Spaces:
Runtime error
Runtime error
File size: 20,607 Bytes
42d4082 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
# python 3.7
"""Utility functions for image editing from latent space."""
import os.path
import numpy as np
__all__ = [
'parse_indices', 'interpolate', 'mix_style',
'get_layerwise_manipulation_strength', 'manipulate', 'parse_boundary_list'
]
def parse_indices(obj, min_val=None, max_val=None):
"""Parses indices.
If the input is a list or tuple, this function has no effect.
The input can also be a string, which is either a comma separated list of
numbers 'a, b, c', or a dash separated range 'a - c'. Space in the string will
be ignored.
Args:
obj: The input object to parse indices from.
min_val: If not `None`, this function will check that all indices are equal
to or larger than this value. (default: None)
max_val: If not `None`, this function will check that all indices are equal
to or smaller than this field. (default: None)
Returns:
A list of integers.
Raises:
If the input is invalid, i.e., neither a list or tuple, nor a string.
"""
if obj is None or obj == '':
indices = []
elif isinstance(obj, int):
indices = [obj]
elif isinstance(obj, (list, tuple, np.ndarray)):
indices = list(obj)
elif isinstance(obj, str):
indices = []
splits = obj.replace(' ', '').split(',')
for split in splits:
numbers = list(map(int, split.split('-')))
if len(numbers) == 1:
indices.append(numbers[0])
elif len(numbers) == 2:
indices.extend(list(range(numbers[0], numbers[1] + 1)))
else:
raise ValueError(f'Invalid type of input: {type(obj)}!')
assert isinstance(indices, list)
indices = sorted(list(set(indices)))
for idx in indices:
assert isinstance(idx, int)
if min_val is not None:
assert idx >= min_val, f'{idx} is smaller than min val `{min_val}`!'
if max_val is not None:
assert idx <= max_val, f'{idx} is larger than max val `{max_val}`!'
return indices
def interpolate(src_codes, dst_codes, step=5):
"""Interpolates two sets of latent codes linearly.
Args:
src_codes: Source codes, with shape [num, *code_shape].
dst_codes: Target codes, with shape [num, *code_shape].
step: Number of interplolation steps, with source and target included. For
example, if `step = 5`, three more samples will be inserted. (default: 5)
Returns:
Interpolated codes, with shape [num, step, *code_shape].
Raises:
ValueError: If the input two sets of latent codes are with different shapes.
"""
if not (src_codes.ndim >= 2 and src_codes.shape == dst_codes.shape):
raise ValueError(f'Shapes of source codes and target codes should both be '
f'[num, *code_shape], but {src_codes.shape} and '
f'{dst_codes.shape} are received!')
num = src_codes.shape[0]
code_shape = src_codes.shape[1:]
a = src_codes[:, np.newaxis]
b = dst_codes[:, np.newaxis]
l = np.linspace(0.0, 1.0, step).reshape(
[step if axis == 1 else 1 for axis in range(a.ndim)])
results = a + l * (b - a)
assert results.shape == (num, step, *code_shape)
return results
def mix_style(style_codes,
content_codes,
num_layers=1,
mix_layers=None,
is_style_layerwise=True,
is_content_layerwise=True):
"""Mixes styles from style codes to those of content codes.
Each style code or content code consists of `num_layers` codes, each of which
is typically fed into a particular layer of the generator. This function mixes
styles by partially replacing the codes of `content_codes` from some certain
layers with those of `style_codes`.
For example, if both style code and content code are with shape [10, 512],
meaning to have 10 layers and each employs a 512-dimensional latent code. And
the 1st, 2nd, and 3rd layers are the target layers to perform style mixing.
Then the top half of the content code (with shape [3, 512]) will be replaced
by the top half of the style code (also with shape [3, 512]).
NOTE: This function also supports taking single-layer latent codes as inputs,
i.e., setting `is_style_layerwise` or `is_content_layerwise` as False. In this
case, the corresponding code will be first repeated for `num_layers` before
performing style mixing.
