File size: 8,231 Bytes
7ec133b
 
 
 
9db455c
 
85e7ead
69344b8
7ec133b
 
c52e238
fb293c4
c52e238
7ec133b
f8dcf83
a4115fd
 
 
f8dcf83
7ec133b
9db455c
5c72980
 
b499d7f
7294f1e
 
b499d7f
7294f1e
 
 
 
 
b499d7f
 
 
7294f1e
 
 
 
 
 
b499d7f
 
 
 
 
 
7294f1e
 
 
9db455c
b499d7f
 
 
 
 
 
 
 
 
 
 
 
 
3f30162
feb8185
 
 
 
fa7747b
3f30162
0a6288f
 
 
9db455c
0a6288f
 
 
5c72980
0a6288f
 
9db455c
0a6288f
fa7747b
3f30162
0a6288f
bda5bd0
9309155
bda5bd0
d0246f4
0a6288f
5c72980
0a6288f
 
7bf6cc7
 
f6b64ee
bda5bd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69344b8
bda5bd0
 
69344b8
bda5bd0
 
 
 
 
 
69344b8
bda5bd0
69344b8
 
fa7747b
69344b8
 
fa7747b
b1c675e
 
 
aa10fdf
 
b1c675e
 
aa10fdf
b1c675e
 
 
aa10fdf
b1c675e
 
82a5278
b1c675e
aa10fdf
b1c675e
 
aa10fdf
b1c675e
 
 
aa10fdf
c5ecbbd
b1c675e
82a5278
b1c675e
aa10fdf
f6b64ee
 
 
 
 
 
 
 
 
 
 
 
 
aa10fdf
f6b64ee
b1c675e
aa10fdf
0e737a8
b1c675e
 
c5ecbbd
 
b1c675e
f6b64ee
 
b1c675e
f6b64ee
 
aa10fdf
 
 
 
fa7747b
 
b50f60b
 
7ec133b
 
5c72980
 
 
 
 
e7d06c3
5c72980
 
 
 
 
 
 
 
8975f30
8501e74
e7d06c3
5c72980
 
 
 
 
 
 
a333293
ee0b20a
 
a333293
 
5c72980
 
a333293
 
 
5c72980
066538a
a333293
aa10fdf
 
1f932c1
066538a
aa10fdf
 
 
 
0327ec6
5c72980
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import gradio as gr
from PIL import Image
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import cv2
import numpy as np
import ast
from collections import Counter


# # Ensure GPU usage if available
device = "cuda" if torch.cuda.is_available() else "cpu"

# Initialize the model and tokenizer
model = AutoModelForCausalLM.from_pretrained("ManishThota/SparrowVQE",
                                             torch_dtype=torch.float16, 
                                             device_map="auto",
                                             trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("ManishThota/SparrowVQE", trust_remote_code=True)




def video_to_frames(video, fps=1):
    """Converts a video file into frames and stores them as PNG images in a list."""
    frames_png = []
    cap = cv2.VideoCapture(video)
    
    if not cap.isOpened():
        print("Error opening video file")
        return frames_png
    
    frame_count = 0
    frame_interval = int(cap.get(cv2.CAP_PROP_FPS)) // fps  # Calculate frame interval
    
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            print("Can't receive frame (stream end?). Exiting ...")
            break
        
        if frame_count % frame_interval == 0:
            is_success, buffer = cv2.imencode(".png", frame)
            if is_success:
                frames_png.append(np.array(buffer).tobytes())
        
        frame_count += 1
    
    cap.release()
    return frames_png

def extract_frames(frame):

    # Convert binary data to a numpy array
    frame_np = np.frombuffer(frame, dtype=np.uint8)

    # Decode the PNG image
    image_rgb = cv2.imdecode(frame_np, flags=cv2.IMREAD_COLOR)  # Assuming it's in RGB format

    # Convert RGB to BGR
    image_bgr = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2BGR)

    return image_bgr

def predict_answer(video, image, question):

    text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{question}? ASSISTANT:"
    input_ids = tokenizer(text, return_tensors='pt').input_ids.to(device)

    
    if image:
        # Process as an image
        image = image.convert("RGB")
        image_tensor = model.image_preprocess(image)
        
        #Generate the answer
        output_ids = model.generate(
            input_ids,
            max_new_tokens=25,
            images=image_tensor,
            use_cache=True)[0]
        
        return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
        
    elif video:
        frames = video_to_frames(video)
        image = extract_frames(frames[2])
        image_tensor = model.image_preprocess([image])
        # Generate the answer
        output_ids = model.generate(
                input_ids,
                max_new_tokens=25,
                images=image_tensor,
                use_cache=True)[0]
        answer = tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()

        return answer
        # # Process as a video
        # frames = video_to_frames(video)
        # answers = []
        # for frame in frames:
        #     image = extract_frames(frame)
        #     image_tensor = model.image_preprocess([image])
            
