Spaces:
Sleeping
Sleeping
Update app.py
#2
by
paragon-analytics
- opened
app.py
CHANGED
@@ -4,7 +4,6 @@ import shap
|
|
4 |
import numpy as np
|
5 |
import scipy as sp
|
6 |
import torch
|
7 |
-
import tensorflow as tf
|
8 |
import transformers
|
9 |
from transformers import pipeline
|
10 |
from transformers import RobertaTokenizer, RobertaModel
|
@@ -51,8 +50,8 @@ ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation
|
|
51 |
def adr_predict(x):
|
52 |
encoded_input = tokenizer(x, return_tensors='pt')
|
53 |
output = model(**encoded_input)
|
54 |
-
scores = output[0][0].detach()
|
55 |
-
scores =
|
56 |
|
57 |
shap_values = explainer([str(x).lower()])
|
58 |
# # Find the index of the class you want as the default reference (e.g., 'label_1')
|
|
|
4 |
import numpy as np
|
5 |
import scipy as sp
|
6 |
import torch
|
|
|
7 |
import transformers
|
8 |
from transformers import pipeline
|
9 |
from transformers import RobertaTokenizer, RobertaModel
|
|
|
50 |
def adr_predict(x):
|
51 |
encoded_input = tokenizer(x, return_tensors='pt')
|
52 |
output = model(**encoded_input)
|
53 |
+
scores = output[0][0].detach()
|
54 |
+
scores = torch.nn.functional.softmax(scores)
|
55 |
|
56 |
shap_values = explainer([str(x).lower()])
|
57 |
# # Find the index of the class you want as the default reference (e.g., 'label_1')
|