Args:
style_codes: Style codes, with shape [num_styles, *code_shape] or
[num_styles, num_layers, *code_shape].
content_codes: Content codes, with shape [num_contents, *code_shape] or
[num_contents, num_layers, *code_shape].
num_layers: Total number of layers in the generative model. (default: 1)
mix_layers: Indices of the layers to perform style mixing. `None` means to
replace all layers, in which case the content code will be completely
replaced by style code. (default: None)
is_style_layerwise: Indicating whether the input `style_codes` are
layer-wise codes. (default: True)
is_content_layerwise: Indicating whether the input `content_codes` are
layer-wise codes. (default: True)
num_layers
Returns:
Codes after style mixing, with shape [num_styles, num_contents, num_layers,
*code_shape].
Raises:
ValueError: If input `content_codes` or `style_codes` is with invalid shape.
"""
if not is_style_layerwise:
style_codes = style_codes[:, np.newaxis]
style_codes = np.tile(
style_codes,
[num_layers if axis == 1 else 1 for axis in range(style_codes.ndim)])
if not is_content_layerwise:
content_codes = content_codes[:, np.newaxis]
content_codes = np.tile(
content_codes,
[num_layers if axis == 1 else 1 for axis in range(content_codes.ndim)])
if not (style_codes.ndim >= 3 and style_codes.shape[1] == num_layers and
style_codes.shape[1:] == content_codes.shape[1:]):
raise ValueError(f'Shapes of style codes and content codes should be '
f'[num_styles, num_layers, *code_shape] and '
f'[num_contents, num_layers, *code_shape] respectively, '
f'but {style_codes.shape} and {content_codes.shape} are '
f'received!')
layer_indices = parse_indices(mix_layers, min_val=0, max_val=num_layers - 1)
if not layer_indices:
layer_indices = list(range(num_layers))
num_styles = style_codes.shape[0]
num_contents = content_codes.shape[0]
code_shape = content_codes.shape[2:]
s = style_codes[:, np.newaxis]
s = np.tile(s, [num_contents if axis == 1 else 1 for axis in range(s.ndim)])
c = content_codes[np.newaxis]
c = np.tile(c, [num_styles if axis == 0 else 1 for axis in range(c.ndim)])
from_style = np.zeros(s.shape, dtype=bool)
from_style[:, :, layer_indices] = True
results = np.where(from_style, s, c)
assert results.shape == (num_styles, num_contents, num_layers, *code_shape)
return results
def get_layerwise_manipulation_strength(num_layers,
truncation_psi,
truncation_layers):
"""Gets layer-wise strength for manipulation.
Recall the truncation trick played on layer [0, truncation_layers):
w = truncation_psi * w + (1 - truncation_psi) * w_avg
So, when using the same boundary to manipulate different layers, layer
[0, truncation_layers) and layer [truncation_layers, num_layers) should use
different strength to eliminate the effect from the truncation trick. More
concretely, the strength for layer [0, truncation_layers) is set as
`truncation_psi`, while that for other layers are set as 1.
"""
strength = [1.0 for _ in range(num_layers)]
if truncation_layers > 0:
for layer_idx in range(0, truncation_layers):
strength[layer_idx] = truncation_psi
return strength
def manipulate(latent_codes,
boundary,
start_distance=-5.0,
end_distance=5.0,
step=21,
layerwise_manipulation=False,
num_layers=1,
manipulate_layers=None,
is_code_layerwise=False,
is_boundary_layerwise=False,
layerwise_manipulation_strength=1.0):
"""Manipulates the given latent codes with respect to a particular boundary.
Basically, this function takes a set of latent codes and a boundary as inputs,
and outputs a collection of manipulated latent codes.
For example, let `step` to be 10, `latent_codes` to be with shape [num,
*code_shape], and `boundary` to be with shape [1, *code_shape] and unit norm.
