Spaces:
Paused
Paused
File size: 5,333 Bytes
7ec133b 9db455c 85e7ead 7ec133b c52e238 fb293c4 c52e238 7ec133b f8dcf83 a4115fd f8dcf83 7ec133b 9db455c 5c72980 b499d7f 7294f1e b499d7f 7294f1e b499d7f 7294f1e b499d7f 7294f1e 9db455c b499d7f 5c72980 feb8185 fa7747b 5c72980 0a6288f 9db455c 0a6288f 5c72980 0a6288f 9db455c 0a6288f fa7747b 5c72980 0a6288f 5c72980 0a6288f fa7747b 0a6288f 5c72980 0a6288f fa7747b 0a6288f f28f6f6 fa7747b 0a6288f fa7747b 5c72980 7ec133b 5c72980 a333293 5c72980 a333293 5c72980 a333293 5c72980 a333293 5c72980 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import gradio as gr
from PIL import Image
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import cv2
import numpy as np
import ast
# # Ensure GPU usage if available
device = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize the model and tokenizer
model = AutoModelForCausalLM.from_pretrained("ManishThota/SparrowVQE",
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("ManishThota/SparrowVQE", trust_remote_code=True)
def video_to_frames(video, fps=1):
"""Converts a video file into frames and stores them as PNG images in a list."""
frames_png = []
cap = cv2.VideoCapture(video)
if not cap.isOpened():
print("Error opening video file")
return frames_png
frame_count = 0
frame_interval = int(cap.get(cv2.CAP_PROP_FPS)) // fps # Calculate frame interval
while cap.isOpened():
ret, frame = cap.read()
if not ret:
print("Can't receive frame (stream end?). Exiting ...")
break
if frame_count % frame_interval == 0:
is_success, buffer = cv2.imencode(".png", frame)
if is_success:
frames_png.append(np.array(buffer).tobytes())
frame_count += 1
cap.release()
return frames_png
def extract_frames(frame):
# Convert binary data to a numpy array
frame_np = np.frombuffer(frame, dtype=np.uint8)
# Decode the PNG image
image_rgb = cv2.imdecode(frame_np, flags=cv2.IMREAD_COLOR) # Assuming it's in RGB format
# Convert RGB to BGR
image_bgr = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2BGR)
return image_bgr
def predict_answer(image, video, question):
text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{question}? ASSISTANT:"
input_ids = tokenizer(text, return_tensors='pt').input_ids.to(device)
if image is not None:
# Process as an image
image = image.convert("RGB")
image_tensor = model.image_preprocess(image)
#Generate the answer
output_ids = model.generate(
input_ids,
max_new_tokens=25,
images=image_tensor,
use_cache=True)[0]
return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
elif video is not None:
# Process as a video
frames = video_to_frames(video)
answers = []
for frame in frames:
image = extract_frames(frame)
image_tensor = model.image_preprocess([image])
# Generate the answer
output_ids = model.generate(
input_ids,
max_new_tokens=25,
images=image_tensor,
use_cache=True)[0]
answer = tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
answers.append(answer)
return ast.literal_eval(answers[0])
else:
return "Unsupported file type. Please upload an image or video."
def gradio_predict(image, video, question):
answer = predict_answer(image, video, question)
return answer
css = """
#container{
display: block;
margin-left: auto;
margin-right: auto;
width: 50%;
}
#intro{
max-width: 100%;
margin: 0 auto;
text-align: center;
}
"""
with gr.Blocks(css = css) as app:
with gr.Row(elem_id="container"):
gr.Markdown("""<div style='text-align: center;'><img src="https://github-production-user-asset-6210df.s3.amazonaws.com/37763863/311454340-af72f848-9735-4d49-830b-885ffbb81091.jpeg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAVCODYLSA53PQK4ZA%2F20240309%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20240309T165700Z&X-Amz-Expires=300&X-Amz-Signature=51aeb4811afff72e70c083594aaffcca1f4a2b95ddd4adf23ee5e736e4fbfefe&X-Amz-SignedHeaders=host&actor_id=37763863&key_id=0&repo_id=769602947" width="1000" height="500" /></div>""")
gr.Markdown("""
## This Gradio app serves as four folds:
### 1. My ability and experience to design a customizable Gradio application with Interface/Blocks structure.
### 2. One of my Multimodel Vision-Language model's capabilities with the LLaVA framework.
### 3. Demo for annotating random images and 4 second videos provided at Notion (https://shorturl.at/givyC)
### 4. Ability to integrate a Large Language Model and Vision Encoder
""")
with gr.Row():
video = gr.Video(label="Upload your video here")
image = gr.Image(type="pil", label="Upload or Drag an Image")
with gr.Row():
with gr.Column():
question = gr.Textbox(label="Question", placeholder="Annotate prompt", lines=4.3)
btn = gr.Button("Annotate")
with gr.Column():
answer = gr.TextArea(label="Answer")
btn.click(gradio_predict, inputs=[image, video, question], outputs=answer)
app.launch(debug=True)
|