Spaces:
Running
Running
File size: 1,804 Bytes
a0dcf2b f3f2c2f a0dcf2b f3f2c2f a0dcf2b f3f2c2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import streamlit as st
import pdfplumber
import pandas as pd
from io import BytesIO
def extract_tables_from_pdf(pdf_file):
tables = []
with pdfplumber.open(pdf_file) as pdf:
for page in pdf.pages:
extracted_tables = page.extract_tables()
for table in extracted_tables:
tables.append(pd.DataFrame(table))
if not tables:
return None
# Concatenate all tables into one DataFrame
final_df = pd.concat(tables, ignore_index=True)
# Set first row as column headers (if applicable)
final_df.columns = final_df.iloc[0] # First row as headers
final_df = final_df[1:].reset_index(drop=True)
return final_df
def convert_to_excel(dataframe):
output = BytesIO()
with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
dataframe.to_excel(writer, index=False, sheet_name='Sheet1')
output.seek(0)
return output
# Streamlit UI
st.title("PDF to Excel Converter")
st.write("Upload a PDF file with tabular data, and it will be converted into an Excel file.")
uploaded_file = st.file_uploader("Choose a PDF file", type=["pdf"])
if uploaded_file is not None:
with st.spinner("Extracting tables from PDF..."):
df = extract_tables_from_pdf(uploaded_file)
if df is not None:
st.write("### Extracted Table Preview")
st.dataframe(df)
excel_data = convert_to_excel(df)
st.download_button(label="Download Excel File",
data=excel_data,
file_name="converted.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")
else:
st.error("No tables found in the PDF.")
|