Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,18 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
def main():
|
| 2 |
st.title("PDF to Excel Converter")
|
| 3 |
|
| 4 |
# File uploader
|
| 5 |
uploaded_pdf = st.file_uploader("Upload a PDF file", type="pdf")
|
| 6 |
|
|
|
|
| 7 |
if uploaded_pdf:
|
| 8 |
-
# Extract text
|
| 9 |
text = extract_text_from_pdf(uploaded_pdf)
|
| 10 |
st.success("Text extracted from PDF!")
|
| 11 |
|
| 12 |
-
#
|
| 13 |
st.text_area("Extracted Text", text, height=300)
|
| 14 |
|
| 15 |
-
#
|
| 16 |
if st.button("Convert to Excel"):
|
| 17 |
output_file = "converted_file.xlsx"
|
| 18 |
convert_text_to_excel(text, output_file)
|
|
@@ -24,6 +46,7 @@ def main():
|
|
| 24 |
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
|
| 25 |
)
|
| 26 |
os.remove(output_file)
|
| 27 |
-
if __name__ == "__main__":
|
| 28 |
-
main()
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import pdfplumber
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
# Function to extract text from a PDF file
|
| 7 |
+
def extract_text_from_pdf(pdf_file):
|
| 8 |
+
with pdfplumber.open(pdf_file) as pdf:
|
| 9 |
+
text = ""
|
| 10 |
+
for page in pdf.pages:
|
| 11 |
+
text += page.extract_text()
|
| 12 |
+
return text
|
| 13 |
+
|
| 14 |
+
# Function to convert extracted text to Excel
|
| 15 |
+
def convert_text_to_excel(text, output_file):
|
| 16 |
+
rows = text.split("\n")
|
| 17 |
+
data = [row.split() for row in rows]
|
| 18 |
+
df = pd.DataFrame(data)
|
| 19 |
+
df.to_excel(output_file, index=False)
|
| 20 |
+
|
| 21 |
+
# Main function to build the Streamlit app
|
| 22 |
def main():
|
| 23 |
st.title("PDF to Excel Converter")
|
| 24 |
|
| 25 |
# File uploader
|
| 26 |
uploaded_pdf = st.file_uploader("Upload a PDF file", type="pdf")
|
| 27 |
|
| 28 |
+
# Check if a file has been uploaded
|
| 29 |
if uploaded_pdf:
|
| 30 |
+
# Extract text from the PDF
|
| 31 |
text = extract_text_from_pdf(uploaded_pdf)
|
| 32 |
st.success("Text extracted from PDF!")
|
| 33 |
|
| 34 |
+
# Display the extracted text
|
| 35 |
st.text_area("Extracted Text", text, height=300)
|
| 36 |
|
| 37 |
+
# Button to convert and download Excel
|
| 38 |
if st.button("Convert to Excel"):
|
| 39 |
output_file = "converted_file.xlsx"
|
| 40 |
convert_text_to_excel(text, output_file)
|
|
|
|
| 46 |
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
|
| 47 |
)
|
| 48 |
os.remove(output_file)
|
|
|
|
|
|
|
| 49 |
|
| 50 |
+
# Entry point of the script
|
| 51 |
+
if __name__ == "__main__":
|
| 52 |
+
main()
|