File size: 10,003 Bytes
b578f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import logging
from functools import partial
from typing import List, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from iopath.common.file_io import g_pathmgr

from sam2.modeling.backbones.utils import (
    PatchEmbed,
    window_partition,
    window_unpartition,
)

from sam2.modeling.sam2_utils import DropPath, MLP


def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module = None) -> torch.Tensor:
    if pool is None:
        return x
    # (B, H, W, C) -> (B, C, H, W)
    x = x.permute(0, 3, 1, 2)
    x = pool(x)
    # (B, C, H', W') -> (B, H', W', C)
    x = x.permute(0, 2, 3, 1)
    if norm:
        x = norm(x)

    return x


class MultiScaleAttention(nn.Module):
    def __init__(
        self,
        dim: int,
        dim_out: int,
        num_heads: int,
        q_pool: nn.Module = None,
    ):
        super().__init__()

        self.dim = dim
        self.dim_out = dim_out
        self.num_heads = num_heads
        self.q_pool = q_pool
        self.qkv = nn.Linear(dim, dim_out * 3)
        self.proj = nn.Linear(dim_out, dim_out)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        B, H, W, _ = x.shape
        # qkv with shape (B, H * W, 3, nHead, C)
        qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1)
        # q, k, v with shape (B, H * W, nheads, C)
        q, k, v = torch.unbind(qkv, 2)

        # Q pooling (for downsample at stage changes)
        if self.q_pool:
            q = do_pool(q.reshape(B, H, W, -1), self.q_pool)
            H, W = q.shape[1:3]  # downsampled shape
            q = q.reshape(B, H * W, self.num_heads, -1)

        # Torch's SDPA expects [B, nheads, H*W, C] so we transpose
        x = F.scaled_dot_product_attention(
            q.transpose(1, 2),
            k.transpose(1, 2),
            v.transpose(1, 2),
        )
        # Transpose back
        x = x.transpose(1, 2)
        x = x.reshape(B, H, W, -1)

        x = self.proj(x)

        return x


class MultiScaleBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        dim_out: int,
        num_heads: int,
        mlp_ratio: float = 4.0,
        drop_path: float = 0.0,
        norm_layer: Union[nn.Module, str] = "LayerNorm",
        q_stride: Tuple[int, int] = None,
        act_layer: nn.Module = nn.GELU,
        window_size: int = 0,
    ):
        super().__init__()

        if isinstance(norm_layer, str):
            norm_layer = partial(getattr(nn, norm_layer), eps=1e-6)

        self.dim = dim
        self.dim_out = dim_out
        self.norm1 = norm_layer(dim)

        self.window_size = window_size

        self.pool, self.q_stride = None, q_stride
        if self.q_stride:
            self.pool = nn.MaxPool2d(
                kernel_size=q_stride, stride=q_stride, ceil_mode=False
            )

        self.attn = MultiScaleAttention(
            dim,
            dim_out,
            num_heads=num_heads,
            q_pool=self.pool,
        )
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

        self.norm2 = norm_layer(dim_out)
        self.mlp = MLP(
            dim_out,
            int(dim_out * mlp_ratio),
            dim_out,
            num_layers=2,
            activation=act_layer,
        )

        if dim != dim_out:
            self.proj = nn.Linear(dim, dim_out)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        shortcut = x  # B, H, W, C
        x = self.norm1(x)

        # Skip connection
        if self.dim != self.dim_out:
            shortcut = do_pool(self.proj(x), self.pool)

        # Window partition
        window_size = self.window_size
        if window_size > 0:
            H, W = x.shape[1], x.shape[2]
            x, pad_hw = window_partition(x, window_size)

        # Window Attention + Q Pooling (if stage change)
        x = self.attn(x)
        if self.q_stride:
            # Shapes have changed due to Q pooling
            window_size = self.window_size // self.q_stride[0]
            H, W = shortcut.shape[1:3]

            pad_h = (window_size - H % window_size) % window_size
            pad_w = (window_size - W % window_size) % window_size
            pad_hw = (H + pad_h, W + pad_w)

