Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,829 Bytes
b578f14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import Optional
import torch
from torch import nn, Tensor
from sam2.modeling.sam.transformer import RoPEAttention
from sam2.modeling.sam2_utils import get_activation_fn, get_clones
import pdb
class MemoryAttentionLayer(nn.Module):
def __init__(
self,
activation: str,
cross_attention: nn.Module,
d_model: int,
dim_feedforward: int,
dropout: float,
pos_enc_at_attn: bool,
pos_enc_at_cross_attn_keys: bool,
pos_enc_at_cross_attn_queries: bool,
self_attention: nn.Module,
):
super().__init__()
self.d_model = d_model
self.dim_feedforward = dim_feedforward
self.dropout_value = dropout
self.self_attn = self_attention
self.cross_attn_image = cross_attention
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
self.activation_str = activation
self.activation = get_activation_fn(activation)
# Where to add pos enc
self.pos_enc_at_attn = pos_enc_at_attn
self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries
self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys
def _forward_sa(self, tgt, query_pos):
# Self-Attention
tgt2 = self.norm1(tgt)
q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2
tgt2 = self.self_attn(q, k, v=tgt2)
tgt = tgt + self.dropout1(tgt2)
return tgt
def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0, object_frame_scores=None, object_ptr_scores=None):
kwds = {}
if num_k_exclude_rope > 0:
assert isinstance(self.cross_attn_image, RoPEAttention)
kwds = {"num_k_exclude_rope": num_k_exclude_rope}
# Cross-Attention
tgt2 = self.norm2(tgt)
if object_frame_scores is None:
key = memory + pos if self.pos_enc_at_cross_attn_keys else memory
else: # relative
key_original = memory + pos if self.pos_enc_at_cross_attn_keys else memory
num_frame, num_ptr = len(object_frame_scores), len(object_ptr_scores)
num_frame_ = int(num_frame*4096)
num_object = key_original.shape[0]
key_frame = key_original[:, :num_frame_].reshape(num_object, num_frame, 4096, -1)
key_ptr = key_original[:, num_frame_:].reshape(num_object, num_ptr, 4, -1)
scaling_low = 0.95
scaling_high = 1.05
if num_frame == 1:
key = key_original
else:
weight_frame = torch.stack(object_frame_scores, dim=1) # num_object, num_frame
weight_ptr = torch.stack(object_ptr_scores, dim=1) # num_object, num_ptr
standard_weight_frame = torch.linspace(scaling_low, scaling_high, num_frame).to(weight_frame) # num_frame
standard_weight_ptr = torch.linspace(scaling_low, scaling_high, num_ptr).to(weight_ptr) # num_ptr
new_weight_frame = torch.zeros_like(weight_frame)
new_weight_ptr = torch.zeros_like(weight_ptr)
new_weight_frame.scatter_(1, torch.argsort(weight_frame, dim=1), standard_weight_frame.unsqueeze(0).repeat([num_object, 1]))
new_weight_ptr.scatter_(1, torch.argsort(weight_ptr, dim=1), standard_weight_ptr.unsqueeze(0).repeat([num_object, 1]))
key_frame_scale = (new_weight_frame[:, :, None, None].to(key_frame.device) * key_frame)
key_ptr_scale = (new_weight_ptr[:, :, None, None].to(key_ptr.device) * key_ptr)
key = torch.cat([key_frame_scale.reshape(num_object, num_frame_, -1), key_ptr_scale.reshape(num_object, int(num_ptr*4), -1)], dim=1)
# key = memory + pos if self.pos_enc_at_cross_attn_keys else memory
tgt2 = self.cross_attn_image(
q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2,
k=key,
v=memory,
**kwds,
)
tgt = tgt + self.dropout2(tgt2)
return tgt
def forward(
self,
tgt,
memory,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
num_k_exclude_rope: int = 0,
object_frame_scores = None,
object_ptr_scores = None,
) -> torch.Tensor:
# Self-Attn, Cross-Attn
tgt = self._forward_sa(tgt, query_pos)
tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope, object_frame_scores, object_ptr_scores)
# MLP
tgt2 = self.norm3(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
tgt = tgt + self.dropout3(tgt2)
return tgt
class MemoryAttention(nn.Module):
def __init__(
self,
d_model: int,
pos_enc_at_input: bool,
layer: nn.Module,
num_layers: int,
batch_first: bool = True, # Do layers expect batch first input?
):
super().__init__()
self.d_model = d_model
self.layers = get_clones(layer, num_layers)
self.num_layers = num_layers
self.norm = nn.LayerNorm(d_model)
self.pos_enc_at_input = pos_enc_at_input
self.batch_first = batch_first
def forward(
self,
curr: torch.Tensor, # self-attention inputs
memory: torch.Tensor, # cross-attention inputs
curr_pos: Optional[Tensor] = None, # pos_enc for self-attention inputs
memory_pos: Optional[Tensor] = None, # pos_enc for cross-attention inputs
num_obj_ptr_tokens: int = 0, # number of object pointer *tokens*
object_frame_scores=None,
object_ptr_scores=None,
):
if isinstance(curr, list):
assert isinstance(curr_pos, list)
assert len(curr) == len(curr_pos) == 1
curr, curr_pos = (
curr[0],
curr_pos[0],
)
assert (
curr.shape[1] == memory.shape[1]
), "Batch size must be the same for curr and memory"
output = curr
if self.pos_enc_at_input and curr_pos is not None:
output = output + 0.1 * curr_pos
if self.batch_first:
# Convert to batch first
output = output.transpose(0, 1)
curr_pos = curr_pos.transpose(0, 1)
memory = memory.transpose(0, 1)
memory_pos = memory_pos.transpose(0, 1)
for layer in self.layers:
kwds = {}
if isinstance(layer.cross_attn_image, RoPEAttention):
kwds = {"num_k_exclude_rope": num_obj_ptr_tokens,
"object_frame_scores": object_frame_scores,
"object_ptr_scores":object_ptr_scores}
output = layer(
tgt=output,
memory=memory,
pos=memory_pos,
query_pos=curr_pos,
**kwds,
)
normed_output = self.norm(output)
if self.batch_first:
# Convert back to seq first
normed_output = normed_output.transpose(0, 1)
curr_pos = curr_pos.transpose(0, 1)
return normed_output |