        #     # Generate the answer
        #     output_ids = model.generate(
        #         input_ids,
        #         max_new_tokens=25,
        #         images=image_tensor,
        #         use_cache=True)[0]
            
        #     answer = tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
        #     answers.append(answer)

        # # Modify this logic based on your specific needs
        # most_common_answer = Counter(answers).most_common(1)[0][0]
        
        # # Safely evaluate the most common answer assuming it's a string representation of a Python literal
        # try:
        #     evaluated_answer = ast.literal_eval(most_common_answer)
        # except (ValueError, SyntaxError):
        #     # Handle malformed answer string
        #     evaluated_answer = f"Error evaluating answer: {most_common_answer}"
        
        # return evaluated_answer
    
    #     return ast.literal_eval(answers[0])
        
    # else:
    #     return "Unsupported file type. Please upload an image or video."
        
promt_cat_dog = """
    Annotate this image with this schema:
    {
        “description”: “Is there a cat in the image?”,
        “value”: “Cat”
    },
    {
        “description”: “Is there a dog in the image?”,
        “value”: “Dog”,
    },
    {
        “description”: “Is there a horse in the image?”,
        “value”: “Horse”,
    },
provide me the answers as a dictionary with key as the string value of the variable value on top and its value should be boolean value        
"""
promt_bus_people = """
    Annotate this image with this schema:
    {
        “description”: “Is there a bus in the image?”,
        “value”: “Bus”,
    },
    {
        “description”: “Is there a bike in the image?”,
        “value”: “Bike”,
    },
provide me the answers as a dictionary with key as the string value of the variable value on top and its value should be boolean value        
"""

# promt_video = """
#     Annotate this image with this schema:
#     {
#         “description”: “Is the person standing?”,
#         “value”: “standing”,
#     },
#     {
#         “description”: “Is the person's hands free?”,
#         “value”: “Hands-Free”,
#     },
# provide me the answers as a dictionary with key as the string value of the variable value on top and its value should be boolean value
# """

promt_video = """
    Annotate this image by indicating the presence or absence of specific objects.
    {
        “description”: “Is the person standing?”,
        “value”: “standing”,
    },
    {
        “description”: “Is the person's hands free?”,
        “value”: “Hands-Free”,
    },
Provide your answers as a dictionary with the object type as the key and a boolean value indicating its presence in the image, Use 'true' for objects present in the image and 'false' for objects not present.

"""


test_examples = [[None, "Images/cat_dog.jpeg", promt_cat_dog], 
            [None,"Images/bus_people.jpeg", promt_bus_people], 
            ["videos/v2.mp4",None,promt_video],
            ["videos/v3.mp4",None,promt_video]]


def gradio_predict(video,image, question):
    answer = predict_answer(video,image, question)
    return answer

css = """
#container{
    display: block;
    margin-left: auto;
    margin-right: auto;
    width: 60%;
}
#intro{
    max-width: 100%;
    margin: 0 auto;
    text-align: center;
}

"""
with gr.Blocks(css = css) as app:
    with gr.Row(elem_id="container"):
        gr.Image("gsoc_redhen.png",min_width=60, label="GSOC 2024")
    gr.Markdown("""  
    ## This Gradio app serves as four folds:
    ### 1. My ability and experience to design a customizable Gradio application with Interface/Blocks structure.
    ### 2. One of my Multimodel Vision-Language model's capabilities with the LLaVA framework.
    ### 3. Demo for annotating random images and 4 second videos provided at Notion (https://shorturl.at/givyC) 
    ### 4. Ability to integrate a Large Language Model and Vision Encoder        
                 """)
    with gr.Row():
        video = gr.Video(label="Video")
        image = gr.Image(type="pil", label="Image")
    with gr.Row():
        with gr.Column():
            question = gr.Textbox(label="Question", placeholder="Annotate prompt", lines=4.3)
            btn = gr.Button("Annotate")
        with gr.Column():
            answer = gr.TextArea(label="Answer")
    
    
    btn.click(gradio_predict, inputs=[video,image, question], outputs=answer)

    gr.Examples(
        examples=test_examples,
        inputs=[video,image, question],
        outputs= answer,
        fn=gradio_predict,
        cache_examples=True,
    )

app.launch(debug=True)