Then the output will be with shape [num, 10, *code_shape]. For each 10-element
manipulated codes, the first code is `start_distance` away from the original
code (i.e., the input) along the `boundary` direction, while the last code is
`end_distance` away. Remaining codes are linearly interpolated. Here,
`distance` is sign sensitive.
NOTE: This function also supports layer-wise manipulation, in which case the
generator should be able to take layer-wise latent codes as inputs. For
example, if the generator has 18 convolutional layers in total, and each of
which takes an independent latent code as input. It is possible, sometimes
with even better performance, to only partially manipulate these latent codes
corresponding to some certain layers yet keeping others untouched.
NOTE: Boundary is assumed to be normalized to unit norm already.
Args:
latent_codes: The input latent codes for manipulation, with shape
[num, *code_shape] or [num, num_layers, *code_shape].
boundary: The semantic boundary as reference, with shape [1, *code_shape] or
[1, num_layers, *code_shape].
start_distance: Start point for manipulation. (default: -5.0)
end_distance: End point for manipulation. (default: 5.0)
step: Number of manipulation steps. (default: 21)
layerwise_manipulation: Whether to perform layer-wise manipulation.
(default: False)
num_layers: Number of layers. Only active when `layerwise_manipulation` is
set as `True`. Should be a positive integer. (default: 1)
manipulate_layers: Indices of the layers to perform manipulation. `None`
means to manipulate latent codes from all layers. (default: None)
is_code_layerwise: Whether the input latent codes are layer-wise. If set as
`False`, the function will first repeat the input codes for `num_layers`
times before perform manipulation. (default: False)
is_boundary_layerwise: Whether the input boundary is layer-wise. If set as
`False`, the function will first repeat boundary for `num_layers` times
before perform manipulation. (default: False)
layerwise_manipulation_strength: Manipulation strength for each layer. Only
active when `layerwise_manipulation` is set as `True`. This field can be
used to resolve the strength discrepancy across layers when truncation
trick is on. See function `get_layerwise_manipulation_strength()` for
details. A tuple, list, or `numpy.ndarray` is expected. If set as a single
number, this strength will be used for all layers. (default: 1.0)
Returns:
Manipulated codes, with shape [num, step, *code_shape] if
`layerwise_manipulation` is set as `False`, or shape [num, step,
num_layers, *code_shape] if `layerwise_manipulation` is set as `True`.
Raises:
ValueError: If the input latent codes, boundary, or strength are with
invalid shape.
"""
if not (boundary.ndim >= 2 and boundary.shape[0] == 1):
raise ValueError(f'Boundary should be with shape [1, *code_shape] or '
f'[1, num_layers, *code_shape], but '
f'{boundary.shape} is received!')
if not layerwise_manipulation:
assert not is_code_layerwise
assert not is_boundary_layerwise
num_layers = 1
manipulate_layers = None
layerwise_manipulation_strength = 1.0
# Preprocessing for layer-wise manipulation.
# Parse indices of manipulation layers.
layer_indices = parse_indices(
manipulate_layers, min_val=0, max_val=num_layers - 1)
if not layer_indices:
layer_indices = list(range(num_layers))
# Make latent codes layer-wise if needed.
assert num_layers > 0
if not is_code_layerwise:
x = latent_codes[:, np.newaxis]
x = np.tile(x, [num_layers if axis == 1 else 1 for axis in range(x.ndim)])
else:
x = latent_codes
if x.shape[1] != num_layers:
raise ValueError(f'Latent codes should be with shape [num, num_layers, '
f'*code_shape], where `num_layers` equals to '
f'{num_layers}, but {x.shape} is received!')
# Make boundary layer-wise if needed.
if not is_boundary_layerwise:
b = boundary
b = np.tile(b, [num_layers if axis == 0 else 1 for axis in range(b.ndim)])
else:
b = boundary[0]
if b.shape[0] != num_layers:
raise ValueError(f'Boundary should be with shape [num_layers, '
f'*code_shape], where `num_layers` equals to '
f'{num_layers}, but {b.shape} is received!')
