File size: 5,149 Bytes
9f373ac
 
 
 
 
 
 
 
d92fc94
 
9f373ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d92fc94
9f373ac
 
b9601bc
9f373ac
 
 
 
 
08b67ae
9f373ac
 
 
 
08b67ae
9f373ac
 
 
 
 
b9601bc
9f373ac
b9601bc
9f373ac
b9601bc
9f373ac
b9601bc
9f373ac
b9601bc
 
 
47fde9b
9f373ac
 
b9601bc
9f373ac
 
 
 
 
 
 
 
 
 
 
 
 
 
b9601bc
9f373ac
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from transformers import BitsAndBytesConfig, LlavaNextVideoForConditionalGeneration, LlavaNextVideoProcessor
import torch
import numpy as np
import av
import spaces
import gradio as gr
import os

zero = torch.Tensor([0]).cuda()

quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.float16
)

model_name = 'llava-hf/LLaVA-NeXT-Video-7B-DPO-hf' 

processor = LlavaNextVideoProcessor.from_pretrained(model_name)
model = LlavaNextVideoForConditionalGeneration.from_pretrained(
    model_name,
    quantization_config=quantization_config,
    device_map='auto'
)

def read_video_pyav(container, indices):
    '''
    Decode the video with PyAV decoder.
    Args:
        container (av.container.input.InputContainer): PyAV container.
        indices (List[int]): List of frame indices to decode.
    Returns:
        np.ndarray: np array of decoded frames of shape (num_frames, height, width, 3).
    '''
    frames = []
    container.seek(0)
    start_index = indices[0]
    end_index = indices[-1]
    for i, frame in enumerate(container.decode(video=0)):
        if i > end_index:
            break
        if i >= start_index and i in indices:
            frames.append(frame)
    return np.stack([x.to_ndarray(format="rgb24") for x in frames])

@spaces.GPU
def process_video(video_file, question_parts):
    # Open video and sample frames
    with av.open(video_file.name) as container: # Access file name from Gradio input
        total_frames = container.streams.video[0].frames
        indices = np.arange(0, total_frames, total_frames / 8).astype(int)
        video_clip = read_video_pyav(container, indices)

    # Combine question parts into a single question
    question = " ".join(question_parts)

    # Prepare conversation
    conversation = [
        {
            "role": "user",
            "content": [
                {"type": "text", "text": f"{question}"},
                {"type": "video"},
            ],
        },
    ]
    prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
    # Prepare inputs for the model
    input = processor([prompt], videos=[video_clip], padding=True, return_tensors="pt").to(zero.device)

    # Generate output
    generate_kwargs = {"max_new_tokens": 3000, "do_sample": False, "top_p": 0.9}
    output = model.generate(**input, **generate_kwargs)
    generated_text = processor.batch_decode(output, skip_special_tokens=True)[0]
    
    return generated_text.split("ASSISTANT: ", 1)[-1].strip()

def process_videos(video_files, question):
    """Processes multiple videos and answers a single question for each."""
    answers = []
    for video_file in video_files:
        video_name = os.path.basename(video_file.name)
        answer = process_video(video_file, question)
        answers.append(f"**Video: {video_name}**\n{answer}\n")
    return "\n---\n".join(answers)

# Define Gradio interface for multiple videos
def gradio_interface(videos, indoors_outdoors, standing_sitting, hands_free, interacting_screen):
    question = "For each question, analyze the given video carefully and base your answers on the observations made."
    if indoors_outdoors:
        question += "Consider the broader environmental context shown in the video’s background. Are there signs of an open-air space, like greenery, structures, or people passing by? If so, it’s an outdoor setting. If the setting looks confined with furniture, walls, or home decorations, it’s an indoor environment."
    if standing_sitting:
        question += "Evaluate the subject’s body posture and movement within the video. Are they standing upright with both feet planted firmly on the ground? If so, they are standing."
    if hands_free:
        question += "Examine the subject’s right and left hands in the video to check if they are holding anything like a microphone, book, paper(White color), object, or any electronic device, try segmentations and decide if the hands are free or not."
    if interacting_screen:
        question += "Assess the surroundings behind the subject in the video. Do they seem to interact with any visible screens, such as laptops, TVs, or digital billboards? If yes, then they are interacting with a screen. If not, they are not interacting with a screen."
    question_prefix = "By taking these factors into account when watching the video, please answer the questions accurately."
    question = question + question_prefix 
    answers = process_videos(videos, question)
    return answers


iface = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.File(label="Upload Videos", file_count="multiple"),
        gr.Checkbox(label="Indoors or Outdoors", value=False),
        gr.Checkbox(label="Standing or Sitting", value=False),
        gr.Checkbox(label="Hands Free or Not", value=False),
        gr.Checkbox(label="Interacting with Screen", value=False),
    ],
    outputs=gr.Textbox(label="Generated Answers"),
    title="Video Question Answering",
    description="Upload multiple videos and select questions to get answers."
)

    
if __name__ == "__main__":
    iface.launch(debug=True)