File size: 6,351 Bytes
f10968e
5f3cfd3
cc280c0
f10968e
6e2fc6f
4e0c8c4
 
 
 
 
 
 
 
 
 
 
 
 
 
f10968e
 
 
 
 
 
5f3cfd3
f10968e
 
 
 
 
 
5f3cfd3
f10968e
 
 
 
 
 
 
 
 
 
5f3cfd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc280c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e2fc6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce435c2
 
4e0c8c4
ce435c2
 
 
 
 
4e0c8c4
 
ce435c2
 
 
4e0c8c4
 
ce435c2
 
5f3cfd3
ce435c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2c01c1
ce435c2
 
5f3cfd3
f10968e
ce435c2
 
 
 
 
 
5f3cfd3
ce435c2
 
 
 
 
5f3cfd3
ce435c2
 
 
5f3cfd3
 
f10968e
 
ce435c2
5f3cfd3
f10968e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from gensim.models import Word2Vec
from collections import defaultdict
import os


def load_all_models():
    '''
        Load all word2vec models
    '''

    archaic = ('archaic', load_word2vec_model('models/archaic_cbow.model'))
    classical = ('classical', load_word2vec_model('models/classical_cbow.model'))
    early_roman = ('early_roman', load_word2vec_model('models/early_roman_cbow.model'))
    hellen = ('hellen', load_word2vec_model('models/hellen_cbow.model'))
    late_roman = ('late_roman', load_word2vec_model('models/late_roman_cbow.model'))
    
    return [archaic, classical, early_roman, hellen, late_roman]


def load_word2vec_model(model_path):
    '''
        Load a word2vec model from a file
    '''
    return Word2Vec.load(model_path)


def get_word_vector(model, word):
    '''
        Return the word vector of a word
    '''
    return model.wv[word]


def iterate_over_words(model):
    '''
        Iterate over all words in the vocabulary and print their vectors
    '''
    index = 0
    for word, index in model.wv.key_to_index.items():
        vector = get_word_vector(model, word)
        print(f'{index} Word: {word}, Vector: {vector}')
        index += 1


def model_dictionary(model):
    '''
        Return the dictionary of the word2vec model
        Key is the word and value is the vector of the word
    '''
    dict = defaultdict(list)
    for word, index in model.wv.key_to_index.items():
        vector = get_word_vector(model, word)
        dict[word] = vector
    
    return dict  
    
    
def dot_product(vector_a, vector_b):
    '''
        Return the dot product of two vectors
    '''
    return sum(a * b for a, b in zip(vector_a, vector_b))


def magnitude(vector):
    '''
        Return the magnitude of a vector
    '''
    return sum(x**2 for x in vector) ** 0.5


def cosine_similarity(vector_a, vector_b):
    '''
        Return the cosine similarity of two vectors
    '''
    dot_prod = dot_product(vector_a, vector_b)
    mag_a = magnitude(vector_a)
    mag_b = magnitude(vector_b)

    # Avoid division by zero
    if mag_a == 0 or mag_b == 0:
        return 0.0

    similarity = dot_prod / (mag_a * mag_b)
    return similarity


def get_cosine_similarity(word1, word2, time_slice):
    '''
        Return the cosine similarity of two words
    '''
    # TO DO: MOET NETTER
    
    # Return if path does not exist
    if not os.path.exists(f'models/{time_slice}.model'):
        return 
    
    model = load_word2vec_model(f'models/{time_slice}.model')
    dict = model_dictionary(model)
    return cosine_similarity(dict[word1], dict[word2])


def get_cosine_similarity_one_word(word, time_slice1, time_slice2):
    '''
        Return the cosine similarity of one word in two different time slices
    '''
   
    # Return if path does not exist
    if not os.path.exists(f'models/{time_slice1}.model') or not os.path.exists(f'models/{time_slice2}.model'):
        return 
    
    model1 = load_word2vec_model(f'models/{time_slice1}.model')
    model2 = load_word2vec_model(f'models/{time_slice2}.model')
    
    dict1 = model_dictionary(model1)
    dict2 = model_dictionary(model2)
    
    return cosine_similarity(dict1[word], dict2[word])


def get_nearest_neighbours(word, time_slice_model, n=10, models=load_all_models()):
    '''
        Return the nearest neighbours of a word
        
        word: the word for which the nearest neighbours are calculated
        time_slice_model: the word2vec model of the time slice of the input word
        models: list of tuples with the name of the time slice and the word2vec model (default: all in ./models)
        n: the number of nearest neighbours to return (default: 10)
        
        Return: list of tuples with the word, the time slice and 
                the cosine similarity of the nearest neighbours
    '''    
    time_slice_model = load_word2vec_model(f'models/{time_slice_model}.model')
    vector_1 = get_word_vector(time_slice_model, word)
    nearest_neighbours = []
    
    # Iterate over all models
    for model in models: 
        model_name = model[0]
        model = model[1]

        # Iterate over all words of the model
        for word, index in model.wv.key_to_index.items():
            
            # Vector of the current word
            vector_2 = get_word_vector(model, word)
            
            # Calculate the cosine similarity between current word and input word
            cosine_similarity_vectors = cosine_similarity(vector_1, vector_2)
            
            # If the list of nearest neighbours is not full yet, add the current word
            if len(nearest_neighbours) < n: 
                nearest_neighbours.append((word, model_name, cosine_similarity_vectors))
            
            # If the list of nearest neighbours is full, replace the word with the smallest cosine similarity
            else: 
                smallest_neighbour = min(nearest_neighbours, key=lambda x: x[2])
                if cosine_similarity_vectors > smallest_neighbour[2]:
                    nearest_neighbours.remove(smallest_neighbour)
                    nearest_neighbours.append((word, model_name, cosine_similarity_vectors))

    return sorted(nearest_neighbours, key=lambda x: x[2], reverse=True)
    


def main():
    # model = load_word2vec_model('models/archaic_cbow.model')
    # archaic_cbow_dict = model_dictionary(model)
    
    # score = cosine_similarity(archaic_cbow_dict['Πελοπόννησος'], archaic_cbow_dict['σπάργανον'])
    # print(score)
    
    
    archaic = ('archaic', load_word2vec_model('models/archaic_cbow.model'))
    classical = ('classical', load_word2vec_model('models/classical_cbow.model'))
    early_roman = ('early_roman', load_word2vec_model('models/early_roman_cbow.model'))
    hellen = ('hellen', load_word2vec_model('models/hellen_cbow.model'))
    late_roman = ('late_roman', load_word2vec_model('models/late_roman_cbow.model'))
    
    models = [archaic, classical, early_roman, hellen, late_roman]
    nearest_neighbours = get_nearest_neighbours('πατήρ', archaic[1], models, n=5)
    print(nearest_neighbours)
    # vector = get_word_vector(model, 'ἀνήρ')
    # print(vector)

    # Iterate over all words and print their vectors
    # iterate_over_words(model)


if __name__ == "__main__":
    main()