Spaces:
Runtime error
Runtime error
Added 'find nearest neighbours' functionality
Browse files- app.py +15 -2
- word2vec.py +19 -4
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
from word2vec import get_cosine_similarity, get_cosine_similarity_one_word
|
3 |
|
4 |
|
5 |
def greet(name, name2, name3):
|
@@ -10,7 +10,20 @@ with gr.Blocks() as demo:
|
|
10 |
|
11 |
# Tab 1
|
12 |
with gr.Tab("Find nearest neighbours"):
|
13 |
-
gr.Markdown("## Find nearest neighbours")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
# Tab 2
|
|
|
1 |
import gradio as gr
|
2 |
+
from word2vec import get_cosine_similarity, get_cosine_similarity_one_word, get_nearest_neighbours, load_all_models
|
3 |
|
4 |
|
5 |
def greet(name, name2, name3):
|
|
|
10 |
|
11 |
# Tab 1
|
12 |
with gr.Tab("Find nearest neighbours"):
|
13 |
+
gr.Markdown("## Find nearest neighbours of a word")
|
14 |
+
iface = gr.Interface(
|
15 |
+
fn=get_nearest_neighbours,
|
16 |
+
inputs=[
|
17 |
+
gr.Textbox(label='Word 1 (required)', placeholder='χρηστήριον'),
|
18 |
+
gr.Radio(label='Time slice (required)', choices=["archaic_cbow", "classical_cbow", "early_roman_cbow", "hellen_cbow", "late_roman_cbow"]),
|
19 |
+
gr.Slider(label='Number of neighbours', minimum=1, maximum=50, step=1, value=10)
|
20 |
+
],
|
21 |
+
outputs=gr.DataFrame(
|
22 |
+
label="Result",
|
23 |
+
headers=["Word", "Time slice", "Cosine similarity"]
|
24 |
+
),
|
25 |
+
submit_btn='Calculate'
|
26 |
+
)
|
27 |
|
28 |
|
29 |
# Tab 2
|
word2vec.py
CHANGED
@@ -3,6 +3,20 @@ from collections import defaultdict
|
|
3 |
import os
|
4 |
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
def load_word2vec_model(model_path):
|
7 |
'''
|
8 |
Load a word2vec model from a file
|
@@ -104,18 +118,19 @@ def get_cosine_similarity_one_word(word, time_slice1, time_slice2):
|
|
104 |
return cosine_similarity(dict1[word], dict2[word])
|
105 |
|
106 |
|
107 |
-
def get_nearest_neighbours(word, time_slice_model,
|
108 |
'''
|
109 |
Return the nearest neighbours of a word
|
110 |
|
111 |
word: the word for which the nearest neighbours are calculated
|
112 |
time_slice_model: the word2vec model of the time slice of the input word
|
113 |
-
models: list of tuples with the name of the time slice and the word2vec model
|
114 |
-
n: the number of nearest neighbours to return
|
115 |
|
116 |
Return: list of tuples with the word, the time slice and
|
117 |
the cosine similarity of the nearest neighbours
|
118 |
-
'''
|
|
|
119 |
vector_1 = get_word_vector(time_slice_model, word)
|
120 |
nearest_neighbours = []
|
121 |
|
|
|
3 |
import os
|
4 |
|
5 |
|
6 |
+
def load_all_models():
|
7 |
+
'''
|
8 |
+
Load all word2vec models
|
9 |
+
'''
|
10 |
+
|
11 |
+
archaic = ('archaic', load_word2vec_model('models/archaic_cbow.model'))
|
12 |
+
classical = ('classical', load_word2vec_model('models/classical_cbow.model'))
|
13 |
+
early_roman = ('early_roman', load_word2vec_model('models/early_roman_cbow.model'))
|
14 |
+
hellen = ('hellen', load_word2vec_model('models/hellen_cbow.model'))
|
15 |
+
late_roman = ('late_roman', load_word2vec_model('models/late_roman_cbow.model'))
|
16 |
+
|
17 |
+
return [archaic, classical, early_roman, hellen, late_roman]
|
18 |
+
|
19 |
+
|
20 |
def load_word2vec_model(model_path):
|
21 |
'''
|
22 |
Load a word2vec model from a file
|
|
|
118 |
return cosine_similarity(dict1[word], dict2[word])
|
119 |
|
120 |
|
121 |
+
def get_nearest_neighbours(word, time_slice_model, n=10, models=load_all_models()):
|
122 |
'''
|
123 |
Return the nearest neighbours of a word
|
124 |
|
125 |
word: the word for which the nearest neighbours are calculated
|
126 |
time_slice_model: the word2vec model of the time slice of the input word
|
127 |
+
models: list of tuples with the name of the time slice and the word2vec model (default: all in ./models)
|
128 |
+
n: the number of nearest neighbours to return (default: 10)
|
129 |
|
130 |
Return: list of tuples with the word, the time slice and
|
131 |
the cosine similarity of the nearest neighbours
|
132 |
+
'''
|
133 |
+
time_slice_model = load_word2vec_model(f'models/{time_slice_model}.model')
|
134 |
vector_1 = get_word_vector(time_slice_model, word)
|
135 |
nearest_neighbours = []
|
136 |
|