        # Reverse window partition
        if self.window_size > 0:
            x = window_unpartition(x, window_size, pad_hw, (H, W))

        x = shortcut + self.drop_path(x)
        # MLP
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class Hiera(nn.Module):
    """
    Reference: https://arxiv.org/abs/2306.00989
    """

    def __init__(
        self,
        embed_dim: int = 96,  # initial embed dim
        num_heads: int = 1,  # initial number of heads
        drop_path_rate: float = 0.0,  # stochastic depth
        q_pool: int = 3,  # number of q_pool stages
        q_stride: Tuple[int, int] = (2, 2),  # downsample stride bet. stages
        stages: Tuple[int, ...] = (2, 3, 16, 3),  # blocks per stage
        dim_mul: float = 2.0,  # dim_mul factor at stage shift
        head_mul: float = 2.0,  # head_mul factor at stage shift
        window_pos_embed_bkg_spatial_size: Tuple[int, int] = (14, 14),
        # window size per stage, when not using global att.
        window_spec: Tuple[int, ...] = (
            8,
            4,
            14,
            7,
        ),
        # global attn in these blocks
        global_att_blocks: Tuple[int, ...] = (
            12,
            16,
            20,
        ),
        weights_path=None,
        return_interm_layers=True,  # return feats from every stage
    ):
        super().__init__()

        assert len(stages) == len(window_spec)
        self.window_spec = window_spec

        depth = sum(stages)
        self.q_stride = q_stride
        self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
        assert 0 <= q_pool <= len(self.stage_ends[:-1])
        self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool]
        self.return_interm_layers = return_interm_layers

        self.patch_embed = PatchEmbed(
            embed_dim=embed_dim,
        )
        # Which blocks have global att?
        self.global_att_blocks = global_att_blocks

        # Windowed positional embedding (https://arxiv.org/abs/2311.05613)
        self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size
        self.pos_embed = nn.Parameter(
            torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size)
        )
        self.pos_embed_window = nn.Parameter(
            torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0])
        )

        dpr = [
            x.item() for x in torch.linspace(0, drop_path_rate, depth)
        ]  # stochastic depth decay rule

        cur_stage = 1
        self.blocks = nn.ModuleList()

        for i in range(depth):
            dim_out = embed_dim
            # lags by a block, so first block of
            # next stage uses an initial window size
            # of previous stage and final window size of current stage
            window_size = self.window_spec[cur_stage - 1]

            if self.global_att_blocks is not None:
                window_size = 0 if i in self.global_att_blocks else window_size

            if i - 1 in self.stage_ends:
                dim_out = int(embed_dim * dim_mul)
                num_heads = int(num_heads * head_mul)
                cur_stage += 1

            block = MultiScaleBlock(
                dim=embed_dim,
                dim_out=dim_out,
                num_heads=num_heads,
                drop_path=dpr[i],
                q_stride=self.q_stride if i in self.q_pool_blocks else None,
                window_size=window_size,
            )

            embed_dim = dim_out
            self.blocks.append(block)

        self.channel_list = (
            [self.blocks[i].dim_out for i in self.stage_ends[::-1]]
            if return_interm_layers
            else [self.blocks[-1].dim_out]
        )

        if weights_path is not None:
            with g_pathmgr.open(weights_path, "rb") as f:
                chkpt = torch.load(f, map_location="cpu")
            logging.info("loading Hiera", self.load_state_dict(chkpt, strict=False))

    def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor:
        h, w = hw
        window_embed = self.pos_embed_window
        pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic")
        pos_embed = pos_embed + window_embed.tile(
            [x // y for x, y in zip(pos_embed.shape, window_embed.shape)]
        )
        pos_embed = pos_embed.permute(0, 2, 3, 1)
        return pos_embed

    def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
        x = self.patch_embed(x)
        # x: (B, H, W, C)

        # Add pos embed
        x = x + self._get_pos_embed(x.shape[1:3])

        outputs = []
        for i, blk in enumerate(self.blocks):
            x = blk(x)
            if (i == self.stage_ends[-1]) or (
                i in self.stage_ends and self.return_interm_layers
            ):
                feats = x.permute(0, 3, 1, 2)
                outputs.append(feats)

        return outputs

    def get_layer_id(self, layer_name):
        # https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py#L33
        num_layers = self.get_num_layers()

        if layer_name.find("rel_pos") != -1:
            return num_layers + 1
        elif layer_name.find("pos_embed") != -1:
            return 0
        elif layer_name.find("patch_embed") != -1:
            return 0
        elif layer_name.find("blocks") != -1:
            return int(layer_name.split("blocks")[1].split(".")[1]) + 1
        else:
            return num_layers + 1

    def get_num_layers(self) -> int:
        return len(self.blocks)