px;">
    # width="{width}" height="{height}"
    video_html = f"""
<h2 style='text-align: center'>
<a href="file/{pjoin(animation_path, "sample_repeat0.bvh")}" download="sample.bvh"><b>BVH Download</b></a>
</h2>
<video class="generate_video" width="{width}" height="{height}" style="center" preload="auto" muted playsinline onpause="this.load()"
autoplay loop disablepictureinpicture id="{video_id}">
  <source src="file/{url}" type="video/mp4">
  Your browser does not support the video tag.
</video>
"""
    return video_html

def generate_component(generate_function, text, motion_len='0', postprocess='IK'):
    if text == DEFAULT_TEXT or text == "" or text is None:
        return [None for _ in range(1)]
    # uid = random.randrange(99999)
    try:
        motion_len = max(0, min(int(float(motion_len) * 20), 196))
    except:
        motion_len = 0
    use_ik = postprocess == 'IK'
    datas = generate_function(text, uid, motion_len, use_ik)
    htmls = [get_video_html(data, idx) for idx, data in enumerate(datas)]
    return htmls


# LOADING

# DEMO
theme = gr.themes.Default(primary_hue="blue", secondary_hue="gray")
generate_and_show = partial(generate_component, generate)

with gr.Blocks(css=CSS, theme=theme) as demo:
    gr.Markdown(WEBSITE)
    videos = []

    with gr.Row():
        with gr.Column(scale=3):
            text = gr.Textbox(
                show_label=True,
                label="Text prompt",
                value=DEFAULT_TEXT,
            )
            with gr.Row():
                with gr.Column(scale=1):
                    motion_len = gr.Textbox(
                        show_label=True,
                        label="Motion length (<10s)",
                        value=0,
                        info="Specify the motion length; 0 to use the default auto-setting.",
                    )
                with gr.Column(scale=1):
                    use_ik = gr.Radio(
                        ["Raw", "IK"],
                        label="Post-processing",
                        value="IK",
                        info="Use basic inverse kinematic (IK) for foot contact locking",
                    )
            gen_btn = gr.Button("Generate", variant="primary")
            clear = gr.Button("Clear", variant="secondary")
            gr.Markdown(
                        f"""
                            
                        """
                    )

        with gr.Column(scale=2):

            def generate_example(text):
                return generate_and_show(text)

            examples = gr.Examples(
                examples=[[x, None, None] for x in EXAMPLES],
                inputs=[text],
                examples_per_page=10,
                run_on_click=False,
                cache_examples=False,
                fn=generate_example,
                outputs=[],
            )

    i = -1
    # should indent
    for _ in range(1):
        with gr.Row():
            for _ in range(1):
                i += 1
                video = gr.HTML()
                videos.append(video)
    gr.Markdown(WEBSITE_bottom)
    # connect the examples to the output
    # a bit hacky
    examples.outputs = videos

    def load_example(example_id):
        processed_example = examples.non_none_processed_examples[example_id]
        return gr.utils.resolve_singleton(processed_example)

    examples.dataset.click(
        load_example,
        inputs=[examples.dataset],
        outputs=examples.inputs_with_examples,  # type: ignore
        show_progress=False,
        postprocess=False,
        queue=False,
    ).then(fn=generate_example, inputs=examples.inputs, outputs=videos)

    gen_btn.click(
        fn=generate_and_show,
        inputs=[text, motion_len, use_ik],
        outputs=videos,
    )
    text.submit(
        fn=generate_and_show,
        inputs=[text, motion_len, use_ik],
        outputs=videos,
    )

    def clear_videos():
        return [None for x in range(1)] + [DEFAULT_TEXT]

    clear.click(fn=clear_videos, outputs=videos + [text])

demo.launch()