Spaces:
Runtime error
Runtime error
File size: 6,351 Bytes
f10968e 5f3cfd3 cc280c0 f10968e 6e2fc6f 4e0c8c4 f10968e 5f3cfd3 f10968e 5f3cfd3 f10968e 5f3cfd3 cc280c0 6e2fc6f ce435c2 4e0c8c4 ce435c2 4e0c8c4 ce435c2 4e0c8c4 ce435c2 5f3cfd3 ce435c2 d2c01c1 ce435c2 5f3cfd3 f10968e ce435c2 5f3cfd3 ce435c2 5f3cfd3 ce435c2 5f3cfd3 f10968e ce435c2 5f3cfd3 f10968e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
from gensim.models import Word2Vec
from collections import defaultdict
import os
def load_all_models():
'''
Load all word2vec models
'''
archaic = ('archaic', load_word2vec_model('models/archaic_cbow.model'))
classical = ('classical', load_word2vec_model('models/classical_cbow.model'))
early_roman = ('early_roman', load_word2vec_model('models/early_roman_cbow.model'))
hellen = ('hellen', load_word2vec_model('models/hellen_cbow.model'))
late_roman = ('late_roman', load_word2vec_model('models/late_roman_cbow.model'))
return [archaic, classical, early_roman, hellen, late_roman]
def load_word2vec_model(model_path):
'''
Load a word2vec model from a file
'''
return Word2Vec.load(model_path)
def get_word_vector(model, word):
'''
Return the word vector of a word
'''
return model.wv[word]
def iterate_over_words(model):
'''
Iterate over all words in the vocabulary and print their vectors
'''
index = 0
for word, index in model.wv.key_to_index.items():
vector = get_word_vector(model, word)
print(f'{index} Word: {word}, Vector: {vector}')
index += 1
def model_dictionary(model):
'''
Return the dictionary of the word2vec model
Key is the word and value is the vector of the word
'''
dict = defaultdict(list)
for word, index in model.wv.key_to_index.items():
vector = get_word_vector(model, word)
dict[word] = vector
return dict
def dot_product(vector_a, vector_b):
'''
Return the dot product of two vectors
'''
return sum(a * b for a, b in zip(vector_a, vector_b))
def magnitude(vector):
'''
Return the magnitude of a vector
'''
return sum(x**2 for x in vector) ** 0.5
def cosine_similarity(vector_a, vector_b):
'''
Return the cosine similarity of two vectors
'''
dot_prod = dot_product(vector_a, vector_b)
mag_a = magnitude(vector_a)
mag_b = magnitude(vector_b)
# Avoid division by zero
if mag_a == 0 or mag_b == 0:
return 0.0
similarity = dot_prod / (mag_a * mag_b)
return similarity
def get_cosine_similarity(word1, word2, time_slice):
'''
Return the cosine similarity of two words
'''
# TO DO: MOET NETTER
# Return if path does not exist
if not os.path.exists(f'models/{time_slice}.model'):
return
model = load_word2vec_model(f'models/{time_slice}.model')
dict = model_dictionary(model)
return cosine_similarity(dict[word1], dict[word2])
def get_cosine_similarity_one_word(word, time_slice1, time_slice2):
'''
Return the cosine similarity of one word in two different time slices
'''
# Return if path does not exist
if not os.path.exists(f'models/{time_slice1}.model') or not os.path.exists(f'models/{time_slice2}.model'):
return
model1 = load_word2vec_model(f'models/{time_slice1}.model')
model2 = load_word2vec_model(f'models/{time_slice2}.model')
dict1 = model_dictionary(model1)
dict2 = model_dictionary(model2)
return cosine_similarity(dict1[word], dict2[word])
def get_nearest_neighbours(word, time_slice_model, n=10, models=load_all_models()):
'''
Return the nearest neighbours of a word
word: the word for which the nearest neighbours are calculated
time_slice_model: the word2vec model of the time slice of the input word
models: list of tuples with the name of the time slice and the word2vec model (default: all in ./models)
n: the number of nearest neighbours to return (default: 10)
Return: list of tuples with the word, the time slice and
the cosine similarity of the nearest neighbours
'''
time_slice_model = load_word2vec_model(f'models/{time_slice_model}.model')
vector_1 = get_word_vector(time_slice_model, word)
nearest_neighbours = []
# Iterate over all models
for model in models:
model_name = model[0]
model = model[1]
# Iterate over all words of the model
for word, index in model.wv.key_to_index.items():
# Vector of the current word
vector_2 = get_word_vector(model, word)
# Calculate the cosine similarity between current word and input word
cosine_similarity_vectors = cosine_similarity(vector_1, vector_2)
# If the list of nearest neighbours is not full yet, add the current word
if len(nearest_neighbours) < n:
nearest_neighbours.append((word, model_name, cosine_similarity_vectors))
# If the list of nearest neighbours is full, replace the word with the smallest cosine similarity
else:
smallest_neighbour = min(nearest_neighbours, key=lambda x: x[2])
if cosine_similarity_vectors > smallest_neighbour[2]:
nearest_neighbours.remove(smallest_neighbour)
nearest_neighbours.append((word, model_name, cosine_similarity_vectors))
return sorted(nearest_neighbours, key=lambda x: x[2], reverse=True)
def main():
# model = load_word2vec_model('models/archaic_cbow.model')
# archaic_cbow_dict = model_dictionary(model)
# score = cosine_similarity(archaic_cbow_dict['Πελοπόννησος'], archaic_cbow_dict['σπάργανον'])
# print(score)
archaic = ('archaic', load_word2vec_model('models/archaic_cbow.model'))
classical = ('classical', load_word2vec_model('models/classical_cbow.model'))
early_roman = ('early_roman', load_word2vec_model('models/early_roman_cbow.model'))
hellen = ('hellen', load_word2vec_model('models/hellen_cbow.model'))
late_roman = ('late_roman', load_word2vec_model('models/late_roman_cbow.model'))
models = [archaic, classical, early_roman, hellen, late_roman]
nearest_neighbours = get_nearest_neighbours('πατήρ', archaic[1], models, n=5)
print(nearest_neighbours)
# vector = get_word_vector(model, 'ἀνήρ')
# print(vector)
# Iterate over all words and print their vectors
# iterate_over_words(model)
if __name__ == "__main__":
main()
|