# Get layer-wise manipulation strength.
if isinstance(layerwise_manipulation_strength, (int, float)):
s = [float(layerwise_manipulation_strength) for _ in range(num_layers)]
elif isinstance(layerwise_manipulation_strength, (list, tuple)):
s = layerwise_manipulation_strength
if len(s) != num_layers:
raise ValueError(f'Shape of layer-wise manipulation strength `{len(s)}` '
f'mismatches number of layers `{num_layers}`!')
elif isinstance(layerwise_manipulation_strength, np.ndarray):
s = layerwise_manipulation_strength
if s.size != num_layers:
raise ValueError(f'Shape of layer-wise manipulation strength `{s.size}` '
f'mismatches number of layers `{num_layers}`!')
else:
raise ValueError(f'Unsupported type of `layerwise_manipulation_strength`!')
s = np.array(s).reshape(
[num_layers if axis == 0 else 1 for axis in range(b.ndim)])
b = b * s
if x.shape[1:] != b.shape:
raise ValueError(f'Latent code shape {x.shape} and boundary shape '
f'{b.shape} mismatch!')
num = x.shape[0]
code_shape = x.shape[2:]
x = x[:, np.newaxis]
b = b[np.newaxis, np.newaxis, :]
l = np.linspace(start_distance, end_distance, step).reshape(
[step if axis == 1 else 1 for axis in range(x.ndim)])
results = np.tile(x, [step if axis == 1 else 1 for axis in range(x.ndim)])
is_manipulatable = np.zeros(results.shape, dtype=bool)
is_manipulatable[:, :, layer_indices] = True
results = np.where(is_manipulatable, x + l * b, results)
assert results.shape == (num, step, num_layers, *code_shape)
return results if layerwise_manipulation else results[:, :, 0]
def manipulate2(latent_codes,
proj,
mindex,
start_distance=-5.0,
end_distance=5.0,
step=21,
layerwise_manipulation=False,
num_layers=1,
manipulate_layers=None,
is_code_layerwise=False,
layerwise_manipulation_strength=1.0):
if not layerwise_manipulation:
assert not is_code_layerwise
# assert not is_boundary_layerwise
num_layers = 1
manipulate_layers = None
layerwise_manipulation_strength = 1.0
# Preprocessing for layer-wise manipulation.
# Parse indices of manipulation layers.
layer_indices = parse_indices(
manipulate_layers, min_val=0, max_val=num_layers - 1)
if not layer_indices:
layer_indices = list(range(num_layers))
# Make latent codes layer-wise if needed.
assert num_layers > 0
if not is_code_layerwise:
x = latent_codes[:, np.newaxis]
x = np.tile(x, [num_layers if axis == 1 else 1 for axis in range(x.ndim)])
else:
x = latent_codes
if x.shape[1] != num_layers:
raise ValueError(f'Latent codes should be with shape [num, num_layers, '
f'*code_shape], where `num_layers` equals to '
f'{num_layers}, but {x.shape} is received!')
# Make boundary layer-wise if needed.
# if not is_boundary_layerwise:
# b = boundary
# b = np.tile(b, [num_layers if axis == 0 else 1 for axis in range(b.ndim)])
# else:
# b = boundary[0]
# if b.shape[0] != num_layers:
# raise ValueError(f'Boundary should be with shape [num_layers, '
# f'*code_shape], where `num_layers` equals to '
# f'{num_layers}, but {b.shape} is received!')
# Get layer-wise manipulation strength.
if isinstance(layerwise_manipulation_strength, (int, float)):
s = [float(layerwise_manipulation_strength) for _ in range(num_layers)]
elif isinstance(layerwise_manipulation_strength, (list, tuple)):
s = layerwise_manipulation_strength
if len(s) != num_layers:
raise ValueError(f'Shape of layer-wise manipulation strength `{len(s)}` '
f'mismatches number of layers `{num_layers}`!')
elif isinstance(layerwise_manipulation_strength, np.ndarray):
s = layerwise_manipulation_strength
if s.size != num_layers:
raise ValueError(f'Shape of layer-wise manipulation strength `{s.size}` '
f'mismatches number of layers `{num_layers}`!')
else:
raise ValueError(f'Unsupported type of `layerwise_manipulation_strength`!')
# s = np.array(s).reshape(
# [num_layers if axis == 0 else 1 for axis in range(b.ndim)])
# b = b * s
# if x.shape[1:] != b.shape:
# raise ValueError(f'Latent code shape {x.shape} and boundary shape '
# f'{b.shape} mismatch!')
num = x.shape[0]
code_shape = x.shape[2:]
x = x[:, np.newaxis]
# b = b[np.newaxis, np.newaxis, :]
# l = np.linspace(start_distance, end_distance, step).reshape(
# [step if axis == 1 else 1 for axis in range(x.ndim)])
results = np.tile(x, [step if axis == 1 else 1 for axis in range(x.ndim)])
is_manipulatable = np.zeros(results.shape, dtype=bool)
is_manipulatable[:, :, layer_indices] = True
tmp=MPC(proj,x,mindex,start_distance,end_distance,step)
tmp = tmp[:, :,np.newaxis]
tmp1 = np.tile(tmp, [num_layers if axis == 2 else 1 for axis in range(tmp.ndim)])
results = np.where(is_manipulatable, tmp1, results)
# print(results.shape)
assert results.shape == (num, step, num_layers, *code_shape)
return results if layerwise_manipulation else results[:, :, 0]
def MPC(proj,x,mindex,start_distance,end_distance,step):
# x shape (batch_size,1,num_layers,feature)
# print(x.shape)
x1=proj.transform(x[:,0,0,:]) #/np.sqrt(proj.explained_variance_) # (batch_size,num_pc)
x1 = x1[:, np.newaxis]
x1 = np.tile(x1, [step if axis == 1 else 1 for axis in range(x1.ndim)])
l = np.linspace(start_distance, end_distance, step)[None,:]
x1[:,:,mindex]+=l
tmp=x1.reshape((-1,x1.shape[-1])) #*np.sqrt(proj.explained_variance_)
# print('xxx')
x2=proj.inverse_transform(tmp)
x2=x2.reshape((x1.shape[0],x1.shape[1],-1))
# x1 = x1[:, np.newaxis]
# x1 = np.tile(x1, [step if axis == 1 else 1 for axis in range(x1.ndim)])
return x2
def parse_boundary_list(boundary_list_path):
"""Parses boundary list.
Sometimes, a text file containing a list of boundaries will significantly
simplify image manipulation with a large amount of boundaries. This function
is used to parse boundary information from such list file.
Basically, each item in the list should be with format
`($NAME, $SPACE_TYPE): $PATH`. `DISABLE` at the beginning of the line can
disable a particular boundary.
Sample:
(age, z): $AGE_BOUNDARY_PATH
(gender, w): $GENDER_BOUNDARY_PATH
DISABLE(pose, wp): $POSE_BOUNDARY_PATH
Args:
boundary_list_path: Path to the boundary list.
Returns:
A dictionary, whose key is a two-element tuple (boundary_name, space_type)
and value is the corresponding boundary path.
Raise:
ValueError: If the given boundary list does not exist.
"""
if not os.path.isfile(boundary_list_path):
raise ValueError(f'Boundary list `boundary_list_path` does not exist!')
boundaries = {}
with open(boundary_list_path, 'r') as f:
for line in f:
if line[:len('DISABLE')] == 'DISABLE':
continue
boundary_info, boundary_path = line.strip().split(':')
boundary_name, space_type = boundary_info.strip()[1:-1].split(',')
boundary_name = boundary_name.strip()
space_type = space_type.strip().lower()
boundary_path = boundary_path.strip()
boundaries[(boundary_name, space_type)] = boundary_path
return boundaries
|